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Supporting Information Text

Simulation Model
We treat the effects of frustration by adding non-native interactions to a one-bead per residue (Cα) structure-based
model. The potential energy of our model is composed by four terms:

E = Eback + Enat + Eex + Enon , [1]

where Eback, Enat, and Eex are “structure-based” terms constructed to make the native conformation the global
energy minimum and Enon incorporates frustration by including interactions between non-native pairs of residues (1).
The backbone potential Eback biases towards native backbone geometry,

Eback(~x) =
∑

bonds

kb
2 (r − r0)2 +

∑
angles

kθ
2 (θ − θ0)2 [2]

+
∑

dihedrals

kφ
2 [cos (φ− φ0) + 1] + kφ

4 [cos (3(φ− φ0)) + 1] , [3]

where subscript “0” indicates native state values of bond distances r0, bond angles θ0, and dihedral angles φ0. The
values of the parameters kb, kθ, and kφ are as previously reported (2).

Long-range interactions are assigned to residue pairs depending on whether they are defined as “native”, “non-
native”, or “neutral” pairs. Native pairs are residues in contact in the corresponding Protein Data Bank (PDB)
structure, where “in contact” is defined as having at least one all-atom contact within a 6Å cutoff as assigned by the
Shadow map algorithm (3).

The native contact potential Enat places an attractive Gaussian well at the native distance:

Enat =
∑
ij

(
rex

rij

)12
[Gij(rij)− 1] + εnatGij(rij) , [4]

where Gij is a Gaussian,

Gij(rij) = exp
(
−(rij − r0

ij)2

2w2
nat

)
. [5]

By this construction each native interaction is centered at its native contact distance rij = r0
ij , has a depth of

εnat = −1, a width of wnat = 0.5Å and an excluded volume radius rex = 4Å.
Neutral pairs are residues that have Cα’s within 8Å in the native state but don’t form native contacts (i.e. they

are “near-native”). Neutral pairs interact only through an excluded volume interaction,

Eex =
∑
ij

(
rex

rij

)12
. [6]

We define these residues as neutral, and not non-native, to prevent non-native interactions from changing the properties
of the native state.

The remaining residue pairs are non-native interactions that can be attractive or repulsive:

Enon =
∑
ij

Enon
ij (rij) . [7]

Each non-native pair is assigned an interaction strength εnon
ij that is chosen from a zero-mean Gaussian distribution

with standard deviation b: N (0, b). If εnon
ij < 0 then the interaction is attractive and takes the form:

Enon
ij =

(
rex

rij

)12
[Gij(rij)− 1] + εnon

ij Gij(rij) , [8]

where non-native Gaussian have their minimum located at rnon = 5Å and width wnon = 0.75Å.
If εnon

ij > 0 then the residue pair is assigned a repulsive interaction:

Enon
ij =

(
rex

rij

)12
+
εnon
ij

2

[
tanh

(
− (rij − rnon)

wnon

)
+ 1
]
. [9]
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Note that all non-native interactions are at the same distance rnon = 5Å; there is no geometric or steric information
encoded in non-native interactions. We have assigned the non-native interaction width wnon = 0.75Å as non-native
contacts are meant to be less specific. This choice for wnon also prevents artifacts for small |εnon

ij | where a small
oscillation in the potential is observed if smaller values of wnon are used.

Fraction of native contacts, radius of gyration, and degree of collapse
The reaction coordinate Q is defined as the fraction of native contacts:

Q = 1
Nnat

Nnat∑
ij

1
2

[
tanh

(
−(rij − r0

ij − rc)
wnat

)
+ 1
]
, [10]

where Nnat is the total number of native contacts and wnat is the width of the interaction energy well for native
contacts, as defined above, and rc = 1Å.

The radius of gyration Rg is calculated as the root-mean-squared deviation of bead positions ~ri from the average
position 〈~r〉, using MDTraj (4):

Rg =
〈

N∑
i

(~ri − 〈~r〉)2

N

〉 1
2

. [11]

The degree of collapse η is calculated by normalizing the radius of gyration by minimum and maximum values:

η =
Rg −Rmax

g

Rmin
g −Rmax

g

. [12]

We take Rmax
g to be the maximum radius of gyration for the unfrustrated (b = 0) chain Rb=0

g . The smallest possible
radius of gyration Rmin

g corresponds to the chain being compacted into a tight ball. Consider the chain packed into
some minimum volume Vmin = 4

3πR
3
min, if this was treated as a solid sphere its radius of gyration would be:

(Rmin
g )2 =

Rmin∫
0

(R2)R2dR

Rmin∫
0

R2dR

=
1
5R

5
min

1
3R

3
min

= 3
5R

2
min . [13]

As a rough approximation, the minimum volume Vmin is proportional to the volume of a monomer v0 = 4π
3 r

3
0,

Vmin = 4π
3 r3

0N , [14]

where r0 is some effective radius of the monomers. Therefore the minimum radius of gyration is:

Rmin
g =

√
3
5r0N

1
3 . [15]

We take r0 = 3Å as a rough estimate for the effective radius of the monomers, because it is about half of the
non-native contact distance. Changing r0 by 20 − 30% does not change the qualitative interpretation of η. The
important feature of Eq.15 is that it captures the proper scaling of Rmin

g with N .

Inherent structure analysis
The global topography of the energy landscape in protein folding resembles a funnel towards the native state. The
native energy Enat measures the progress down the funnel and each stratum of the funnel has roughness coming
from fluctuations in the non-native interactions ∆Enon. We use “inherent structure” (IS) analysis (5) to estimate the
roughness of the energy landscape ∆Enon, by inspecting the distribution of energy minima in the unfolded state.

The idea of IS analysis is that the energy landscape can be partitioned into basins that surround each energy
minimum, each minimum corresponding to an “inherent structure” on the landscape. A trajectory sampled at
temperature T can be thought of as quickly fluctuating within and between energy basins.

We apply gradient descent energy minimization in GROMACS (6) to structures originally sampled at the folding
temperature T = Tf . This maps each sampled structure to the nearest energy minimum (or “inherent structure”)
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on the landscape, eliminating thermal fluctuations. In general, the probability of observing an energy minimum E
during a trajectory at temperature T is (5):

P (E) = Ω(E)e−βE−βfvib(E)

Z
= e−β(E−TS+fvib(E))

Z
, [16]

where β = 1
kBT

, kB is the Boltzmann constant, Ω(E) is the density of states, S(E) = kB ln Ω(E) is the microcanonical
entropy, Z is the partition function, and fvib(E) is a vibrational free energy that depends on the shape of the basin
around the minimum. Here we have made the assumption that the vibrational free energy is primarily a function of
energy fvib = fvib(E), which has been found to be the case for structure-based models (7, 8).

The funneled shape of the energy landscape is reflected in the competition between E and S(E) which both take
their smallest value in the native state and increase when moving up the funnel to the unfolded state. We are primarily
interested in what the landscape looks like in the unfolded state: we want to know the fluctuations in energy ∆Enon.

In order to identify the unfolded state we split the total energy into native and non-native terms, E = Enat +Enon.
We define the native (N) and unfolded (U) states as bins around the peaks in P (Enat), located at ENnat and EUnat,
respectively. The width of each state goes until half the maximum of the peak. Non-native interactions are negligible
in the native state, by design of our model, but play a very important role in the unfolded state (Enat = EUnat). In
particular, energy landscape theory posits that non-native interactions decrease the microcanonical entropy of the
unfolded state by (9),

S(EUnat, Enon) = S0(EUnat)−
(Enon − E(EUnat))2

2∆E2
non

, [17]

where S0 and E are the entropy and average energy of the chain without non-native interactions, respectively.
Crucially, the frustration ∆Enon sets the slope of the parabola expressed by Eq.17.

Estimating ∆Enon requires estimating S. Unfortunately, the probability of observing a minimum on the landscape,

P (Enat, Enon) = 1
Z

exp(−β(Enat + Enon)− TS(Enat, Enon) + fvib(Enat, Enon))) , [18]

cannot be inverted for S directly, because we don’t know Z or fvib.
However, we show these issues can be overcome by using relative probabilities. In particular, we follow refs (7, 8),

by considering probabilities relative to the native state bin. Then Eq.18 becomes,

ln
(
P (EUnat, Enon)
P (ENnat, E

N
non)

)
= ∆S

kB
− β∆E − β∆fvib , [19]

where ∆ indicates the difference between unfolded and native state, that is ∆X = X(EUnat, Enon)−X(ENnat, E
N
non).

In Eq.19, the non-native energy is evaluated in the reference probability P (ENnat, E
N
non), but allowed to vary in the

unfolded state P (EUnat, Enon). Thus Eq.19 is a function of only one variable: the non-native energy Enon in the
unfolded state. The native state is a natural choice for the reference probability in our case because it is unique in
our model (S(ENnat, E

N
non) = 0) and well sampled in our simulation.

Therefore, dropping the ∆ for S we get a relationship for microcanonical entropy as a function of Enon only
(analogous to Eq.17):

S

kB
= ln

(
P (EUnat, Enon)
P (ENnat, E

N
non)

)
+ β∆E + β∆fvib . [20]

If we represent the right-hand side as a second-order function,

S

kB
= aE2

non + bEnon + c , [21]

we can make a correspondence with the coefficients in Eq.17 to solve for ∆Enon, S0, and E. We can then calculate
the “glass temperature” Tg from these parameters as:

Tg = ∆Enon√
2kBS0

. [22]

In our analysis, we neglect ∆fvib. Assuming ∆fvib does not depend on Enon, then it would only affect the constant
term in 21, and consequently S0, but not our determination of ∆Enon.
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Correlations between crossover heterogeneity and structural metrics
The size and topology effects we observed are reflected in the correlation of absolute contact order (ACO) with
important levels of non-native heterogeneity we have indicated with b∗. Absolute contact order (ACO) is defined as
the average sequence separation between native contacts,

ACO = 1
Nnat

Nnat∑
ij

lij [23]

where lij = |i− j| is the sequence separation between residues that make a native contact and Nnat is the number
of native contacts. Fig.S3 shows that b∗ increases with ACO, appearing to level off when ACO > 25. Since ACO
correlates with size this indicates the crossover into a large-size limit where b∗ no longer depends on size. Notably, b∗

is less correlated with size (N) or relative contact order (RCO = ACO/N) as shown in Table S1 and Fig.S3.

Fluctuations in folding time across parameter sets
In this work, we have presented average structural and kinetic quantities from many realizations of non-native
parameters. Thus we are able to discern trends that do not depend on any particular parameter set, but only on the
statistical properties of the non-native parameters: their mean εnon

ij = 0 and standard deviation σεnon
ij

= b. Fig.S4
shows that as non-native heterogeneity is increased the fluctuations of the folding time τf and free energy profile G(Q)
tend to increase. Fig.S4B shows that the fluctuations in folding time relative to the parameter-mean στf /τf increase
sharply when b > 1. Large variations between parameter sets indicate that an observable depends on more than just
the overall statistical properties of the parameters and also depends on how the non-native interaction parameters are
assigned. This means, for example, that particularly attractive or repulsive non-native interactions, or clusters of
such interactions, have a large influence on the free energy barrier height (see Fig.S4A). As a result, the variations in
folding time across parameter sets increases with the heterogeneity of non-native interactions (see Fig.S4B).
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ρ b∗
D b∗

η b∗
E

N 0.6156 0.5717 0.5815
ACO 0.8750 0.7319 0.7340
RCO 0.3688 0.2371 0.2903
ρrk rank(b∗

D) rank(b∗
η) rank(b∗

E )
rank(N) 0.6727 0.5636 0.4857
rank(ACO) 0.9636 0.8061 0.9429
rank(RCO) 0.4182 0.3091 0.1429

Table S1. Pearson (ρ) and Spearman rank (ρrk) correlation coefficients between the crossover heterogeneity b∗ and the
following structural metrics: size N , absolute contact order (ACO), and relative contact order (RCO).
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Fig. S1. Distribution of non-native parameters εnon
ij is Gaussian with standard deviation b. The shaded region indicates the probability of a non-native interaction being more

energetically stabilizing than a native contact which has strength ε. (inset) As b increases, the fraction of non-native interactions that are more attractive than native contacts
increases.
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Fig. S2. Folding time τf , transition path time τtp, and reconfiguration time τr , are shown for illustration on a trajectory segment (left panel). Dashed lines indicate the
(un)folded states along the free energy profile on the right panel. Note that coarse-grain time units do not correspond exactly to real time units, so the different timescales
should be considered relative to each other and not for their absolute values.
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Fig. S3. Correlation between the crossover heterogeneity b∗ and different protein-dependent quantities: size (left), Absolute Contact Order (middle), and Relative Contact
Order (right). Legend shows Pearson correlation coefficient ρ and Spearman rank correlation coefficient ρrk .
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Fig. S4. (A) Free energy profiles for protein 1imq at three different values of non-native heterogeneity b. Colors indicate different sets of non-native interaction parameters.
The average and standard-deviation of the folding time over all parameter sets at a given b are indicated as τf and στf , respectively, on each panel. (B) The relative size of
the fluctuations in folding time of parameter sets versus non-native heterogeneity.
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Fig. S5. The glass temperature compared to the folding temperature
Tg
Tf

as a function of b. Grey rectangle indicates the theoretical range from other studies: Tg/Tf =
0.2 − 0.6
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