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S1. Biosphere experimental details

Mosquito breeding

From October 2012 to February 2013, blood-fed female mosquitoes identified morpholog-

ically as members of the An. gambiae complex were collected from Sagamaganga village

and transported to and bred to the Ifakara Health Institute (IHI). Females were held for 24

hours with access to a 5% sugar solution before being transferred into individual cups for

oviposition. Females were kept in cups for 3-5 days, after which those that oviposited were

immediately taken to the IHI laboratory for species identification by polymerase chain

reaction (Scott et al. 1993). Eggs from females confirmed as being An. arabiensis were

pooled and released iinto aquatic habitats in each mesocosm chamber to establish popu-

lations under semi-field conditions. About 2,000 larvae were released into each mesocosm

chamber the aquatic habitats over 10 to 20 introductions from independent field stock.

Larval habitats were checked daily and topped up with water when necessary.

Eave louvers installation

Eave louvers were installed along the lower edge of the gap running between the roof and

upper wall of the houses (Fig. 1A & B). The gap running between the roof and top of

the walls (5 cms wide and 0.6 - 1.0 meters long) was covered with long-lasting insecticide

treated nets (LLINs: Permanet, Deltamethrin 55gm/m2) netting material (6 x 0.6 1 m).

This provides enough landing surface for the females mosquitoes prior to entering the

house. Adults were expected to land on the netting surface prior to entering the hut.
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Figure S1: Photograph showing (a) eave louvers installed on the eave of the human hut in

the mesocosm (b) close look of the gap and the netting material embedded on the wooden

surface of the eave.
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S2. State-space population model

A Bayesian population model was developed under a state-space approach to describe

Anopheles arabiensis mosquito population dynamics, which were established inside meso-

cosms and exposed to different combinations of three malaria control strategies: Long

lasting Insecticidal nets (LLINs), Ivermectin (IM) and eave louvres (EL). The main ob-

jective of this model was to quantify the impact of each of these control strategies on the

different stages of the mosquito life cycle. A state-space model comprises a biological and

an observation process. Here, the foundation of the biological process is the mosquito

life cycle, i.e. adult female mosquitoes that survive to lay eggs, these eggs become larvae

that undergo two larval stages before reaching adulthood and start a new cycle by laying

a new generation of eggs. In turn, the observation process is based on the experimental

setting and how the larval and adult data were collected.

We started by estimating the weekly survival rates of adult mosquitoes (sp) and larvae

(sn) in each experimental compartment i at week t. These survival rates were defined

through a logit transformation of linear predictors terms (sp and sn) such that:

sp(i, t) =
exp(Sp(i, t))

1 + exp(Sp(i, t))
(1)

sn(i, t) =
exp(Sn(i, t))

1 + exp(Sn(i, t))
(2)

Specifically, Sp(i, t) is written as a function of the intervention strategies:

Sp(i, t) = β0 − β1LLINi,t − β2IMi,t − β3ELi,t + εi,t (3)

where, β0 corresponds to the baseline weekly adult mosquito survival defined by an in-

formative beta prior distribution with mean of 0.25 (see derivation of priors in Table S1)

and a variance 0.01. The parameters β1, β2 and β3 quantify the impact of LLIN, IM or

EL, in each experimental compartment i at week t, on survival, respectively. The priors

on these impacts were defined from uninformative gamma distribution with mean and

variance 0.1, which allowed the impact of survival to range from no impact to elimination

of the population. The uncertainty term ε was included to account for extra variability in
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the survival rate within compartment i and time t associated with processes uncontrolled

for by our experimental setup or other non-measured covariates and was drawn from a

normal distribution with mean 0 and precision τ . In turn, τ was estimated from a uniform

distribution ranging from 0 to 1.

Because our data does not include separate counts of eggs and larvae, we were not able to

tease apart the impacts of the different interventions on fecundity and larvae survival rates.

However, since the fecundity and larval survival stages are relatively brief and consecutive,

this distinction was not deemed important from a dynamical perspective. As such, instead

of describing larval survival rates as a function of the intervention strategies (as for adult

survival rate), the larval survival predictor Sn(i, t) was written only as function of density-

dependence, where an increasing number of larvae may lead to decrease in larval survival

due to predation or decreased habitat availability:

Sn(i, t) = θ0 − θ1Ni,t + ξi,t (4)

The coefficient θ0 corresponds to the baseline weekly larval survival defined by an infor-

mative beta prior distribution with mean of 0.35 (see Table S1) and a variance 0.01. The

density-dependence coefficient θ1, quantifies the effect of the total number of larvae (N)

present in compartment i at time t on larval survival, and was given a gamma prior with

mean 0.001 and variance 0.0001. Given the size of the experimental populations, this

prior allowed for density-dependence to have effects ranging from no effect or completely

suppress larval survival. Similarly to adult survival, the uncertainty parameter ξ was

included to account for the variability associated with the survival rates. Its prior was a

normal distribution with mean 0 and precision τ . In turn, τ was estimated from a uniform

distribution ranging from 0 to 1.

The total number of larvaeN , however, are dependent on the survival of eggs to adulthood.

Typically, eggs develop into larval stage I (n0), and then to larval stage II (n1) and finally

pupae (n2) before becoming full adults (pn). As such, the total number of larvae N is a

compound state variable:

N(i, t) = 2(n0i,t + n1i,t + n2i,t) (5)
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This adult-egg-larval-adult development is thought to take approximately 2-3 weeks. In

our model, given that our time unit is one week, we approximate this development to

3 weeks, where each larval stage lasts a full week. This development starts with adult

mosquitoes p, which can be surviving adults already in the system or new adults newly

emerged from larvae (pn), reproducing at a rate b(i, t) to lay 1st instar larvae that turn

into pupae. The number of pupae n0(i, t + 1) is then estimated from a Poisson process,

such that:

n0(i, t+ 1) ∼ Poisson(bi,tpi,t) (6)

and similarly to adult survival, the fecundity rate b(i, t) is impacted by the intervention

strategies in each compartment i such that:

log
b(i, t)

2
= λ0 − λ1LLINi,t − λ2IMi,t − λ3ELi,t (7)

where, λ0 corresponds to the baseline weekly fecundity rate of females (hence division

by 2) defined by an informative gamma prior distribution with mean of 18.75 1st instar

larvae per week (equivalent to a female per capita egg production of 60 eggs, three times

per week, of which only 0.25 successfully survives to 1st stage larvae; Table S1) and a

variance of 25. The parameters λ1, λ2 and λ3 quantify the impact of LLINs, IM and EL

in compartment i at week t on the baseline fecundity rate, respectively, and were defined

from uninformative gamma priors with mean and variance 0.1. This prior allowed for

the impact of each intervention on fecundity rate to range from no impact to an impact

large enough to cease fecundity. The pupae n0(i, t) survive to n1(i, t+ 1), n2(i, t+ 1) and

young adults ready to recruit (pn) through a consecutive binomial process with probability

sn(i, t) (described in eqs 2 and 4). As the larvae become adults they join the remaining

female adult population (p) and survive with the adult survival rate described in eqs. 1

and 3.

However, at each sampling event, the adults are collected destructively, which intermit-

tently reduces the population in each compartment. Nonetheless, only a small proportion

of the adult population in each compound is caught at any sampling event (defined here as

’Catchability’ Cp), which only occurs every 2-4 weeks. To model this, the adult abundance

data P in each compartment i at time t was generated through normal distribution:
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P (i, t) ∼ N(p(i, t)Cp, τp(i, t)) (8)

Although a binomial distribution would have been preferable here, it proved computation-

ally challenging. Since a binomial distribution can approximate a normal distribution, we

opted to model the likelihood of abundance as in eq 8. Catchability was given a beta prior

distribution with mean 0.12 and variance 0.001. This prior represents the belief that only

50% of the female adults (which comprises 50% of the adult population) will be seeking

a host. Of these remaining 25%, half will be seeking to bite humans and the other half to

bite cattle (which were always present in the compartments). Given that human landing

catches (HLC), the method used to catch adults, is only able to catch mosquitos seeking

humans we estimate 12.5% of female adult mosquitos will be caught in each sampling

event. We note that in weeks of no sampling there is no data informing the model and

so the population status is inferred as a latent process by the life cycle in the model. In

weeks of sampling, the model receives information that a certain proportion of adults was

there but is culled. The precision τp, which is the inverse of the variance, was then defined

as:

τp(i, t) =
1

ξC2
p(1− Cp)p[i, t]

(9)

where, ξCp is the uncertainty associated with the catchability of adult mosquitoes and

was defined with a gamma prior with mean 0.1 and variance 0.001. The denominator of

eq. 9 corresponds to the variance of the normal distribution of eq. 8, and is weighted

by the presence or absence of culling due to sampling and the number of individuals in

compartment i at time t.

Similarly for larvae, the likelihood of the larval abundance data L in each compartment

i at time t was generated through a normal distribution:

L(i, t) ∼ N(N(i, t)Cn, τn) (10)

This catchability Cn is defined from a beta prior distribution with mean 0.1 and variance

0.001. This prior was established from the sampling strategy: one scoop of 250ml was
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taken from a homogenised 3L bucket, and all larvae in that scoop were counted. The

precision τn, which is the inverse of the variance, was defined as:

τn(i, t) =
1

Cn(1− Cn)N(i, t)
(11)

The model was fit using the software JAGS (Plummer 2003) and run with 2 chains for 106

iterations, keeping every 100th iteration and discarding the first half, to achieve full con-

vergence of the model. Convergence was assessed through visual inspection of the trace

plots and using the Gelman-Rubin diagnostic available in the package ’coda’ (Plummer

et al 2012). Model fit was assessed by visual inspection of the predicted and observed

densities (Fig. 5) and through a linear regression to determine the 1:1 ratio (FIg. S3).

Table S1: The priors for the baseline parameters and corresponding posteriors from the
model.

Baseline Literature Ref. Prior mean Posterior mean

parameter estimate [variance] [95% CI]

Larval survival

rate

0.2-0.8 per

7-14 days

Ng’habi et al

2010
0.35 [0.01] 0.46 [0.42-0.50]

Adult survival

rate

0.82 per

day

Charlwood et al

1997
0.25 [0.01] 0.25 [0.18-0.35]

Fecundity

rate*

60 eggs per

2.5 days
Lyimo et al 2013 18.75 [25] 25.76 [20.9-32.4]

Larval

catchability

350mL

from 2L
- 0.15 [0.001] 0.12 [0.10-0.14]

Adult

catchability
- - 0.1 [0.001] 0.15 [0.11-0.20]

Density

dependence
- - 0.001 [0.00001]

0.00001

[0.0003-0.00008]

*60 eggs per female. 2.5 days is the length of a gonotrophic cycle. For the prior we

further assume survival from egg laying to 1st instar of 25%.
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S3. JAGS code

model{
for(i in 1:Ntreatments){
#initial conditions

n0[i,1]<-1000; n1[i,1]<-500; n2[i,1]<-500; pp[i,1]<-0; pn[i,1]<-0;

for(t in 1:(tmax-1)){
#larvae survival is density-dependent

snEpsilon[i,t]∼dnorm(0,tau.sn)

logit(sn[i,t])<-sn0-sn1*nobs[i,t] + snEpsilon[i,t]

#adult survival is treatment dependent

spEpsilon[i,t]∼dnorm(0,tau.sp)

logit(sp[i,t])<-sp0-sp2*LLIN[i,t]-sp3*IM[i,t]-sp4*EL[i,t] + spEpsilon[i,t]

# Survival of n0: count of larvae stage 0 (males and females)

nD0[i,t]<-equals(n0[i,t],0)+n0[i,t]

snD0[i,t]<-sn[i,t]-equals(n0[i,t],0)*sn[i,t]

n1[i,t+1]∼dbin(snD0[i,t], nD0[i,t])

# Survival of n1: count of larvae stage 1

nD1[i,t]<-equals(n1[i,t],0)+n1[i,t]

snD1[i,t]<-sn[i,t]-equals(n1[i,t],0)*sn[i,t]

n2[i,t+1]∼dbin(snD1[i,t], nD1[i,t])

# Survival of n2: larvae that survive this stage become adults

nD2[i,t]<-equals(n2[i,t],0)+n2[i,t]

snD2[i,t]<-sn[i,t]-equals(n2[i,t],0)*sn[i,t]

pn[i,t+1]∼dbin(snD2[i,t], nD2[i,t])

# Adult survival (males and females)

pD[i,t]<-equals(p[i,t],0)+p[i,t]

spD[i,t]<-sp[i,t]-equals(p[i,t],0)*sp[i,t]

pp[i,t+1]∼dbin(spD[i,t], pD[i,t])

# Total adults: surviving adults, plus new adults from n2, minus culled

pPre[i,t]<-pp[i,t]+pn[i,t]

cull[i,t]<-survey[t]*round(datP[i,t])

p[i,t]<-ifelse(pPre[i,t]<=cull[i,t],1,pPre[i,t]-cull[i,t])

# Reproduction: treatment dependent; 0.5 for females only

b[i,t]<-0.5*exp(b0-b2*LLIN[i,t]-b3*IM[i,t]-b4*EL[i,t])

nmu[i,t]<-b[i,t]*p[i,t]

n0[i,t+1]∼dpois(nmu[i,t])

nobs[i,t]<-2*(n0[i,t]+n1[i,t]+n2[i,t])

#Stochasticity in the observations

nP[i,t]<- ifelse(pPre[i,t]<=0,1,pPre[i,t])

pmu[i,t]<- qp*pPre[i,t]

pprec[i,t]<-1/(Uqp*qp*(1-qp)*nP[i,t])

datP[i,t]∼dnorm(pmu[i,t],pprec[i,t])

nL[i,t]<- ifelse(nobs[i,t]<=0,1,nobs[i,t])

Lmu[i,t]<-qn*nobs[i,t]

Lprec[i,t]<-1/(qn*(1-qn)*nL[i,t])

datL[i,t]∼dnorm(Lmu[i,t],Lprec[i,t])

} #end time t loop

} #end treatment i loop
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#Priors

#”Catchability”

mu.Uqp<- 0.1

var.Uqp<- 0.001

alpha.Uqp<- pow(mu.Uqp,2)/var.Uqp

beta.Uqp<- mu.Uqp/var.Uqp

Uqp∼dgamma(alpha.Uqp,beta.Uqp)

qp∼dbeta(alpha.qp,beta.qp)
mu.qp<-0.1

var.qp<- 0.001

alpha.qp<- (mu.qp/var.qp)*(mu.qp-pow(mu.qp,2)-var.qp)

beta.qp<- ((1-mu.qp)/var.qp)*(mu.qp-pow(mu.qp,2)-var.qp)

qn∼dbeta(alpha.qn,beta.qn)
mu.qn<- 0.15

var.qn<- 0.0001

alpha.qn<- (mu.qn/var.qn)*(mu.qn-pow(mu.qn,2)-var.qn)

beta.qn<- ((1-mu.qn)/var.qn)*(mu.qn-pow(mu.qn,2)-var.qn)

#Baseline larval survival

mu.sn0<- 0.35

var.sn0<- 0.01

alpha.sn0<- (mu.sn0/var.sn0)*(mu.sn0-pow(mu.sn0,2)-var.sn0)

beta.sn0<- ((1-mu.sn0)/var.sn0)*(mu.sn0-pow(mu.sn0,2)-var.sn0)

sn0line∼dbeta(alpha.sn0,beta.sn0)
sn0<- log(sn0line/(1-sn0line))

#DD in larval survival

mu.sn1<- 0.001

var.sn1<- 0.00001

alpha.sn1<- pow(mu.sn1,2)/var.sn1

beta.sn1<- mu.sn1/var.sn1

sn1line∼dgamma(alpha.sn1,beta.sn1)

sn1∼dgamma(alpha.sn1,beta.sn1)

#Baseline adult survival

mu.sp0<- 0.25

var.sp0<- 0.01

alpha.sp0<- (mu.sp0/var.sp0)*(mu.sp0-pow(mu.sp0,2)-var.sp0)

beta.sp0<- ((1-mu.sp0)/var.sp0)*(mu.sp0-pow(mu.sp0,2)-var.sp0)

sp0line∼dbeta(alpha.sp0,beta.sp0)
sp0<- log(sp0line/(1-sp0line))

#Treatments on adult survival

mu.int<- 0.1

var.int<- 0.1

alpha.int<- pow(mu.int,2)/var.int

beta.int<- mu.int/var.int

sp2∼dgamma(alpha.int,beta.int)

sp3∼dgamma(alpha.int,beta.int)

sp4∼dgamma(alpha.int,beta.int)

...cont.
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#Baseline fecundity

mu.b0<- 2.5*0.25*60*0.5

var.b0<- 25

alpha.b0<- pow(mu.b0,2)/var.b0n

beta.b0<- mu.b0/var.b0

b0line∼dgamma(alpha.b0,beta.b0)

b0<- log(b0line)

# Treatment on fecundity

mu.int2<- 0.1

var.int2<- 0.1

alpha.int2<- pow(mu.int2,2)/var.int2

beta.int2<- mu.int2/var.int2

b2∼dgamma(alpha.int2,beta.int2)

b3∼dgamma(alpha.int2,beta.int2)

b4∼dgamma(alpha.int2,beta.int2)

#Uncertainties

tau.sn<- 1/pow(sigma.sn,2)

sigma.sn∼dunif(0,1)
tau.sp<- 1/pow(sigma.sp,2)

sigma.sp∼dunif(0,1)
} #end model

S4. Results

Table S2: Mean larval and adult estimated densities (with 95% credible intervals) in each

treatment group and at the end of each experimental phase.

Phase Treatment

(week) Control LLIN only IM first EL first

Larval Estab. (16) 202 (178-313) 281 (253-384) 348 (317-384) 306 (278-337)

density I (24) 740 (692-790) 167 (146-192) 284 (256-315) 182 (159-208)

II (32) 1050 (993-1110) 376 (344-411) 38 (29-49) 344 (313-379)

III (40) 1108 (1050-1172) 317 (286-350) 29 (21-40) 51 (40-65)

Adult Estab. (16) 15 (12-20) 10 (7-13) 12 (9-16) 8 (6-12)

density I (24) 30 (24-36) 8 (6-11) 4 (2-6) 7 (5-10)

II (32) 24 (19-30) 10 (7-14) 1 (0-1) 9 (7-13)

III (40) 27 (21-33) 7 (5-11) 0 (0-1) 2 (1-3)
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Figure S2: Prior (density) and posterior (histogram) distributions of the main parameters

in the state-space model.
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Figure S3: Goodness-of-fit. Predicted versus observed larvae (left) and adult (right)

densities across all mesoscosms. Adjusted R-squared, intercept and slope values are from

a linear model of the predicted against observed values. Dotted lines corresponds to 1:1

line.
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