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METHODS 

Data Curation 

Freely available data for cancers from cancer types associated with tobacco smoking were 

curated from data portals and previously published articles. In total, we were able to curate 5,243 

samples, consisting of at least sequencing data for the cancer genome and the genome of a 

matched-normal tissue. For all 5,243 samples, we were able to examine somatic substitutions, 

small insertions and deletions (indels), dinucleotide substitutions  and mutational signatures. 

Smoking annotation was available for 3,552 of the 5,243 samples, allowing direct comparison 

between smokers and non-smokers. The comparison between smokers and non-smokers was 

extended to include copy number data, genomic rearrangements, and methylation data. Copy 

number data were available for 2,270 of the 3,552 samples, genomic rearrangements were 

available for 349 samples, and 1,770 samples had data about their genomic methylation. Overall, 

data were retrieved from three sources: (i) The Cancer Genome Atlas (TCGA) data portal, (ii) 

the International Cancer Genome Consortium (ICGC) data portal, and (iii) data previously 

generated for 17 articles published in peer-reviewed journals. Table S1 provides detailed 

information about each sample as well as the available data for individual samples used in the 

comparisons between smokers and non-smokers. Additionally, information about data sources 

and accession numbers for sequencing, copy number and methylation data are also provided in 

Table S1 allowing reproducibility of the analyses performed in this study. 

 

Filtering somatic mutations and generating mutational catalogues for cancer samples 

This study relies on previously generated DNA sequencing data and somatic mutations identified 

in these data. Additionally, the study uses previously generated copy number data and previously 
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generated and processed methylation data. The examined sequencing data were originally 

generated by a variety of different laboratories, leveraging different experimental platforms and 

using a diverse set of computational algorithms. To remove any residual germline mutations as 

well as technology, institute, and/or laboratory specific sequencing artifacts, extensive filtering 

was performed prior to analyzing the somatic mutation data. Germline mutations were filtered 

out from the lists of reported somatic mutations using the complete list of germline mutations 

from dbSNP (32), 1000 genomes project (33), NHLBI GO Exome Sequencing Project (34) and 

69 Complete Genomics panel (http://www.completegenomics.com/public-data/69-Genomes/). 

Technology specific sequencing artifacts were filtered out by using panels of BAM files of 

unmatched normal tissues containing more than 500 normal whole-genomes and 1,000 normal 

whole-exomes. Any somatic mutation present in at least two well-mapping reads in at least two 

normal BAM files was discarded. The remaining somatic mutations constituted the mutational 

catalogue for every matched-normal pair. The immediate 5′ and 3′ sequence context for each 

somatic mutation was extracted using the ENSEMBL Core APIs for the human genome build 

that was originally used to identify these somatic mutations.  

 

Identifying mutational signatures and their exposures in cancer genomes  

Mutational catalogues were generated for all 5,243 samples. These catalogues were examined 

following two independent and distinct steps as previously done  in refs. (17, 35). The first step 

encompasses de novo extraction of mutational signatures based on somatic substitutions and their 

immediate sequence context, while the second step focuses on accurately estimating the number 

of somatic mutations associated with each extracted mutational signature in each sample. Briefly, 

mutational signatures were deciphered independently for each of the 17 cancer types associated 

http://www.completegenomics.com/public-data/69-Genomes/


 4 

with tobacco smoking as well as for all cancer types together using our previously developed 

computational MATLAB framework (18). The computational framework for deciphering 

mutational signatures is freely available and it can be downloaded from: 

http://www.mathworks.com/matlabcentral/fileexchange/38724. The algorithm deciphers the 

minimal set of mutational signatures that optimally explains the proportion of each mutation type 

found in each catalogue and then estimates the contribution of each signature to each mutational 

catalogue. Mutational signatures were also extracted separately for genomes and exomes. 

Mutational signatures extracted from exomes were normalized (i.e., the trinucleotide values of 

the exome extracted mutational signatures were divided by the observed trinucleotide frequency 

in an exome and multiplied by the observed trinucleotide frequency in a genome) from the 

observed trinucleotide frequency in the human exome to the trinucleotide frequency of the 

human genome. Overall, we identified multiple distinct mutational signatures, all of which were 

previously reported (and named) by others or us (17, 18, 36). The names of mutational signatures 

used in this manuscript are consistent with the ones on the COSMIC website, 

http://cancer.sanger.ac.uk/cosmic/signatures, which, in turn, are consistent with all previous 

publications. Signatures 1 through 28 (with the exception of signatures 9, 11, 14, 19, and 25, 

which were not found in these samples) were previously validated (17, 18, 36) and, thus, these 

processes most likely reflect genuine and biologically relevant mutational processes. Signatures 

R1 through R2 were previously found in ref. (18), where these three signatures failed validation 

by orthogonal sequencing and were attributed to sequencing artifacts. We were not able to 

perform validation for signatures U2, U5, U6 and U7 as we did not have access to the samples in 

order to perform validation by orthogonal sequencing or visual validation of BAM files by 

experienced curators. The patterns of almost all extracted mutational signatures were the same as 

http://www.mathworks.com/matlabcentral/fileexchange/38724
http://cancer.sanger.ac.uk/cosmic/signatures
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the ones already reported on the COSMIC website: http://cancer.sanger.ac.uk/cosmic/signatures. 

The only exceptions were signatures 4 and 16, which patterns of mutations were slightly updated 

(Fig. 2 and Table S6). 

The de novo extraction was used to identify the complete set of mutational signatures across the 

5,243 curated tobacco smoking associated cancers. Next, we quantified the rates of somatic 

mutations attributed to each signature in each sample following our previously developed 

methodology (17, 35). Briefly, the contributions of the mutational signatures were estimated 

independently for each of the 5,243 samples with a subset of mutational signatures. For each 

sample, the estimation algorithm consists of finding the minimum of the Frobenius norm of a 

constrained linear function for a set of previously extracted mutational signatures. This set of 

signatures is determined based on the known operative mutational processes in the cancer type of 

the examined sample from the hitherto described mutational signature extraction process. For 

example, for any acute myeloid leukemia sample, only signatures 1 and 5 will be used since 

these are the only known signatures of mutational processes identified in acute myeloid 

leukemia. The prevalence of somatic mutations and mutational signatures in each sample was 

estimated based on a haploid human genome after all filtering was performed. Briefly, the 

prevalence of somatic mutations in a whole-exome sample was calculated based on the identified 

mutations in protein coding genes and assuming that an average whole-exome has sufficient 

coverage of 30.0 megabase-pairs in protein coding genes. The prevalence of somatic mutations 

in a whole-genome sample was calculated based on all identified mutations and assuming that an 

average whole-genome has sufficient coverage of 2.78 gigabase-pairs. No mutations (i.e., value 

of zero mutations per megabase) were attributed to all signatures that were not found in a given 

sample. 

http://cancer.sanger.ac.uk/cosmic/signatures
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Factors that influence extraction of mutational signatures  and mutational signatures 

robustness and reproducibility  

In a previous analysis, we used simulated data to describe multiple factors that can influence the 

extraction mutational signatures (15). Examples of such factors are the number of somatic 

mutations found in an individual sample, the bona fide numbers of mutations contributed by 

different mutational signatures, the resemblance of patterns amongst mutational signatures, the 

total number of available samples, and computational limitations of our framework (15). 

Regardless of these limitations, throughout the past four years, our framework has demonstrated 

its ability to identify robust and novel mutational signatures. Multitude of studies performed by 

us and others using our computational framework (or other computational frameworks) on 

different datasets have revealed the stability and reproducibility of extracting mutational 

signatures from human cancers (18, 20, 24, 37-45). Additionally, this study demonstrates once 

more the reproducibility of our computational framework. Here, we analyzed 10 distinct datasets 

containing different numbers of samples from different tobacco smoking associated cancers and 

consistently deciphered signature 4 in these cancer types (Fig. S2). Furthermore, the newly 

identified pattern of signature 4 (Table S6) has a cosine similarity of 0.97, where 1.00 is a perfect 

match, with the previously reported pattern of signature 4 on the COSMIC website, 

http://cancer.sanger.ac.uk/cosmic/signatures. Additionally, this in silico derived mutational 

signature also matches a mutational signature induced in vitro by exposing cells to the 

carcinogen benzo[a]pyrene (cosine similarity=0.94), a constituent of tobacco smoke  (19). It 

should be noted that the benzo[a]pyrene mutational signature is based on our previous 

experimental work (19). 

 

http://cancer.sanger.ac.uk/cosmic/signatures
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Analysis of copy number changes and structural rearrangements  

Analysis for copy number changes was performed for all samples with annotated tobacco 

smoking history for which copy number data were available. Where raw Affymetrix SNP 6.0 

data could be obtained, we inferred sample purity and ploidy, as well as copy number changes, 

using the ASCAT computational framework (46). Where raw SNP array data wasn’t available (a 

subset of pancreatic cancers), processed data was obtained from the ICGC data portal and 

harmonized before analysis. More specifically, since only aberrant regions were reported, we 

filled all unreported positions of chromosomes 1 through 22 with a major + minor copy number 

state of 1 + 1. Additionally, we had to transform the three reported mutation type classes (copy 

neutral loss of heterozygosity (LOH), gain, loss) and overall copy number into copy number 

states for major and minor allele using the following classification: (i) copy neutral LOH: 2+0, 

(ii) loss: overall copy number+0, and (iii) gain: when the overall copy number is 4, 2+2, 

otherwise (overall copy number-1)+1. Gains are not easy to derive from overall copy number 

only, but as our further analysis only relies on the length of aberrant regions, this approach is 

sufficient.  

From the adjusted copy number information, we could directly extract the number of breakpoints 

in each sample and compare the distributions across samples between smokers and non-smokers. 

To determine the genomic instability per sample, we calculated the fraction of the genome that is 

copy number aberrant. As we had observed multiple polyploid samples when examining the 

ploidy, we decided to define the aberrant regions based on a majority-rule of copy number states 

per sample. If the segmented data shows more 2+2 than 1+1 regions, it is classified as whole 

genome duplicated and all segments with a copy number not at 2+2 are considered aberrant. For 

all other samples we assumed a normal diploid state and only regions not at 1+1 are counted 
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towards the aberrant genomic fraction. As such, the overall genomic instability of a sample is 

then calculated as the length of all aberrant segments divided by the length of all regions for 

which copy number information was available. 

Analysis for genomic structural rearrangements was performed for all samples with annotated 

tobacco smoking history for which genomic rearrangements were originally reported. The 

number of genomic rearrangements for each sample was derived based on the provided data in 

the curated data source from which the sample was curated. 

 

Analysis of methylation data 

Comparison of overall methylation between smokers and non-smokers was performed for all 

tobacco-associated cancer types for which there were available data from Illumina Infinium 

HumanMethylation450 BeadChip array, where each array contains 473,864 autosomal CpG 

probes. The examined data were downloaded from the original data source (Table S1) after 

standard pipelines have already pre-processed the data (TCGA level 3 data). This processing 

includes: quality control, normalization, and beta value calculations. All probes targeting X- and 

Y-chromosomes were removed from our downstream analyses.  

For each cancer type, we categorized samples into two distinct non-overlapping groups 

according to their smoking history (i.e., smokers and non-smokers). Principal component 

analysis was applied using prcomp function in “stats” package of the language R. We compared 

interquartile ranges (IQR) of beta values of each probe between smoker and non-smoker 

subgroups. Smokers showed statistically significant increase of IQR values in all cancer types, 

albeit at low levels in most cancer types. The exceptions were larynx and lung adenocarcinoma 

where the inter-sample variability of methylation levels of CpGs, measured using the inter-
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quartile range, had more than 20% average increase in smokers compared to non-smokers (Fig. 

S9). Additionally, for each cancer type, we derived two average methylation profiles: one for 

smokers and another one for non-smokers. In each cancer type, we compared each individual 

smoker to the average methylation profile of smokers in that cancer type as well as each 

individual non-smoker to the average methylation profile of non-smokers in that cancer type. 

The mean methylation deviation for a given sample was determined by: 

𝑀𝑒𝑎𝑛𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  ∑
|𝛽𝑖 − 𝛽̅|

𝑁

𝑁

𝑖=1

 

where 𝛽𝑖  is the methylation level (i.e., beta value) of the i-th CpG probe, 𝛽̅  is the average 

methylation level of the probe, and N is the total number of the methylation probes (N is 473,864 

in a Illumina Infinium HumanMethylation450 BeadChip array). The distributions of the derived 

mean deviations were used as methylation features, which distributions were subsequently 

compared between smokers and non-smokers using a two-sample Student’s t-test. Results were 

considered significant for Bonferroni threshold of 10-7.  

 

Statistical comparison between smokers and non-smokers  

Comparisons between smokers and non-smokers were performed both across all examined 

samples as well as in samples from individual types of cancers associated with tobacco smoking. 

In individual cancer types, the distributions of multiple distinct features were compared between 

smokers and non-smokers. These features include: total somatic substitutions, total long indels 

(>=3bp) with overlapping microhomology, total short indels (<3bp) found at 

mono/polynucleotide repeats, total dinucleotide substitutions, somatic substitutions of a given 

type (C>A, C>G, C>T, T>A, T>C, or T>G) and numbers of somatic mutations attributed to the 
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mutational signatures found in that cancer type. Additionally, when data were available for a 

cancer type, we compared numbers of breakpoints, fraction of the genome that shows copy 

number changes, ploidy of the genome, purity of the tumor, and overall methylation. For each 

feature, in a given cancer type, a p-value was derived using a two-sample Kolmogorov-Smirnov 

test to compare the distributions of this feature between smokers and non-smokers. The 

calculated p-values were corrected for multiple hypothesis testing using the  Benjamini–

Hochberg procedure for all features in a cancer type. 

In addition to examining individual cancer types, we compared smokers to non-smokers using all 

samples across all cancer types. The examination was performed analogously to the one 

described for individual cancer types. However, to make sure that mixing samples across cancer 

types does not bias our results, the mixing process was iterated multiple times and overall 

average values and p-values were derived for each feature. In each of the iterations, 30 smokers 

and 30 non-smokers were randomly sampled with replacement from each cancer type and mixed 

together. The distributions of each feature in the mixture were compared between smokers and 

non-smokers using two-sample Kolmogorov-Smirnov tests. In total, we performed 10,000,000 

mixing iterations. For each feature, an iteration for which the two-sample Kolmogorov-Smirnov 

test returned a p-value<0.05 was considered statistically significant, whereas an iteration with p-

value>=0.05 was considered not statistically significant. The overall p-value per feature was 

calculated as follows: 
NumberOfNotSignificantIterations+1

10,000,000+1
. It should be noted that the number 

of iterations limits the minimum possible p-value, in this case 9.99E-08, and p-values reported as 

9.99E-08 are most likely lower. The derived p-values were further corrected for multiple 

hypothesis testing using the Benjamini–Hochberg procedure for all examined features. 
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The p-values for the correlations between the ages of diagnosis and the mutations attributed to 

signature 5 were derived separately across all smokers and all non-smokers using robust linear 

regression for all samples in which signature 5 was found. 

 

Analysis of clonal and subclonal mutations in smokers and non-smokers 

We managed to obtain access and to download aligned sequencing data (BAM files) for 1,506 of 

the 3,553 samples with annotated smoking information (Table S1). In order to analyze what 

fraction of mutations belong to a subclonal population, we determined the variant allele fraction 

(VAF) of variants in the coding regions of samples for which we had access to sequencing data. 

The initial VAF is transformed into mutation copy number (MCN), i.e., the number of genomic 

segments carrying a given variant, as described in equation 1.  

MCN = 
𝑉𝐴𝐹

𝜌
 ∗ (𝜌𝜓𝑡 + (1 − 𝜌)𝜓𝑛 )                                           (1) 

Each sample’s purity ρ and the copy number of the surrounding region in the tumor ψt was 

determined by ASCAT (46), the copy number in the normal ψn is assumed to be two, except for 

variants on sex chromosomes in male patients where it is set to one. Additionally, the expected 

VAF of a variant with a mutation copy number of one that is located in the same genomic region 

than the observed mutation was calculated as described in equation 2. 

Expected VAFMCN=1 = 
𝜌

(𝜌𝜓𝑡+(1−𝜌)𝜓𝑛 )
                                         (2) 

To estimate if a given mutation is subclonal, a one-sided proportion test was applied by using the 

number of reads supporting the variant and the overall coverage of the locus as counts of 

successes and trials, respectively. The calculated expected VAF is used in the test as the 

probability of success. All tested mutations that have a significantly lower VAF than expected 

for a variant with a mutation copy number of one (p-value<0.05) are defined as subclonal. 
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Statistical comparisons for mutational signatures in clonal and subclonal mutations were 

performed across all tobacco smokers and all non-smokers in a manner analogous to the one 

described in the previous section.  

 

Statistical analysis of relationships between pack years smoked and mutational signatures  

We performed global analysis for linear relationship between pack years smoked and mutational 

signatures. In addition to mutational signatures, total somatic mutations were examined in the 

same way as a mutational signature. The data heteroscedasticity as well as the presence of many 

outliers requires leveraging an appropriate statistical method (47). We made use of robust linear 

regression to evaluate linear dependencies between the number of mutations associated with each 

mutational signature across all examined samples and the pack years smoked.  

Examination was first performed across all samples in all cancer types by combining data for the 

identified mutational signatures. The calculated p-values from the applied robust regression 

analysis were corrected for multiple hypothesis testing using the Benjamini–Hochberg procedure 

(Table S3). In addition to examining all samples across all cancer types, individual cancer types 

were examined separately for a linear dependence between pack years smoked and the number of 

somatic mutations attributed to each of the signatures of the operative mutational processes 

found in that cancer type. Taking into consideration that the majority of traditional or generalized 

linear regression approaches are very sensitive to outliers (47) and since many of the examined 

cancer samples are hypermutators (i.e., outliers), we again leveraged a robust regression model 

to evaluate for linear dependencies. Briefly, robust regression iteratively reweights least squares 

with a bi-square weighting function and overcomes some, if not the majority, of limitations 

attributed to traditional approaches (48-50). Similarly, we have chosen to report results using 
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Spearman’s rank correlation coefficient since it is more robust to data outliers when compared to 

the traditional Pearson’s product-moment correlation coefficient (51). It should be noted that 

only samples with known pack years smoked were included in this analysis. Each mutational 

signature was examined separately in each of the cancer types in which that signature had been 

identified. The examination was based on: a robust linear regression model that estimates the 

slope of the line and whether this slope is significantly different from a horizontal line with a 

slope of zero (F-test; p-value<0.05) as well as by calculating the Spearman’s rank correlation 

coefficient. The calculated p-values from the applied robust regression analysis were corrected 

for multiple hypothesis testing using the Benjamini–Hochberg procedure for each cancer type 

(Table S3). 
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SUPPLEMENTARY  TEXT 

 

Theoretical considerations on the increase in mutation rate and the increase in cancer risk 

Using age- incidence epidemiological data, in the early 1950s, Nordling (52) as well as Armitage 

and Doll (53) first modeled cancer as a result of n rate- limiting steps. For example, under their 

assumption, if there are 5 rate- limiting steps that a cell has to undergo to become a cancer, the 

risk of cancer can be modeled as: 

 

risk = k p1 p2 p3 p4 p5 t4 ~ k’ * t4 

 

Where k and k’ are constant terms and p reflect the relative rates of different driver events. This 

equation offers a way to derive a simple relationship between the mutation rate and cancer risk. 

Let us assume that n of the rate limiting steps are somatic mutations whose rate is increased by a 

mutagen by r-fold. For example, if n=3, we have: 

 

riskwith mutagen = k r p1 r p2 r p3 p4 p5 t4 ~ k’ * r3 * t4 

 

Dividing the expressions for the risk with and without a mutagen one obtains the following 

equation for the expected increase in cancer risk as a function of an increase in mutation rate: 

 

risk-fold = rn                                                              (3) 
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This is an intuitive solution: since an increase in mutation rate (r) linearly increases the 

probability of each of the independent driver mutations, a moderate increase in mutation rate can 

lead to a much larger increase in risk. 

An analogous approach was recently used to estimate the number of driver mutations required in 

lung adenocarcinoma by comparing the incidence of cancer in smokers and non-smokers and the 

change in mutation burden observed in cancers from smokers and non-smokers (29). This study 

concluded that n=3 was the integer number of driver mutations that best explained how an 

increase in mutation burden of 3.23-fold in smokers can cause an increase in cancer incidence of 

16.2-fold (based on estimates available at the time). 

Equation 3 is conceptually important as it offers an explanation for how a moderate change in 

mutation burden can cause a large change in cancer risk. However, there are several reasons why 

this model is simplistic and should be applied with caution, including: 

1. The model assumes that a mutagen acts constantly throughout life. 

2. The model assumes that a mutagen increases equally the rate of all driver mutations, 

which may not be a generally valid assumption. 

3. The model does not consider clonal expansions inducible by the first driver events in 

precancerous tissue, which is known to affect these equations. 

4. The model assumes that all cells from all individuals of each group (smokers and never-

smokers) have the same mutation rate, which is unrealistic. 
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Sensitivity for detecting mutational signature 4 in cancer types 

To evaluate whether the lack of signature 4 in some cancer types is not due to limitations in our 

computational approach, we performed simulations based on actual data from bladder, cervix 

and kidney cancers since signature 4 was not detected in any of these cancer types. A discrete 

number of somatic mutations (i.e., 1, 5, 10, 20, 50, 75, 100, 200, 500 or 1,000) from signature 4 

was in silico added to each sample in each of the cancer types. We evaluated the ability of our 

computational approach to identify the presence of signature 4 based on the respective additions 

of somatic mutations (Fig. S4). Adding single mutations to mutational catalogues did not allow 

us to find signature 4 in any sample (Fig. S4); however, as low as 5 somatic mutations were 

sufficient to identify signature 4 in approximately 20% of samples. These 20% of samples were 

ones with low mutational burden usually with two or less C>A mutations (the main feature of 

signature 4). In contrast, even 200 somatic mutations were not sufficient to identify signature 4 

in some samples (Fig. S4) as these samples usually contained many C>A substitutions from 

other mutational signatures. The addition of 500 or more somatic mutations proved sufficient for 

the identification of signature 4 across all samples in the examined three cancer types. Overall, 

our simulations indicate that as low as 10 somatic mutations, reflecting 0.20 mutations per 

megabase in an exome, are sufficient to identify the presence of signature 4 in more than 25% of 

the samples in the three cancer types indicating that signature 4 would have been detected if 

present at this levels (Fig. S4). 

Aromatic amines, an important class of carcinogens found in tobacco smoke, have also been 

linked to bladder cancer and experimentally shown to generate C>A mutations (54). However, 

we were unable to identify a C>A predominant mutational signature in bladder cancer and our 

simulations indicate that as few as 10 somatic mutations in an exome will be sufficient for 
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detecting this signature. One interpretation of this result is that the carcinogenicity of aromatic 

amines in bladder cancer is due not to direct DNA damage but potentially to an activation of 

other mutational processes generating different mutational signatures. Another interpretation is 

that aromatic amines generate too few somatic mutations (<10 mutations) to be detected by our 

signatures approach. A further interpretation is that aromatic amines are not responsible for the 

increased bladder cancer risk associated with cigarette smoking. 
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Mutation rate variation across normal cells can lead to complex relationships between 

cancer mutation burden and risk 

In reality, there is likely to be significant variation in the mutation rate across lung epithelial cells 

within an individual and across individuals in both the smoking and non-smoking population. As 

shows below, this can lead to very unexpected and even counterintuitive relationships between 

mutation rate and cancer risk. 

Under the multistage model of cancer, when the mutation rate varies across cells and across 

individuals, cancers are much more likely to evolve from normal cells with higher mutation rates 

than from those with lower rates. This means that the mutation rates observed in cancers are 

expected to be a biased representation of the mutation rates in normal cells. Being f(μ) the 

probability density function of the mutation rate across normal cells, assuming a simple multi-

stage model of cancer, the density function of the mutation rate across cancers can be approached 

by: fcancer(μ) ∝ f(μ) * risk(μ). 

An example of the impact of this phenomenon is exemplified by simulations in Fig S6. For these 

simulations, risk(μ) is modeled as the probability of a single-cell having n=5 driver genes with at 

least one mutation at a given time (the product of five cumulative Poisson probabilities), as a 

function of an overall mutation rate per gene (μ). To explore the effect of mutation rate variation 

among normal cells, most cells have low mutation rates (~0.001 mutations/gene) and a small 

subpopulation (0.1%) of cells have a ten-fold higher basal rate (Fig. S10A). When evolving 

cancers from this population of normal cells, one can see that most cancers evolve from the 

hypermutator subpopulation of cells (Fig S6A, bottom panel). 
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To evaluate the effect of a mutagen, in a second simulation we increase the mutation rate of all 

cells by 0.001 mutations per gene (Fig. S10B). This nearly doubles the average mutation burden 

in the population of normal cells and also increases the cancer risk in the mutagen-exposed 

population by ~3.5-fold. When evolving cancers from this population of cells, we can now see 

that many cancers evolve from non-hypermutator cells, thanks to the increase in mutation rate 

due to the mutagen. Paradoxically, however, this causes the average mutation burden of the 

cancers to be lower in smokers than in non-smokers. 

In this scenario, a signature analysis of the mutations observed in cancers from both mutagen-

exposed and non-exposed individuals would reveal the contribution of the mutagen to cancers 

from exposed individuals, and a higher contribution of other signatures to cancers from non-

exposed individuals. This shows that more complex relationships than suggested by equation (3) 

can emerge when studying the changes in cancer incidence and cancer mutat ion rates induced by 

a mutagen. 
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Comparison of mutational signatures in clonal and subclonal mutations in tobacco smokers 

and non-smokers 

Somatic mutations were classified in each sample as either clonal or subclonal as described in 

Supplementary Methods. In total, approximately 14% of the examined mutations were classified 

as subclonal with the remaining 86% being clonal. Each sample was split into two virtual 

samples: one containing only the clonal mutations and one containing only the subclonal 

mutations. We then performed mutational signatures analysis using all of these virtual samples 

by extracting mutational signatures and estimating the contributions of each signature to each 

sample.  

Next, we compared the clonal mutations assigned to each signature in smokers to the ones in 

non-smokers. The results revealed that signatures 4 and 5 are enriched in clonal mutations of 

smokers compared to clonal mutations of non-smokers (q-value<0.05; two sample Kolmogorov-

Smirnov tests corrected for multiple hypothesis testing for all examined mutational signatures). 

No differences were observed for any other mutational signatures in clonal mutations. 

Furthermore, our analysis did not reveal significant differences for any mutational signature 

when comparing subclonal mutations assigned to signatures of tobacco smokers to the ones of 

non-smokers. In summary, signatures 4 and 5 were the only signatures enriched in clonal 

mutations of tobacco smokers compared to non-smokers but no difference was observed for any 

signature in regards to subclonal mutations. 

Additionally, for all non-smokers, we compared the percentages of mutations assigned to each 

signature in clonal samples with the ones in subclonal samples. The results revealed statistically 

significant differences (q-value<0.05) for two mutational signatures: signatures 1 and 2 were 

enriched in clonal mutations of non-smokers. Analogous comparison in smokers revealed 
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statistically significant differences (q-value<0.05) for four mutational signatures: signatures 1, 2, 

4 and 5 were enriched in clonal mutations of smokers.  

Overall, the results from these analyses are consistent with the hypothesis that signatures 4 and 5 

are tobacco associated signatures since the increases in these signatures are due to cigarette 

smoke exposure prior to neoplastic change. 
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SUPPLEMENTARY  FIGURES 

 

 
Fig. S1. Comparison of transcriptional strand bias between in vitro exposure to 

benzo[a]pyrene and signature 4 extracted from all tobacco-associated cancer types. The six 

possible types of substitutions are show on the x-axes, while the y-axes reflect the percentage of 

mutations attributed to each strand oriented substitution type. Red reflects pyrimidine-oriented 

substitutions (e.g., C>A), while blue depicts purine-oriented substitutions (e.g., G>T).  
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Fig. S2. Extracting the pattern of signature 4 from different cancer types.  Signatures are 

depicted using a 96 substitution classification defined by the substitution type and sequence 

context immediately 5’ and 3’ to the mutated base. Different colors are used to display different 

types of substitutions. The percentages of mutations attributed to specific substitution types are 

on the vertical axes, while the horizontal axes display different types of substitutions. Mutational 

signatures are depicted based on the trinucleotide frequency of the whole human genome. Each 

panel is clearly label to indicate the caner type(s) used for extracting signature 4. The quantified 

similarities between signature 4 extracted from all cancer types and signature 4 extracted from 

individual cancer types is depicted in Fig. S3. 
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Fig. S3. Similarity between extraction of signature 4 across different cancer types and other 

known mutational signatures. Each bar represents a mutational signature, where the height of 

the bar reflects the similarity between the signature and consensus signature 4 extracted from all 

5,243 samples (i.e., green bar). Similarity of 1.00 reflects a perfect match between mutational 

signatures, whereas similarity of 0.00 indicates orthogonal (i.e., completely different) mutational 

signatures. Dark blue bars are used for mutational signatures extracted from whole exome 

sequencing data, light blue bars for mutational signatures extracted from whole genome 

sequencing data, gray bars corresponds to signatures as reported on the COSMIC website and in 

refs. (17, 18), and the red bar reflects a signature due to in vitro exposure by benzo[a]pyrene. 
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Fig. S4. Sensitivity for detecting signature 4 in cervix, bladder and renal cancer. The x-axis 

reflects the number of somatic mutations added to each sample (discrete values: 1, 5, 10, 20, 50, 

75, 100, 200, 500 and 1,000) in logarithmic scale. The y-axis reflects the percentage of samples 

in which our approach can identify signature 4 after adding the respective number of somatic 

mutations.  

Fig. S4 
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Fig. S5. Strong transcriptional strand bias of signature 16. Mutations are shown according to 

the 192 mutation classification incorporating the type of substitution, the sequence context 

immediately 5’ and 3’ to the mutated base and whether the mutated base is on the purine or 

pyrimidine strand of the human reference genome. Different colors are used to shade different 

types of substitutions. Mutations occurring on the purine strand are shown in blue, while 

mutations occurring on the pyrimidine strand are shown in red. The mutational signature is 

depicted based on the trinucleotide frequency of the whole human genome. The percentages of 

mutations attributed to specific substitution types are on the vertical axes, while the horizontal 

axes display different types of substitutions. 
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Fig. S6. Comparison between lifelong non-smokers and smokers based on overall CpG 

methylation profiles. Results from principle component analyses reveal no remarkable 

difference in overall CpG methylation profiles between smokers and non-smokers. The analyses 

were performed using CpG methylation profiles obtained by Infinium HumanMethylation450 

BeadChip. Please note that some of the red circles are overlapping with some of the black 

circles.  
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Fig. S7. CpG islands and differentially methylated CpGs in smokers compared to non-

smokers. Gray bars reflect the proportion of CpG probes in the Illumina Infinium 

HumanMethylation450 BeadChip. Black bars reflect the number of differentially methylated 

CpGs in lung adenocarcinoma and oral cancer (Tables S4 and S5). TSS stands for transcription 

start site. 
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Fig. S8. Cancer tissue methylation of individual CpGs near genes differentially methylated 

in blood or buccal cells of smokers. Heatmaps of beta values of CpG methylation are shown for 

three genes (AHRR, F2RL3, and GFI1) known to be differentially methylated in normal tissues 

of smokers (28). The CpGs are on the vertical axes, while the horizontal axes reflect samples in 

the respective cancer types. Lifelong non-smokers (top blue part of each panel) and smokers 

(bottom red part of each panel) have been separated manually. No difference was observed 
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between smokers and non-smokers. All differentially methylated CpGs in tobacco-associated 

cancers are provided in Tables S4 and S5. 
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Fig. S9. Interquartile range of methylation levels in tobacco-associated cancer types. The 

horizontal axes reflect logarithmic interquartile range, while the vertical axes reflect frequency of 

probes. Ratio is calculated by dividing the interquartile range of methylation levels of smokers to 

the one of non-smokers.  
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Fig. S10. Mutation rate variation across normal cells can lead to complex relationships 

between cancer mutation burden and cancer risk. To exemplify the impact of mutation rate 

variation across cells, we simulate two different scenarios (see supplementary text for a detailed 

description). Top panels show the underlying mutation rate in normal cells in (A) the absence 

and (B) presence of a mutagen used in the simulation (notice the shift towards higher mutation 

rate in B due to the mutagen). As described in the supplementary text, a small subpopulation of 

normal cells are hypermutators. In this simulation, cancer emerged when a cell acquired a 

mutation in five driver genes. Under these conditions, it can be seen that in the absence of a 

mutagen, the vast majority of tumors evolve from the subpopulation of hypermutator cells (A). In 

contrast, in the presence of a mutagen, the much more frequent non-hypermutator cells have 

sufficiently increased mutation rates to generate tumors more frequently than hypermutator cells 

(B). As a result, in this simulation the mean cancer mutation burden is higher in patients without 

a mutagen exposure. This simple model exemplifies how, in the presence of variable mutation 

rates across cells, the relationship between mutation burden and cancer risk need not be a simple 

Fig. S10 
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one and that, under certain situations, some signatures could be more prevalent in tumors from 

patients not exposed to a mutagen. 
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Captions for supplementary tables 

Table S1: Detailed information about each examined tobacco-associated cancer sample.  

Table S2: Comparison of features of tobacco smokers to the ones of lifelong non-smokers. 

Table S3: Relationships between mutational signatures and pack years smoked.  

Table S4: Individual CpGs with differential methylation in lung adenocarcinoma.  

Table S5: Individual CpGs with differential methylation in oral cancer.  

Table S6: Numerical patterns of mutational signatures associated with tobacco smoking. 
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