Supplementary Information

Rehabilitative Exercise and Spatially Patterned Nanofibrillar Scaffolds Enhance Vascularization and Innervation Following Volumetric Muscle Loss

Karina H. Nakayama^{1,2,3}, Cynthia Alcazar¹, Guang Yang,^{1,2} Marco Quarta ^{1,4}, Patrick Paine¹, Linda Doan¹, Adam Davies¹, Thomas A. Rando^{1,4}, Ngan F. Huang^{1,2,3*}

Affiliations:

¹ Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304

² The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305

³ Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305

⁴ Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94304

*To whom correspondence should be addressed: Dr. Ngan F. Huang, PhD Email: ngantina@stanford.edu

Randomly-Oriented Scaffolds

Aligned Nanofibrillar Scaffolds

Supp Fig 1. Green fluorescence protein-expressing mouse myotubes formed on randomly oriented or aligned scaffolds after 5 days of differentiation. Double arrows depict orientation of aligned nanofibrils.

Supp. Fig. 2. Muscle regeneration and revascularization after implantation of aligned or randomly oriented scaffold aggregates in a mouse model of VML. A-C. Randomly oriented or aligned scaffolds were implanted into the void space of the ablated tibialis anterior muscle. After 3 weeks of implantation in the absence of exercise, immunofluorescence analysis was performed on the tibialis anterior muscle for antibodies against CD31, myosin heavy chain (MHC), and laminin. Within a 500µm distance from the edge of the scaffold, quantification of perfused (CD31⁺/isolectin⁺) vessel density (A), MHC⁺ myofiber cross sectional area (B), and *de novo* myogenesis (# MHC⁺ myofibers /mm²) (C) were performed. Shown are mean ± SD (randomly oriented scaffold (n=4), aligned scaffold (n=6). Error bars denote standard deviation.

Suppl. Fig. 3. Caged Wheel running distance (meters). 7 days after initial transplants, mice were introduced to exercise wheels and running distance was tracked per day. Graph shows the averaged running distance per day for each treatment group (n=3 each group). Error bars denote standard deviation.

Suppl. Fig. 4. Histological assessment of tissue cross sections by hematoxylin and eosin stains. At 3 weeks after implantation into the ablated tibialis anterior muscle, the scaffold-containing muscle was excised. H&E staining was used to visualize the remnants of the scaffold (denoted by arrow). Scale bar: 500 µm.

Suppl. Fig. 5. Histological assessment of regenerating myofiber cross-sectional area. Frequency distribution of mean myofiber area sizes in the presence or absence of exercise. Shown are mean \pm SD (aligned scaffold with or without exercise (n=6), randomly oriented scaffold with exercise (n=5), and all other groups (n=4)). Statistically significant comparisons:*P<0.05, **P<0.01, ***P<0.001, ****P<0.001. Error bars denote standard deviation.

Suppl Fig. 6. Quantification of fibrosis in the injured muscle by the percent area of collagen from Trichrome-stained slides (n=4). Error bars denote standard deviation.