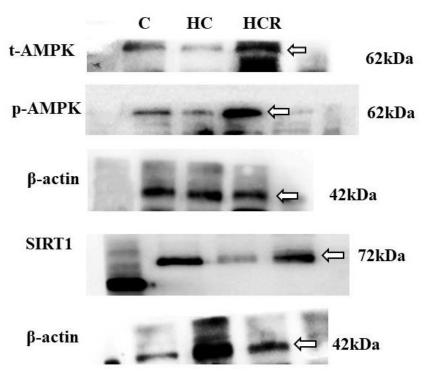
Supplementary Material

Resveratrol Improves the Energy Sensing and Glycolipid Metabolism of Blunt Snout Bream *Megalobrama* amblycephala Fed High-carbohydrate Diets by Activating the AMPK-SIRT1-PGC-1a Network


Hua-Juan Shi¹, Chao Xu¹, Ming-Yang Liu^{2, 3}, Bing-Ke Wang¹, Wen-Bin Liu¹, Dan-Hong Chen¹, Li Zhang¹, Chen-Yuan Xu¹, Xiang-Fei Li ¹*

¹ Key Laboratory of Aquaculture Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China.

² Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.

³ Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

^{*}Corresponding Author: Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China. Tel (Fax): 86-025-84395382. E-mail: xfli@njau.edu.cn (Xiang-Fei Li).

Figure 1. Hepatic t-AMPKα contents, p-AMPKα contents, SIRT1 contents and β -actin levels of blunt snout bream liver fed different experimental diets. Gels were loaded with 20 µg total protein per lane. Control, diet with 30% carbohydrate level; HC, diet with 41% carbohydrate level; HCR, diet with 41% carbohydrate and 0.04% resveratrol. t-AMPKα, AMP-activated protein kinase α ; phosphorylated AMP-activated protein kinase α ; SIRT1, Sirtuin-1.