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Endothelial cell (EC) proliferation is a crucial event in physio-
logical and pathological angiogenesis. MicroRNAs (miRNAs)
have emerged as important modulators of the angiogenic
switch. Here we conducted high-content screening of a human
miRNAmimic library to identify novel regulators of EC growth
systematically. Several miRNAs were nominated that enhanced
or inhibited EC growth. Of these, we focused on miR-26b,
which is a conserved candidate and expressed in multiple
human EC types. miR-26b overexpression enhanced EC prolif-
eration, migration, and tube formation, while inhibition of
miR-26b suppressed the proliferative and angiogenic capacity
of ECs. A combinatory functional small interfering RNA
(siRNA) screening of 48 predicted gene targets revealed that
miR-26b enhanced EC growth and survival through inhibiting
PTEN expression. Local administration of miR-26b mimics
promoted the growth of new microvessels in the Matrigel
plug model. In the mouse model of hindlimb ischemia, miR-
26b was found to be downregulated in endothelium in the first
week following ischemia, and local overexpression of miR-26b
improved the survival of capillaries and muscle fibers in
ischemic muscles. Our findings suggest that miR-26b enhances
EC proliferation, survival, and angiogenesis. miR-26b is a po-
tential target for developing novel pro-angiogenic therapeutics
in ischemic disease.
Received 26 February 2018; accepted 14 August 2018;
https://doi.org/10.1016/j.omtn.2018.08.006.

Correspondence:Ayman Al Haj Zen, British Heart Foundation Centre of Research
Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medi-
cine, University of Oxford, Oxford OX3 9DU, UK.
E-mail: ayman.alhajzen@cardiov.ox.ac.uk
Correspondence: Andrea Caporali, British Heart Foundation Centre for Cardio-
vascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK.
E-mail: a.caporali@ed.ac.uk
INTRODUCTION
Blood vessels remain mostly quiescent throughout adult life. How-
ever, in response to injury or pathological conditions, they maintain
the capacity to rapidly form a new vascular network from pre-existing
vessels in a complex process called angiogenesis.1 During sprouting
angiogenesis, while tip cells are highly migratory endothelial cells
(ECs) that guide the new sprout toward pro-angiogenic gradients,
neighboring stalk cells elongate the new sprout by their highly prolif-
erative capacity.2 EC proliferation is also involved in other types of
post-natal angiogenesis, such as enlargement of pre-existing capil-
laries and bridging or intussusception of enlarged vessels to form
smaller daughter vessels.3
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Both the survival and growth of the pre-existing capillary network
have been demonstrated to be major determinant factors for the for-
mation of a functional vascular network and re-establishing the tissue
reperfusion in response to ischemic injury.4,5 For instance, vascular
endothelial growth factor (VEGF) and other vascular growth factors,
such as fibroblast growth factor (FGF), bind to their receptors on ECs
and stimulate the downstream PI3K-AKT1-mTOR pathway, which is
essential for EC proliferation and survival.6–10 Impairment of EC
growth and survival pathways causes a deficiency in post-ischemic
angiogenesis.11,12 Patients with limb ischemia have a lower capillary
density of skeletal muscles, and that is related to the functional
impairment capacity,13 indicating the presence of an insufficient
adaptive mechanism of angiogenesis to compensate the lack of blood
supply in ischemic muscles. Thereby, the induction of angiogenesis in
ischemic vascular disease would be beneficial, including enhancing
EC growth, which is a hallmark of angiogenesis.

MicroRNAs (miRNAs) are single-stranded RNAs that target mRNAs
with complementary sequences, leading to their transcript destabili-
zation, translational inhibition, or both.14,15 Previous reports have
demonstrated that the miRNA pathway can be critical for vascular
development, post-natal angiogenesis, and pathological angiogen-
esis.16–18 Many miRNAs were identified to be essential for angiogen-
esis and vascular response after injury. For example, it has been
reported that miR-221 is required for endothelial tip cell behavior
during vascular development.19 EC-selective miR-15a transgenic
overexpression leads to reduced blood vessel formation and local
blood flow perfusion in mouse hindlimbs.20 miR-503 caused EC
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dysfunction and impaired post-ischemic vascular repair.21,22 Further-
more, miRNA expression changes have been associated with several
vascular diseases.23–25

Phenotypic high-content screening offers a systematic approach
exploring a large number of genome-wide libraries of small inter-
fering RNAs (siRNAs) and miRNAs, allowing the unbiased analysis
of a high number of cells, at the single-cell level.26,27 The use of
this approach has been applied successfully for the identification of
miRNAs regulating cellular processes involved in cardiovascular
physiology and pathology.28–30 Here we conducted a comprehensive
functional high-content miRNA screening to identify miRNAs trig-
gering EC growth, using an entire human miRNA mimic library,
which could be potentially novel targets for therapeutic angiogenesis.
We identified miR-26b as an enhancer of EC survival and growth
in vitro and in vivo.

RESULTS
Screening for miRNAs Regulating EC Growth

We conducted a phenotypic high-throughput screening of a human
miRNA mimic library for their effect on human umbilical vein EC
(HUVEC) growth. The quality of the screen was assessed by measure-
ment of the Z’ factor, which resulted in a technical Z’ factor of >0.3 per
plate and overall Z’ factor of 0.3 (Figure S1). The screening results
showed 129 miRNAs enhanced EC growth by more than 0.85 log
fold change (equivalent to 1.8-fold at linear scale) when compared
with the ECs treated with the miRNA controls, and 182 miRNAs
reduced the EC growth (log2 fold change <�0.85) (Figure 1A). The
screening was performed in duplicate; the replicates showed excellent
reproducibility (r2 > 0.8; Figure 1B). Importantly, many of the well-
characterized miRNAs regulating cell proliferation and/or angiogen-
esis, including miR-17, miR-221, and miR-302c, are included in our
screening results.

We next concentrated on miRNAs enhancing EC growth. Based on
data retrieved from small RNA sequencing datasets (Encyclopedia
of DNA Elements [ENCODE]), we found 24 were both evolutionarily
conserved and accounted for their expression in four different
EC sources: HUVECs, human coronary artery endothelial cells
(HCAECs), human aorta endothelial cells (HAECs), and human
dermal micro-vascular endothelial cells (HMVECs) (Figures 1C
and 1D). Among 24 miRNAs, five miRNAs (miR-32, miR-381,
miR-26b, miR-379, and miR-1271) had not previously been reported
to regulate EC growth activities and angiogenesis in the literature.
miR-26b has the highest expression in ECs compared to the other
four hits. Therefore, we chose miR-26b to focus on for validation
and mechanistic follow-up studies.

miR-26b Regulates EC Growth, Survival, and Tube Formation

To confirm the effect of miR-26b on EC proliferation, we measured
DNA synthesis using an EdU cell proliferation assay. We found
that miR-26b significantly enhanced EdU incorporation and mitotic
index in HUVECs (Figure 2A). Furthermore, miR-26b exerted a pro-
survival effect on ECs under starvation for 24 hr or following expo-
30 Molecular Therapy: Nucleic Acids Vol. 13 December 2018
sure to H2O2 (Figure 2B). The pro-survival effect of miR-26b on
HUVECs was confirmed by the increase of AKT1 phosphorylation
level (Figure 2C). The proliferative and pro-survival effects of miR-
26b were abolished when it was incubated with dominant-negative
inhibition of AKT1 signaling (Figure S2).

Using electric cell-substrate impedance sensing (ECIS), we found that
miR-26b overexpression increased EC migration speed (Figure 2D).
The overexpression of miR-26b enhanced the EC tube formation
and branching morphogenesis in full vascular growth factor media
or reduced vascular growth factor media (Figure 2E). Next, we inves-
tigated the effect of miR-26b inhibition using anti-miRs on EC growth
and tube formation, and we found the anti-miR-26b decreased both
VEGF-driven EC growth and tube formation (Figures 2F and 2G).
We determined whether the endogenous expression of its family
member miR-26a is affected by the miR-26b overexpression or inhi-
bition, and we found that the expression level of miR-26a is not
affected by the modulation of miR-26b expression (Figure S3). Our
observations reveal that, in vitro, miR-26b regulates EC growth, sur-
vival, migration, and tube formation.

Identification of miR-26b Gene Target-Mediated EC Growth and

Survival

It is important to note that identifying functionally important miRNA
targets is crucial for understanding miRNA functions. Bioinformatic
analysis of miR-26b targets revealed more than 2,000 predicted gene
targets. Consequent functional annotation analysis of predicted target
genes revealed enrichment for genes belonging to FGF-, transforming
growth factor b (TGF-b)-, p53-, and apoptosis-signaling pathways,
which are related to cell growth and survival functions (Figure 3A).
Among the genes in these, we focused on 48 gene candidates selected
from the top-ranked pathways to study their potential regulation by
miR-26b. We applied two phenotypic loss-of-function approaches
to prioritize the gene targets using a siRNA screen of 48 gene target
candidates. First, to determine which gene target mediates the pro-
proliferative effect of miR-26b, siRNA-transfected HUVECs were
co-transfected with miR-26b or miR-control mimic. We found that
four siRNAs (PTEN, PMAIP1, PCK1, and CREBBP) that prevented
miR-26b induced more than two folds of EC growth (Figure 3B).
Second, we investigated the siRNA-transfected HUVECs on the sur-
vival rate in the presence of H2O2 exposure for 24 hr. We identified
three genes (PTEN, PPP2R2A, and PMAIP1) that enhance EC sur-
vival rate with similar potency compared with miR-26b (Figure 3C).

PMAIP1 (also known as Noxa) and PTEN resulted from the two
functional assays, and both negatively regulate cell survival.31,32

PPP2R2A was excluded from further analysis because it was not regu-
lated at an mRNA or protein level by miR-26b mimics or anti-miR-
26b (Figure S4). To further validate direct miRNA binding in the
30 UTR of PTEN and PMAIP1, we used the luciferase reporter vector
system as described before,21 in which 30 UTR luciferase plasmids of
PTEN and PMAIP1 were co-transfected with miR-26b mimic or its
control mimics into HEK293 reporter cells. We were not able
to perform luciferase gene reporter assays in ECs because of low
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Figure 1. Phenotypic Screen of miRNAs Regulating HUVEC Growth

(A) Left panel: log2 (fold change of miR mimics versus control mimics) values of cell count on the y axis is plotted against miR-mimics on the x axis. Non-conserved miRNAs

(black), conserved miRNAs (light green), and miRNA enhancers of cell growth that are conserved and expressed in endothelial cells (dark green) are shown. Positive controls,

miR-503mimic, red; negative controls, miR-control mimic, blue; black dashed lines, cutoff log2 values in either direction >0.85 or <�0.85. Right panel: representative images

of negative and positive controls from a screen plate. Nuclei were stained with DAPI (blue). Scale bar, 100 mm. (B) Correlation of screen plate replicates for the raw data of cell

count parameter (r2 = 0.89). (C) Schematic describing the filtering and selection process of hit enhancers. (D) The selected hit enhancers are listed with their seed region.

These miRNAs are expressed among four different EC types: HUVECs, human coronary artery endothelial cells (HCAECs), human aorta endothelial cells (HAECs), and

human dermal micro-vascular endothelial cells (HMVECs). miRNAs that have not previously been studied in the context of angiogenesis are in red.
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Figure 2. miR-26b Regulates EC Growth, Survival, Migration, and Tube Formation

(A) Upper panel: representative images showing the effect of miR-26b mimics on cell number and DNA synthesis in HUVECs. Cells were fixed 72 hr after mimic transfection.

Cells were stained for EdU (green) and DAPI (blue). Scale bars, 200 mm. Lower panel: quantitative data for the proportion of EdU-positive nuclei and mitotic cells to total cell

number are shown. Mitotic cells are identified by their high content of EdU and DAPI staining. Mitotic index is the ratio between the number of cells in mitosis and the total

number of cells. Error bars are mean ± SEM; **p < 0.01 compared to miR-control mimic (n = 6 replicates, unpaired t test). (B) Effect of miR-26b mimics on apoptosis induced

by starvation (EBM-2) or H2O2 (500 mM). H2O2 was added after 48 hr of transfection for an additional 24 hr. Measured caspase-3 activity is normalized to controls and is

expressed as mean ± SEM; n = 4 per condition; one-way ANOVA followed by Bonferroni post hoc test, *p < 0.01 and **p < 0.001 compared to miR-control mimics.

(C) Immunoblotting for phospho-AKT (p-AKTS473) and total AKT1 (65 kDa) detection in HUVECs after 72 hr of miR-26b mimic or miR-control mimic transfection. b-actin was

detected as a loading control. (D) Effect of miR-26b mimic on HUVEC migration speed measured for 8 hr by electric cell-substrate impedance sensing. The assay was

(legend continued on next page)
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transfection efficacy. Luciferase activity was significantly lowered
when miR-26b was transfected compared with control mimic treat-
ment, whereas mutation of the binding sites restored it (Figure 3D).
We validated that miR-26b mimics downregulated the mRNA
expression of the two target gene candidates, whereas anti-miR-26b
increased their expression (Figure 3E). Western blot analysis demon-
strated that only PTEN is regulated at a protein level at 72 hr after
transfection with miR-26b mimic or anti-miR-26b (Figure 3F),
whereas PMAIP1 is downregulated by miR-26b mimic only at
16 hr after transfection and accumulated at the same control levels af-
ter 48 hr (Figure S5). Thus, we found that PTEN in ECs is the most
suitable target among the selected genes.

miR-26b Promotes In Vivo Microvascular Growth

To investigate whether miR-26b has pro-angiogenic properties
in vivo, miR-26b mimic and miR-control mimic were incorporated
in the Matrigel and injected subcutaneously into the mice. After
12 days, mimics regulated miR-26b expression in the plugs
(Figure 4A), resulting in the opposite expression of its identified
target gene PTEN at protein and mRNA levels (Figures 4B and
4C). Matrigel plugs mixed with miR-26b mimic exhibited more neo-
vascularization, characterized by the increase of CD31-stained area,
than those mixed with control mimic (Figure 4D). The quantification
of mature microvessels, determined on the basis of pericyte or
smooth muscle cell-covered endothelium (vascular structures that
are double positive for a-smooth muscle [SM] actin and CD31),
confirmed that miR-26b mimic enhances the induction of mature
vasculature (Figure 4E). This suggests that, in vivo, forced overexpres-
sion of miR-26b enhances the microvascular growth and mature
neovascularization.

miR-26b Increases In Vivo EC Survival following Acute Ischemia

To assess the endogenous expression of miR-26b level in response to
ischemic insult, ECs were isolated frommouse adductor muscles at 3,
7, and 14 days following the induction of limb ischemia. The EC pop-
ulation was sorted based on the high expression of CD31 and the lack
of CD45 expression. EC purity was confirmed by the co-expression of
other constitutive EC markers, such as CD144 (VE-cadherin) and
CD105 (endoglin) (Figure S6). The expression level of miR-26b in
isolated ECs significantly decreased at 3 and 7 days post-ischemia
compared with sham-operated controls (Figure 5A). Of note, the
expression level of miR-26b after ischemia was altered only in the
endothelium and it was not in the whole of ischemic muscle fraction
(Figure 5B).
performed 72 hr after mimic transfection. Error bars are mean ± SEM; *p = 0.02 comp

images showing effect of miR-26b mimics on EC tube formation with vascular growth fa

assay was performed 72 hr after mimic transfection. Tubes were fixed after 8 hr and stain

SEM; n = 5 per condition; one-way ANOVA followed by Bonferroni post hoc test, *p < 0

DNA synthesis in HUVECs activated by VEGFA (10 ng/mL) during the experiment. Cells

as mean ± SEM; n = 4 per condition; one-way ANOVA followed by Bonferroni post hoc

formation. Representative bright-field images of tube formation for HUVECs transfected

after anti-miR transfection. Tubes were fixed after 8 hr and stained with phalloidin alex

replicates, unpaired t test).
Next, we evaluated whether administration of miR-26bmimics would
improve EC survival following ischemic injury. Recently the efficacy
of different lipid formulations in delivering miRNA mimics has been
confirmed in a mouse model of ischemia.33 Mice were subjected to
hindlimb ischemia and followed by local administration of miR-26b
or miR-control mimics, complexed with a lipid transfection reagent.
At day 3 after injection, we first measured the expression levels of the
injected miR-26b mimic and its target PTEN in the isolated ECs from
adductor muscle and in total adductor muscle. We detected a signif-
icant increase in the levels of miR-26b in both ECs and total muscle
(Figure 6A). This was associated with a significant decrease in the
expression level of PTEN (Figure 6B), indicative of effective transfec-
tion and sustained activity of forced expressed miR-26b.

Histological examination of muscle cross-sections revealed less
necrotic areas in the ischemic muscles treated with miR-26b mimic
compared to control (Figure 6C). The pro-survival effect of miR-
26b on ECs and myocytes was confirmed by terminal deoxynucleo-
tidyl transferase dUTP nick end labeling (TUNEL) staining. We
found that the overexpression of miR-26b resulted in a significant
reduction of apoptosis in both ECs and myocytes (Figure 6D). We as-
sessed the effect of miR-26b overexpression on the survival of native
microvasculature network structure following ischemia injury.
Confocal three-dimensional (3D) imaging exhibited a better preser-
vation of native microvasculature network integrity in the necrotic
area of ischemic adductor muscles treated with miR-26b mimic
compared to the controls (Figure 7).

Next, we tested whether the local overexpression of miR-26b mimic
could affect the remodeling of collateral arterioles in the ischemic
adductor muscles, and we found no difference in the total area of
a-SM actin-positive collateral vessels between miR-26b mimic-
treated adductor muscle and the controls after 3 days of ischemia
injury (Figure S7A). Moreover, both the miR-26b mimic-treated
group and control mimic-treated group showed no difference in
foot perfusion recovery during the 3 days following femoral excision
(Figure S7B). Collectively, these results show that local overexpres-
sion of miR-26b enhances the survival of native microvasculature
network following ischemia injury, which is associated with less mus-
cle fiber necrosis.

DISCUSSION
Cell proliferation is stimulated only in vascular ECs needed for the
growth of new blood vessels or vascular repair after injury. Using a
ared to miR-control mimic (n = 4 replicates, unpaired t test). (E) Left: representative

ctor media (EGM-2) or without growth factor media (EBM-2). Scale bar, 1 mm. The

ed with phalloidin alexa 568. Right: total tube length (pixels) is expressed as mean ±

.01 and **p < 0.001 compared to miR-control mimics. (F) Effect of anti-miR-26b on

were fixed 72 hr after mimic transfection. EdU-positive cell percentage is expressed

test, *p < 0.01 compared to control anti-miR. (G) Effect of anti-miR-26b on EC tube

with anti-miR-26b and control anti. Scale bar, 1 mm. The assay was performed 72 hr

a 568. Error bars are mean ± SEM; **p < 0.01 compared to control anti-miR (n = 6
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Figure 3. Identification of miR-26b Target Genes

(A) Workflow for miRNA target identification (left panel). Genes were classified into molecular function according to the PANTHER classification system using EnrichR open

source. Signaling pathways identified by the PANTHER classification system were plotted based on Z scores within each pathway (right panel). (B) siRNA-transfected

HUVECs co-transfected with miR-control or miR-26b mimics. Cell count was captured 72 hr later. Cell count was normalized to non-targeting siRNA control-/miR-control

mimic-transfected cells. Horizontal dashed line shows the cutoff value <2-fold for target genes abolishing the effect of pro-proliferative of miR-26b mimic. (C) siRNA-

transfected HUVECswere incubated without or with a high dose of H2O2 (500 mM) for 24 hr. Horizontal dashed line shows the survival rate level of miR-26bmimic-transfected

cells. Non-targeting siRNA control, red. (D) Luciferase gene reporter assays in HEK293 cells confirmed miR-26b binding to wild-type (WT) 30 UTR or mutated (mut) 30 UTR of

PTEN and PMAIP1. Data are shown as the mean ± SEM of 6 independent experiments; **p < 0.01 and ***p < 0.001 versus miR-control mimic. Two-way ANOVA followed by

Bonferroni post hoc test. (E) HUVECs were transfected with miR-26b mimic, anti-miR-26b, miR-control mimic, or anti-miR-control. At 3 days post-transfection, RNA was

extracted and the levels of PTEN and PMAIP1 were determined by qRT-PCR. Values were normalized to S18 and then to the controls (mimic or anti-miR). Data are shown as

the mean ± SEM of 4 independent experiments (*p < 0.01). (F) Cells were lysed and the expression of PTEN and PMAIP1 were analyzed by immunoblotting. b-actin was

detected as a loading control.
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Figure 4. miR-26b Promotes Microvascular Growth In Vivo

(A and B) The expression of (A) miR-26b and (B) PTEN in Matrigel plug mixed with miR-26b mimic and control mimic after 12 days. (C) Western blot analysis of PTEN

expression in Matrigel plugs. b-actin was detected as a loading control. Lower panel: quantification of western blotting is shown. Error bars are mean ± SEM; *p < 0.05

compared to controls (n = 3 animals per group, unpaired t test). (D) Left panels: representative images showing the new microvessels positive for CD31 (green), with the

predominant linear structures indicating small vessels and some apparently circular structures indicating larger vessels in the implanted plugs. Scale bars, 50 mm. Right panel:

quantification of the area of CD31 coverage in the Matrigel plugs mixed with miR-26 mimic or control mimic at 12 days after implantation is shown. (E) Upper panel:

representative images of Matrigel plugs showing structures double positive for green (CD31) and red (a-SM actin) indicate vessels with mural cell coverage, which are more

mature vessels. Scale bar, 25 mm. Lower panel: quantification of the number of double-positive CD31 and a-SM actin vessels per field in theMatrigel plugsmixedwithmiR-26

mimic or control mimic at 12 days after implantation is shown. Error bars are mean ± SEM; **p < 0.01 and ***p < 0.001 compared to controls (n = 6 animals per group,

unpaired t test).
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Figure 5. Time Course of Endogenous miR-26b

Expression in the Adductor Muscle following

Ischemia Injury

(A and B) Expression of miR-26b in (A) endothelial cell

(CD31pos/CD45neg) fraction and (B) muscle fraction isolated

from the adductor muscles, which were collected at 3, 7,

and 14 days after ischemia induction. miR-26b levels were

normalized against snRU6 control. Error bars are mean ±

SEM; **p < 0.01 and ***p < 0.001 compared to controls

(n = 6 replicates, unpaired t test).
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high-throughput screening approach of an miRNAmimic library, we
found many miRNAs positively and negatively modulate the EC
growth. For instance, miR-17 and miR-221 were identified as en-
hancers of EC growth. A previous study showed that VEGF-mediated
upregulation of miR-17 expression was necessary for in vitro EC pro-
liferation and angiogenic sprouting. Furthermore, in vivo specific
deletion of miR-17 in endothelium has reduced physiological retinal
angiogenesis during development and diminished VEGF-induced tu-
mor angiogenesis.34 miR-221 has been shown to be required for endo-
thelial tip cell proliferation and migration. Exogenous miR-221
expression increased bromodeoxyuridine (BrdU) incorporation in
cells that contributed to the dorsal longitudinal anastomotic vessels
in the zebrafish.19 Our phenotypic screening revealed that miRNAs,
such as miR-15a, miR-24, and miR-503, decreased EC growth signif-
icantly. These miRNAs have been previously studied in EC biology,
and they demonstrated their deleterious effect on EC proliferation
and angiogenesis.21,35,36

miR-26b Is an Enhancer of Endothelial Cell Growth

Among miRNA hits, miR-26b was identified as a novel candidate that
enhances EC proliferation and survival in several relevant in vitro and
in vivo models. miR-26b is a member of the miR-26 family, which is
localized on chromosome 2. The other members of the family consti-
tute miR-26a-1, localized on chromosome 3, and miR-26a-2, local-
ized on chromosome 12. Their mature products share an identic
sequence.37 It only differs from the mature miR-26b sequence by
2 nt. They are predicted to target nearly identical sets of genes. How-
ever, it seems that the miR-26a isoform has a different role in EC
proliferation and angiogenesis. Indeed, it has been shown that
overexpression of miR-26a induced cell-cycle arrest and inhibited
the in vitro angiogenesis through targeting smad1 30 UTR. The sys-
temic administration of LNA-anti-miR-26a increased angiogenesis,
improved heart function following infarction, and decreased infarct
size.38 A possible explanation for these discrepancies is that miR-
26b levels vary significantly in response to an angiogenic stimulus,
suggesting that growth conditions influence miRNA function in
cultured cells.

Upon the stimulation of ECs by TNF-a or VEGF, the expression levels
of both miR-26a and miR-26b were downregulated distinctively.38 In
other primary vascular cells, miR-26a promotes smooth muscle cell
36 Molecular Therapy: Nucleic Acids Vol. 13 December 2018
proliferation via the TGF-b-signaling pathway. Conversely, the inhi-
bition of miR-26a enhanced a contractile phenotype of smooth
muscles.39 Our findings and those of others show that the actions of
miR-26b are not shared by miR-26a, which would be valuable to
examine in future vascular studies.

Previous studies have demonstrated that the expression level of miR-
26b is reduced in the tissues of many cancers of liver,40 breast,41 and
colon.42 Functionally, miR-26b exerts a tumor-suppressive role in
many types of cancer, and the miR-26b-mediated growth inhibition
is achieved through suppression of target genes like OCT4,43

SMAD1, CTGF,44 and/or COX2.45 In contrast, overexpression of
miR-26a in a murine glioma model enhances de novo tumor forma-
tion.37 These observations raise the possibility that the miR-26 family
governs context-specific changes in endothelial behavior depending
on cell type or tissue microenvironment. Thus, while miR-26b plays
an important pro-proliferative and survival signal during angiogen-
esis, it may play different roles in cancer cell growth.

Validation of miR-26b Targets

The phenotypic approach can be used for miRNA target identifica-
tion, recognizing the targets that are relevant for a specific phenotype.
This is particularly important because onemiRNA can have hundreds
of putative targets, but only a few of these might be accountable for
the phenotype under investigation. In this study, by combining target
prediction- and functional RNAi-screening approaches, we have
prioritized two gene target candidates, PTEN and PMAIP1, that could
be responsible for the proliferative and survival phenotype induced by
miR-26b. Within the 30 UTR region of both mRNA targets, there are
potential binding sites for miR-26b, and accordingly, we detected a
robust downregulation of mRNA levels of the two target genes.

PMAIP1 has been shown to be a critical mediator of apoptotic
signaling, and it functions primarily by inactivating the anti-apoptotic
Bcl-2 family protein Mcl-1.46 Elevated PMAIP1 levels were detected
after transient ischemia experiments in vivo, and delivery of PMAIP1
antisense oligonucleotides significantly reduced infarct volumes of rat
brains.47 It seems that PMAIP1 is highly regulated at the transcrip-
tional and post-transcriptional levels.48 In our study, a discrepancy
between mRNA and protein levels for PMAIP1 was detected. This
is in line with the post-translational modification and protein stability



Figure 6. miR-26b Protects ECs and Myocytes from

Ischemic Injury

(A and B) Expression of (A) miR-26b and (B) PTEN in ECs

sorted from adductor muscles and total adductor muscles

3 days after ischemia and intramuscular oligonucleotide

delivery. Error bars are mean ± SEM; **p < 0.01 compared

to controls (n = 5 animals per group, unpaired t test).

(C) Representative images of H&E staining of ischemic

adductor muscles injected with miR-26b mimic or control

mimic. Scale bar, 500 mm. Lower panel: quantitative anal-

ysis of muscle necrosis extent in the ischemic adductor

muscles injected with miR-26b mimic and control mimic

(necrosis area was normalized to the total muscle area)

is shown (n = 5 per group). Error bars are mean ± SEM;

**p < 0.01 compared to control mimic (n = 5 animals per

group, unpaired t test). (D) Representative images of TUNEL

staining of ischemic adductor muscles injected with miR-

26b mimics or control mimic. CD31, red; TUNEL staining,

green; DAPI, blue. Scale bars, 30 mm. Lower panel: quan-

tification of ECs or myocytes positive for TUNEL staining

is shown. Error bars are mean ± SEM; *p < 0.05 and

***p < 0.001 compared to control (n = 5 animals per group,

unpaired t test).

www.moleculartherapy.org
observed previously for this protein.49,50 The induction of a survival
program by miR-26b could lead to an increase in the protein stability
of cellular PMAIP1 without consequence on its pro-apoptotic activ-
ity. Therefore, it remains unclear whether the transcriptional down-
regulation of PMAIP1 by miR-26b is sufficient to contribute to its
survival effect on ECs. PTEN possesses lipid phosphatase activity
that functions as a direct antagonist of PI3K- and AKT1-dependent
signaling. Notably, the PI3K-AKT1-mTOR pathway is involved in
the regulation of constitutive PMAIP1 levels in cancer cells, and its
inhibition has an impact on the accumulation of PMAIP1 protein.49

With this in mind, the downregulation of PTEN due to miR-26b
mimic and the consequent activation of the AKT1/mTOR pathway
could be responsible for the accumulation of PMAIP1 in our
experiments.
Molecular The
The inhibition of endogenous endothelial PTEN
in cultured ECs potently enhances a variety of
VEGF-mediated cellular responses, including
cell survival and migration.51 In agreement with
our findings, PTEN has been previously charac-
terized as a direct target of miR-26b in different
cell types.37,52–54 Our study highlights that the
survival effect of miR-26b on ECs is mediated
mainly by regulating the expression of PTEN.

In Vivo Effects of miR-26b Overexpression

In our study, the delivery of miR-26b mimics re-
sulted in a high level of miR-26b expression in
both animal models: Matrigel plug assay and
limb ischemia. Moreover, the overexpression of
miR-26b was associated with the inhibition of
its identified target expression of PTEN. In agree-
ment of in vitro functional assays, miR-26b overexpression enhances
the microvascular growth and angiogenesis in the Matrigel plug
model. Interestingly, following ischemia injury, endogenous expres-
sion of the miR-26b level is decreased in the endothelium of skeletal
muscles, while the forced local overexpression of miR-26b in the
adductor muscles improves the survival of ECs and muscle fibers in
the acute phase. In particular, miR-26b maintains an intact structure
of the native capillary network, as revealed by the examination of the
3D structure of microvasculature. As a consequence of preserved
native microvasculature network, it is expected that muscle fibers
would be more tolerant to hypoxia and, thereby, exhibit less necrosis
and inflammatory infiltrate.55,56 Nevertheless, we cannot exclude a
direct effect of miR-26b mimic on the survival of muscle fibers
following ischemic injury, since the overexpressed miR-26b was
rapy: Nucleic Acids Vol. 13 December 2018 37
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Figure 7. miR-26b Mimic Preserves the Native

Microvasculature Network Morphology following

Ischemia Injury

Representative confocal microscopy images of thick lon-

gitudinal sections for the ischemic adductor muscles in-

jected with control mimic (left panels) or miR-26b mimic

(right panels) at day 3 after ischemia. Upper panel: effect of

exogenous miR-26b mimic injection on the survival of

native muscle fibers and microvasculature network is

shown. Asterisks denote the necrotic (dead) muscle fibers.

Dotted line delimits the border of necrotic area. Myocytes

(phalloidin, green), microvessels (isolectinB4, red), and

nuclei (DAPI, blue) are shown. Scale bar, 340 mm. Middle

panel: effect of exogenous miR-26b mimic injection on the

native microvasculature network and the infiltration of leu-

kocytes in the ischemic muscles is shown. Leukocytes

(CD45, green) and microvessels (isolectinB4, red) are

shown. Scale bar, 340 mm. Lower panel: inset of a higher

magnification shows the microvascular network architec-

ture in the necrotic area of ischemic adductor muscle. Ar-

rowheads point to the preserved native microvasculature

network in the necrotic areas. Leukocytes (CD45, green),

microvessels (isolectinB4, red), and nuclei (DAPI, blue) are

shown. Scale bar, 80 mm.
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detected in the muscle fraction. In our study, we found that a high
level of miR-26b resulted in an inhibition of PTEN expression in
the ischemic adductor muscles. At the molecular level, we can specu-
late that PI3K activation may occur via a loss of PTEN and, subse-
quently, blunt the adverse effect of ischemia on endothelium and
muscle fibers.

Adductor muscles accommodate collateral vessels, which undergo a
growth and remodeling process (arteriogenesis) to compensate for
the lack of blood flow in the acute phase (2–7 days) after ischemia.57

In our study, miR-26b overexpression in the adductor muscle did not
affect the arteriogenesis, and no change in foot perfusion recovery was
detectable using a laser speckle contrast imaging strategy. Further in-
vestigations are warranted to fully characterize the effect of miR-26b
overexpression on angiogenesis and blood flow recovery in the
chronic phase of limb ischemia.

Conclusions

High-content screening has been used as a functional discovery tool
to identify the miRNAs related to cellular phenotypes.29,58 Gain-of-
function genetic screens are well-established methods to identify
genes sufficient to confer a particular cellular phenotype.59 The use
of a gain-of-function approach recapitulates the situation where the
level of a particular miRNA is enhanced following the physiological
or pathological stimulus. In our study, using this discovery tool, the
role of miR-26b was highlighted in the EC growth, survival, and
angiogenesis. Administration of miR-26bmimic could be a promising
therapeutic approach for the ischemic vascular disease. Future pheno-
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typic screenings of miRNA function using angiogenesis assays will
likely reveal novel roles for miRNAs in vascular formation, function,
and homeostasis.

MATERIALS AND METHODS
High-Content Screening of the miRNA Library

Pooled primary HUVECs were purchased from Lonza. Cells were
maintained in EC medium (EGM-2, Lonza). HUVECs were reverse
transfected in duplicate with a library of miRNA mimics (989 mature
miRNAs with sense sequences, miRIDIAN microRNA Mimic Li-
brary, Dharmacon) in cell carrier 384-well flat clear-bottom black
plates (PerkinElmer), using a standard reverse transfection protocol.
Briefly, HUVECs (1,000 cells/well in 21 mL complete EGM-2 media)
were seeded into a well containing 14 mL transfection mix (6.93 mL
Optimem, 0.07 mL RNAi Max (Invitrogen), and 7 mL 120 nM
miRNA), giving a final mimic concentration of 24 nM. 24 hr later,
cells were incubated with 35 mL fresh EGM-2 media for an additional
48 hr at 37�C. At the 72-hr endpoint, cells were washed, fixed, and
stained with DAPI dye. All liquid-handling steps, including seeding,
fixation, washing, and staining, were performed using a Janus robotics
(PerkinElmer). miR-503 mimic (inhibitor of EC growth)21 and non-
targeting-control miRNA mimic were included with each screening
plate as positive and negative controls, respectively.

Plates were imaged automatically at 10� magnification using the
high-content imaging system (Operetta). Nine identically positioned
fields were acquired from each well (covering the whole well area).
Quantification of the cell number was performed automatically using
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Harmony imaging analysis software. Positive and negative controls
were served to measure Z’ factor that reflects the quality of screen.60

Cell number was normalized to non-targeting mimic miR-control of
each plate to allow for the inter-plate comparisons. The data from
replicates were then averaged and log2 transformed to show the
fold change. The selection cutoff for enhancer or inhibitor hits
ðhe=iÞ was determined as follows,

he=i =mneg ± 10s;

where mneg is the mean of negative controls (non-targeting control
mimic and s is the SD of the negative controls. The calculated cutoff
for hit enhancer or inihibitor was equivalent to ±1.8-fold at linear
scale and ±0.85 at log2 scale.
Cell Transfection and Transduction

Lipofectamine RNAiMAX (Thermo Fisher Scientific) was used to
transfect HUVECs with miR-control mimic, miR-26b mimic, or
anti-miR-26b (24 nM final concentration). Adenoviral particles of
dominant-negative AKT1 (DN-AKT1) and EGFP (control vector)
were produced and used as previously described.61

EdU Cell Proliferation Assay

DNA synthesis was assessed using Click-iT EdUAlexa Fluor 488HCS
kit (Thermo Fisher Scientific), according to the manufacturer’s proto-
col. Briefly, EdU-labeling medium (10 mM final concentration) was
added to miRNA-transfected HUVEC culture and incubated for
6 hr before fixation. Next, the cultured cells were fixed with 4% para-
formaldehyde and treated with 0.1% Triton X-100 for 15 min at room
temperature. After washing with PBS, the samples were stained with
Click-iT reaction cocktail working solution at room temperature for
30 min. The cells were stained with DAPI at room temperature for
20 min. The plates were imaged and quantified using high-content
fluorescent microscopy (Operetta). The total cell number and per-
centage of EdU-positive cells were calculated from 9 fields/well using
a 10� objective (Harmony software, PerkinElmer).

EC Migration Assay

Confluent HUVECs were transfected with controls or miR-26b
mimic and plated on the ECIS chip array (8W1E) (Applied
Biophysics). The migration speed was calculated in micrometers
per hour as previously reported.62

Caspase-3/7 Assay

Caspase-3/7 activity was measured using Caspase Glo 3/7 assay
(Promega) according to the manufacturer’s protocol.

Endothelial Tube Formation Assay

Matrigel (50 mL/well) was added to the wells in a 96-well plate and
allowed to polymerize at 37 �C for 30 min. HUVECs (15,000 cells)
previously transfected with miR-26b mimic, anti-miR-26b, or miR-
control mimic were added to the top of the Matrigel. After incubation
for 8 hr, tube formation was assessed by high-content imaging using
the Operetta system. Total tube length and branching points were as-
sessed by Metamorph image analysis software.63

Bioinformatics for miR-26b Gene Target Prediction

PredictedmiR-26b target-binding sites were obtained fromTargetScan
Human version (v.)7.0 (http://www.targetscan.org) and miRBase
(http://www.mirbase.org). The prediction is based on scoring parame-
ters such as context and conservation. Potential targets of miR-26b
involved in cell growth- and survival-signaling pathways were identi-
fied using EnrichR online open source with Panther tool (http://amp.
pharm.mssm.edu/Enrichr/).

siRNA Screening to Validate Predicted Gene Targets of miR-26b

HUVECs were reverse transfected in duplicate with a cherry-pick
library of 48 siRNAs (OFF-Target Smartpool, Dharmacon) of
predicted target gene candidates for miR-26b in 96-well plates.
For cell growth assay, HUVECs were co-transfected with miR-26b
or miR-control mimics after 24 hr. Cells were then incubated for
an additional 72 hr. Next, cells were fixed and stained with DAPI.
The plates were imaged and quantified using high-content fluores-
cent microscopy (Operetta). The total cell number was calculated
from 9 fields/well using a 10� objective (Harmony software,
PerkinElmer). Averaged cell count for each well (siRNA) was
normalized to non-targeting siRNA and miR-control mimic well
condition. For EC survival assay, after 48 hr of siRNA transfection,
transfected HUVECs were exposed to H2O2 (500 mM) for an addi-
tional 24 hr. Next, cells were fixed, stained, and imaged as described
above. Averaged cell count for each well (siRNA) exposed to H2O2

was divided by the siRNA control condition (without H2O2 expo-
sure). Then, values were multiplied by normalized cell count to
non-targeting siRNA control. Both siRNA screens were performed
in duplicate.

30 UTR Luciferase Assay

A luciferase assay was performed as previously described.21 Empty
30 UTR, PTEN 30 UTR, and PMAIP1 30 UTR vectors were from
SwitchGear Genomic collection (Active Motif). We further validated
the binding to PTEN and PMAIP1 using plasmids bearing the
mutated version of the seed sequence in the 30 UTR. For PTEN,
we deleted the first 4,000 bp of the 30 UTR sequence including the
4 binding sites. For PMAIP1, we mutated the single binding site in
the 30 UTR (Figure S8). Mutations were introduced using GeneArt
Site-Directed Mutagenesis System (Thermo Fisher Scientific).
Primers for 30 UTR mutations were as follows: PTEN: forward 50-AT
GTGCAATAATGTAAAATATGAAG-30, reverse 50-GCACATTAG
GACATGAGGGC-30; and PMAIP1: forward 50-TTACAAGAG
TCTTATAACatatatatTTTTTAGTTAA-30, reverse 50-TTAACTAA
AAAATATATATGTTATAAGACTCTTGTAA-30. Luciferase con-
structs were co-transfected into HEK293T cells together with miR-
26b mimic or miR-control mimic. p-SV-beta-Gal control vector
was co-transfected in all conditions. Cells were cultured for 48 hr
and assayed with the Luciferase and b-Galactosidase Reporter Assay
Systems (Promega). Luciferase values were normalized to protein
concentration and b-galactosidase activity.
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qRT-PCR and miRNA Detection

Total RNA was extracted using mini RNeasy kits or miReasy kit
(QIAGEN). For mRNA analysis, cDNA was amplified by real-time
qPCR and normalized to 18S rRNA. Each reaction was performed
in triplicate. Quantification was performed by the 2–DDCt method.64

qPCR was used to measure PTEN, PMAIP1, PPP2R2A, and 18S
rRNA. Primers were pre-designed from Sigma (KiCqStart Primers).
Real-time quantification to measure miRNAs was performed with
the TaqMan miRNA reverse transcription kit and miRNA assay
(miR-26b) (Thermo Fisher Scientific) using Lightcycler 480 (Roche).
miRNA expression was normalized to the U6 small nuclear RNA
(snRU6).

Western Blotting

Cells were lysed with radioimmunoprecipitation assay (RIPA) buffer
(Sigma) mixed with protease cocktail inhibitor and phosphatase in-
hibitors (Roche), and protein concentration was determined with a
bicinchoninic acid (BCA) assay (Pierce). Equal amounts of protein
per sample were separated by SDS-PAGE and transferred to an Im-
mobilon-P polyvinylidene fluoride (PVDF) membrane (Millipore).
Membranes were blocked with 5% skim milk, followed by incubation
with primary antibodies b-actin (Sigma; 1:1,000), PMAIP1 (Cell
Signaling Technology; 1:1,000), PTEN, (Cell Signaling Technology;
1:1,000), PPP2R2A (Cell Signaling Technology; 1:1,000), total
AKT1 (Cell Signaling Technology; 1:1,000), and S473 p-AKT (Cell
Signaling Technology; 1:1,000) at 4 �C overnight. Appropriate horse-
radish peroxidase (HRP)-conjugated secondary antibodies were incu-
bated for 1 hr at room temperature (RT) before the detection of
protein with enhanced chemoluminescence reagents (Millipore).
Western blots were quantified using ImageJ software (NIH).

In Vivo Matrigel Plug Assay

Experiments involving mice were covered by project and personal
licenses issued by the UK Home Office, and they were performed
in accordance with the Guide for the Care and Use of Laboratory An-
imals (the Institute of Laboratory Animal Resources, 1996) and in
accordance with Animal Research Report of In vivo Experiments
(ARRIVE) guidelines. CD-1 mice (male, 10 weeks old) were subcuta-
neously injected into the groin regions of mice with 400 mL Matrigel
containing recombinant mouse basic FGF (bFGF) (PeproTech,
250 ng/mL) and heparin (Sigma, 50 U/mL) mixed with miR-mimic
control or miR-26b mimics (lipids [Lipofectamine RNAiMAX
reagent, ratio 1:1 in volume] 5 mg/gel, n = 6 per group). After
12 days, mice were sacrificed, and the Matrigel plugs were removed
and fixed in 4% paraformaldehyde. Paraffin cross-sections of plugs
were deparaffinized and rehydrated. Antigen retrieval was performed
by exposure to Proteinase K (Roche). The slides were blocked by
incubating with 5% normal goat serum for 30 min, incubated
with anti-CD31 primary antibody (Abcam; 1:200) overnight at 4�C,
and then incubated with Alexa 488-conjugated anti-rat immunoglob-
ulin G (IgG) antibody (Thermo Fisher Scientific) and a-SM actin-cy3
(Sigma; 1:250) for 1 hr at room temperature. Sections were analyzed
and photographed using a fluorescence microscope. CD31-positive
neovessel area covered with a-SM actin inside plugs was quantified
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using ImageJ software (NIH). Microvessel density was quantified in
25 fields/plug at each of three 1-mm-spaced sectioning planes ofplugs.
CD31-positive neovessel area was quantified using ImageJ software
(NIH). Microvessel density is expressed per square micrometer.

Hindlimb Ischemia Model

Hindlimb ischemia was induced in mice as previously described.65

Briefly, 12-week-old male CD-1 mice (Charles River Laboratories)
were anesthetized with Isofluoran. The left femoral artery was ligated
through a skin incision. The artery was then ligated to the external
iliac artery at the distal point where it bifurcates into the saphenous
and popliteal arteries. The femoral artery between two point ligations
was then electro-coagulated. Mice were sacrificed and the adductor
muscles were harvested for further analysis.

Isolation of Endothelial Cells from Mouse Limb Muscles

Ischemic and non-ischemic adductor muscles (n = 6 per group) were
harvested at 3, 7, and 14 days after ischemia. Next,muscles were rinsed
and digested with collagenase II (Worthington) plus DNase I (Sigma)
using gentleMACS Dissociator, following the manufacturer’s proto-
col. Next, ECs were immunomagnetic sorted using a CD31 and
CD45 (Miltenyi Biotech) as previously reported.66 RNAwas extracted
from EC fraction and muscle fraction for performing subsequent
qPCR to measure the expression level of miR-26b, as described above.
Purity of EC preparations was confirmed by flow cytometry using a
cocktail of specific antibodymarkers for ECs: CD31 (Miltenyi Biotech;
1:50), CD144 (eBioscience; 1:50), and CD105 (eBioscience; 1:50).

Local Delivery of miRNA Mimics into Adductor Muscles

Of amixture containing miR-26bmimic (1 mg) or miR-control mimic
(1 mg), lipofectamine RNAiMAX regaent (Thermo Fisher Scientific,
10 mL), and Opti-MEM (Thermo Fisher Scientific, 10 mL), 20 mL
was injected into ischemic adductor muscles using a 0.3-mL insulin
syringe with a 30G needle, as previously published.33 At 3 days
after surgery, mice were sacrificed, and the injected adductor muscles
were harvested for further histology (n = 5 per group) or RNA anal-
ysis (n = 4 per group).

Laser Speckle Contrast Imaging of Blood Flow

Blood flow in the mouse paw was monitored using a Speckle Contrast
Imager FLPI-2 (Moor Instruments, UK). The FLPI measurements
were made in a warm (24�C) and quiet environment. The charge-
coupled device (CCD) camera was positioned 30 cm above the mouse
paw. The contrast images were processed to produce a color-coded
live flux image (red denoted high perfusion, blue signified low perfu-
sion) using the moorFLPI-2 measurement module (Moor Instru-
ments). Measurements were made in the paws area of non-ischemic
and ischemic sides before and immediately after limb ischemia induc-
tion. Additional measurements were acquired 24, 48, and 72 hr after
ischemia.

Histology, Immunostaining, and Morphometry

Ischemic adductormuscleswere then removed andfixedwith 4%buff-
ered paraformaldehyde. Paraffin cross-sections were immunostained
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for ECs using anti-CD31 antibodies as described above. TUNEL stain-
ing (Promega) was performed to detect apoptosis, according to the
manufacturer’s instructions. Next, the slides were co-stained with
anti-CD31 for visualizing ECs, and the nuclei were further counter-
stained with DAPI (Thermo Fisher Scientific). We used the auto-
fluorescent signal of myocytes with their distinct morphology to
identify them in the tissue. The TUNEL-positive nuclei of ECs and
myocytes were semi-quantified using NIH ImageJ software. The
area of necrotic tissues in the adductor muscle was analyzed by
H&E staining. Necrotic cells display a more glassy homogeneous
appearance in the cytoplasm with increased eosinophilia, whereas
the nuclear changes are reflected by karyolysis, pyknosis, and karyor-
rhexis. Necrotic area was defined as the percentage of area, which in-
cludes these necrotic myocytes, inflammatory cells, and interstitial
cells, compared to the total muscle area. In analyzing arteriogenesis,
sections were stained with anti-CD31 and anti-a-SM actin as
described above. Tiled images of the entire adductor muscle were ac-
quired at �10 for this analysis. The area of microvessels stained with
a-SM actin, which were equal to or larger than 50 mm, were measured
and normalized to the total adductor muscle area using ImageJ soft-
ware (NIH).

Whole-Mount Immunohistochemistry

At 3 days post-ischemia, anesthetized mice were perfused and fixed
under physiologic pressure with 4% paraformaldehyde. Adductor
muscles were isolated, carefully dissected under stereomicroscope,
and snap frozen. Samples were cut into slices of 150-mm thickness.
Briefly, following incubation with blocking buffer, the samples were
incubated with primary antibody rat anti-mouse CD45 (Pharmagen;
1:100) overnight at 4�C. Further incubation with the appropriate sec-
ondary antibody, alexa 488-conjugated Isolectin B4 (Invitrogen;
1:50), alexa 647-conjugated Phalloidin (Invitrogen; 1:100), and
DAPI (Invitrogen), was performed. Whole-mount muscle imaging
was done on an LSM 710 Zeiss confocal microscope. Maximum-
projection confocal images of the adductor muscle microvasculature
were generated from z stacks (30–70 mm, 1- to 10-mm step size
depending on specimen size, staining, and objective used) acquired
starting at the medial surface of the adductor muscle specimens. To
visualize large areas of the microvasculature network on the confocal
microscope, a tile-scanning technique was employed whereby multi-
ple overlapping (10% overlap) maximum-projection images were
acquired with a 10� or 20� objective and a composite image was
constructed by arraying the individual images using ZEN software
(Zeiss).

Statistical Analysis

Screen data were visualized using TIBCO Spotfire analytic software
(PerkinElmer). Comparisons between different conditions were as-
sessed using 2-tailed Student’s t test. Differences among groups
were elicited using ANOVA statistical test followed by Bonferroni
post hoc analyses as appropriate. Continuous data are expressed as
mean ± SEM; a p value < 0.05 was considered statistically significant.
Statistical analyses and graphics were performed using GraphPad
Prism v.5.0.
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Figure S1. Control performance and plate QC. A) Graph showing the separation between the 
distributions of the positive (miR-503 mimic) and negative controls (miR control mimic) in the 
primary screen. B) Plate performance in the primary phenotypic screen was assessed by 
standard Z’ factor was calculated for each screen plate using the positive and negative 
controls integrated into the same plate. All plates were passed (Z’factor≥0.3).    
 



A) B) 

Figure S2. The proliferative and survival effect of miR-26b is mediated by AKT signaling. 
Effect of miR-26b mimics on cell proliferation assessed by cell count (A) and on apoptosis 
measured by caspase-3 activity (B) with adenovirus mediated transfer of dominant negative 
inhibitors of AKT (Ad.DN.AKT) or with GFP vector control (Ad.eGFP). Cells were analyzed 72 
hours following miRNA mimic transfection. Error bars, mean±s.e.m., *P<0.05, (n=4 replicates 
derived from 3 independent experiments, unpaired t-test)     



Figure S3. Effect of miR-26b overexpression and inhibition on endogenous miR-26a 
expression in HUVEC. RNA was isolated for performing RT-qPCR after 72 hours of 
transfection. miR-26b levels were normalized against snRU6 control. Error bars, mean±SEM 
(n=6 replicates). 
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Figure S4. Validation assays for the PPP2R2A hit target of miR-26b A) HUVEC were 
transfected with miR-26b mimic, anti-miR-26b, miR-control mimic or anti-miR control. Three 
days post transfection, RNA was extracted and the levels of PPP2R2A was determined by 
qRT-PCR. Values were normalized to S18 and then to the controls (mimic or anti-miR). Data 
are shown as the mean ± SEM of 4 replicates. B) Transfected HUVEC with different vectors 
were lysed and the protein expression of PPP2R2A was analyzed by immunoblotting. β-actin 
was detected as a loading control. Lower Panel: graph represents the quantitative data of 
Error bars, mean±s.e.m. (n=3 replicates).     
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Figure S5. Time course of PMAIP1 protein expression following miR-26b 
overexpression or inhibition.  HUVEC were transfected with miR-26b mimic, anti-miR-26b, 
miR-control mimic or anti-miR control. 16 hours or 28 hours post transfection, HUVEC were 
lysed and the protein expression of PMAIP1 was analyzed by immunoblotting. β-actin was 
detected as a loading control. Lower Panel: graph represents the quantitative data of. Error 
bars, mean±s.e.m., (**P<0.01, (n=3 replicates, unpaired t-test)  
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Figure S6. The expression profile of specific endothelium markers on endothelial cells 
(CD31pos/CD45neg) sorted cells from the adductor muscles using MACS® microbead system, 
were analyzed by Flow Cytometry. Empty histograms represents purified endothelial cells 
without primary antibody; Filled histograms represent the purified endothelial cells incubated 
with anti-CD31 (pecam1), anti-CD144 (ve-cadherin) and anti-CD105 (endoglin) antibodies.  



B) 

A) 

Day 3 Day 0 

C
on

tr
ol

 m
im

ic
 

m
iR

-2
6b

 m
im

ic
 

Figure S7. Effect of local miR-26b overexpression in the adductor muscle on the distal 
blood flow recovery in the paws and on arteriogenesis. Limb ischemia was induced by left 
femoral artery excision. At same occasion, miR-26b mimic or control mimic was locally injected in 
the adductor muscle. A) The area of microvessels stained with α-SM (smooth muscle) actin, 
which are equal or larger than 50µm were measured and normalized to the total adductor muscle 
area. The quantification was carried on cross-sections of ischemic adductor muscles treated with 
control mimic or miR-26b mimic at day 3 after ischemia injury. Data are presented as 
mean±SEM. (n=4 per group). B) Laser speckle contrast imaging was applied to measure the 
tissue perfusion in paws of contralateral non-ischemic limb and ischemic limb. Lower panel; 
Quantitative analysis of laser speckle contrast perfusion imaging before, immediately after the 
surgery and at the 1, 2, and 3 day time point presented as perfusion ratios (ischemic/non-
ischemic side) in the paws. Data are presented as mean±SEM. (n=5 per group).  
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Figure S8. The position and sequence of miRN-26b binding sites on the PMAIP1 3’UTR and 
PTEN 3’UTR (extracted from TargetScan) 
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