Supporting Information

Discovery of Quinazolines That Activate SOS1-Mediated Nucleotide Exchange on RAS

Jason R. Abbott,[†] Pratiq A. Patel,^{†,||} Jennifer E. Howes,[†] Denis T. Akan,[†] J. Phillip

Kennedy,^{†,} Michael C. Burns,^{†,} Carrie F. Browning,^{†,#} Qi Sun,^{†,¶} Olivia W.

Rossanese,^{†, \circ} Jason Phan,[†] Alex G. Waterson,^{‡,§} and Stephen W. Fesik^{*,†,‡,§}

[†]Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
[‡]Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
[§]Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0146,

USA

Table of Contents

I.	Abbreviations Used	S3
II.	Chemistry Experimental Section	S3
	a. General Procedures	S3
	b. Chemical Synthesis	S4
III.	Biology Experimental Section	S47
	a. Nucleotide Exchange Assay	S47
	b. Cell Culture and Compounds	S47
	c. Active RAS-GTP Pull-Down and Western Blotting	S47
	d. Table S1. Quantification of Western Blots From Figure 4	S48
	e. Figure S1. Western Blotting Experiments Involving	
	Compounds 13, 25, 27, 28, and 29	S49
IV.	Structural Biology Experimental Section	S50
	a. Protein Expression and Purification	S50
	b. Crystallization, X-ray Data Collection, Structure Solution, and	
	Refinement	S50
	c. Table S2. X-ray Data Collection and Refinement Statistics	S51
V.	Table S3. Reaction Biology Corp. Kinase Profiling Report for	
	Compound 22	S52
VI.	References	S64

■ ABBREVIATIONS USED

NH₄Cl, ammonium chloride; NH₄OH, ammonium hydroxide; (±)-BINAP, (±)-2,2'bis(diphenylphosphino)-1,1'-binaphthalene; $Pd(dppf)Cl_2$, [1,1'bis(diphenylphosphino)ferrocene]dichloropalladium(II); Cs₂CO₃, cesium carbonate; CH₂Cl₂, dichloromethane; RuPhos, 2-dicyclohexylphosphino-2',6'-diisopropoxybiphenyl; Et₂O, diethyl ether; *i*-Pr₂NEt, *N*,*N*-diisopropylethylamine; EGF, epidermal growth factor; EtOH, ethanol; EtOAc, ethyl acetate; ERK1/2, extracellular regulated kinases 1 and 2; HCl, hydrogen chloride/hydrochloride; LiAlH₄, lithium aluminum hydride; LiBH₄, lithium borohydride; MgSO₄, magnesium sulfate; MeOH, methanol; Pd(OAc)₂, palladium(II) acetate; POCl₃, phosphorus(V) oxychloride; pERK1/2, phosphorylated ERK1/2; K₂CO₃, potassium carbonate; K₃PO₄, potassium phosphate tribasic; NaHCO₃, sodium bicarbonate; NaOt-Bu, sodium tert-butoxide; NaH, sodium hydride; Na₂SO₄, sodium sulfate; SOS1, son of sevenless homologue 1; TLC, thin layer chromatography; ethoxide; $Et_{2}N$. triethylamine; TFA. $Ti(OEt)_4$, titanium(IV) trifluoroacetic acid/trifluoroacetate; H₂O, water.

■ CHEMISTRY EXPERIMENTAL SECTION

General Procedures. All chemical reagents and reaction solvents were purchased from commercial suppliers and used as received. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded at either 400 MHz or 600 MHz on a Bruker spectrometer. For ¹H NMR spectra, chemical shifts are reported in parts per million (ppm) and are reported relative to residual non-deuterated solvent signals. Coupling constants are reported in hertz (Hz). The following abbreviations (or a combination, thereof) are used

to describe splitting patterns: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; comp, overlapping multiplets of non-magnetically equivalent protons; br, broad. All compounds were of 95% purity or higher, unless otherwise noted, as measured by analytical reversed-phase HPLC. Analytical HPLC was performed on an Agilent 1200 series system with UV detection at 214 and 254 nm, along with evaporative light scattering detection (ELSD). Low-resolution mass spectra were obtained on an Agilent 6140 mass spectrometer with electrospray ionization (ESI). LC-MS experiments were performed with the following parameters: Phenomenex Kinetex 2.6 µm XB-C18 100 Å, LC column 50 x 2.1 mm; 2 min gradient, 5%–95% MeCN in H₂O, and 0.1% TFA or 0.1% formic acid. Analytical TLC was performed on Kieselgel 60 F₂₅₄ glass plates precoated with a 0.25 mm thickness of silica gel. TLC plates were visualized with UV light and iodine. Silica gel chromatography was performed using a Teledyne Isco Combiflash[®] Rf system. Preparative reversed-phase HPLC was performed on a Gilson instrument equipped with a Phenomenex Kinetex C18 column, using varying concentrations of MeCN in H₂O, and 0.1% TFA.

Chemical Synthesis. Compounds 1–3, 6–8, and 12 were purchased from commercial suppliers and used as received. Compounds 17 and 18 were synthesized by and purchased from Viva Biotech (Shanghai, China).

N^2 -(3-Chlorophenyl)- N^4 -(furan-2-ylmethyl)quinazoline-2,4-diamine (1)

The title compound was purchased as its corresponding HCl salt from Vitas-M (Vendor ID: STK841755). Stated purity >95%.

 N^4 -(Furan-2-ylmethyl)- N^2 -phenylquinazoline-2,4-diamine (2)

The title compound was purchased as its corresponding HCl salt from Life Chemicals (Vendor ID: F3007-0027). Stated purity >95%.

N^4 -(Furan-2-ylmethyl)- N^2 -(*m*-tolyl)quinazoline-2,4-diamine (3)

The title compound was purchased as its corresponding HCl salt from ChemBridge (Vendor ID: 6694921). Stated purity >95%.

1-(3-((4-((Furan-2-ylmethyl)amino)quinazolin-2-yl)amino)phenyl)ethan-1-ol (6)

The title compound was purchased from ChemBridge (Vendor ID: 9261554). Stated purity >95%.

 N^4 -(Furan-2-ylmethyl)- N^2 -(p-tolyl)quinazoline-2,4-diamine (7)

The title compound was purchased as its corresponding HCl salt from ChemBridge (Vendor ID: 6654874). Stated purity >95%.

N^2 -(4-Bromophenyl)- N^4 -(furan-2-ylmethyl)quinazoline-2,4-diamine (8)

The title compound was purchased as its corresponding HCl salt from Pharmeks Ltd (Vendor ID: PHAR036031). Stated purity >95%.

N^2 -(3,4-Dichlorophenyl)- N^4 -(furan-2-ylmethyl)quinazoline-2,4-diamine (12)

The title compound was purchased as its corresponding HCl salt from Vitas-M (Vendor ID: STK542551). Stated purity >95%.

 N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(pentan-3-yl)quinazoline-2,4-diamine (17)

White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.11 (dd, J = 6.8, 2.7 Hz, 1H), 8.08 (dd, J = 8.3, 0.8 Hz, 1H), 7.64–7.60 (m, 1H), 7.47 (ddd, J = 9.2, 4.1, 2.7 Hz, 1H), 7.44 (d, J = 8.5 Hz, 1H), 7.25–7.21 (m, 1H), 7.15 (t, J = 9.0 Hz, 1H), 4.38–4.31 (m, 1H), 1.81–1.72

(m, 2H), 1.71–1.62 (m, 2H), 0.98 (t, J = 7.5 Hz, 6H). LRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₁ClFN₄ 359.1; found 359.1. LC-MS ^{*t*}R (UV 214): 1.586 min.

 N^2 -(3-Chloro-4-fluorophenyl)- N^4 -isobutylquinazoline-2,4-diamine (18)

White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.04 (dd, *J* = 6.7, 2.8 Hz, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.68 (t, *J* = 7.8 Hz, 1H), 7.49–7.45 (comp, 2H), 7.30 (t, *J* = 7.7 Hz, 1H), 7.20 (t, *J* = 9.0 Hz, 1H), 3.45 (d, *J* = 7.2 Hz, 2H), 2.16–2.06 (m, 1H), 1.00 (d, *J* = 6.7 Hz, 6H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₉ClFN₄ 345.1; found 345.0. LC-MS ^{*t*}R (UV 214): 1.466 min.

Scheme S1. Preparation of Compounds 4, 5, 9–11, and 13–16^a

^aReagents and conditions: (a) Furan-2-ylmethanamine, Et₃N, THF, 60 °C. (b) Aromatic amine, DMF, 160 °C μW. (c) Aromatic amine, 4 M HCl in dioxane, *i*-PrOH, 180 °C μW.
(d) EtI or AcCl, NaH, DMF, 0 to 23 °C.

2-Chloro-N-(furan-2-ylmethyl)quinazolin-4-amine (44)

To a solution of 2,4-dichloroquinazoline 43 (2.00 g, 10.0 mmol, 1.00 equiv) in THF (33 mL) were added Et₃N (1.75 mL, 1.27 g, 12.6 mmol, 1.25 equiv) and furan-2ylmethanamine (0.932 mL, 1.03 g, 10.6 mmol, 1.05 equiv). The resulting mixture was heated to 60 °C and the progress of the reaction was monitored by LC-MS analysis. When the starting material had been completely consumed, the mixture was allowed to cool to room temperature and concentrated in vacuo. The residue was partitioned between EtOAc (100 mL) and saturated aqueous NH₄Cl (100 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2 x 50 mL). The organic layers were combined, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residual solid was purified by silica gel chromatography to provide 2-chloro-N-(furan-2-ylmethyl)quinazolin-4-amine 44 (2.38 g, 9.17 mmol, 91% yield). White solid. ¹H NMR (400 MHz, CDCl₃, δ): 7.82 (d, J = 8.5 Hz, 1H), 7.76–7.73 (comp, 2H), 7.49– 7.44 (m, 1H), 7.41 (s, 1H), 6.40 (d, J = 3.0 Hz, 1H), 6.37 (dd, J = 2.8, 1.8 Hz, 1H), 4.88 (d, J = 5.2 Hz, 2H). LRMS (ESI) m/z: $[M+H]^+$ calcd for C₁₃H₁₁ClN₃O 260.1; found 260.1. LC-MS ^tR (UV 214): 1.423 min. Characterization data for this compound were in good agreement with the data previously reported.¹

 N^2 -(3-Bromophenyl)- N^4 -(furan-2-ylmethyl)quinazoline-2,4-diamine (4)

To a microwave vial were added **44** (25.0 mg, 0.0963 mmol, 1.00 equiv), 3-bromoaniline (33.1 mg, 0.193 mmol, 2.00 equiv), and DMF (1.0 mL). The resulting mixture was heated to 160 °C in a microwave reactor for 30 min, after which time the mixture was concentrated in vacuo. The residue was purified by reversed-phase preparative HPLC. The title compound was obtained as its corresponding TFA salt (19.3 mg, 0.0379 mmol, 39% yield). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.17 (d, *J* = 8.2 Hz, 1H), 7.93 (t, *J* = 1.7 Hz, 1H), 7.85 (t, *J* = 7.8 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.51–7.43 (comp, 4H), 7.36 (t, *J* = 8.0 Hz, 1H), 6.36 (dd, *J* = 3.0, 2.0 Hz, 1H), 6.28 (d, *J* = 3.0 Hz, 1H), 4.86 (s, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₉H₁₆BrN₄O 395.1 (⁷⁹Br) and 397.1 (⁸¹Br); found 394.9 (⁷⁹Br) and 396.9 (⁸¹Br). LC-MS 'R (UV 214): 1.417 min.

N^4 -(Furan-2-ylmethyl)- N^2 -(3-methoxyphenyl)quinazoline-2,4-diamine (5)

The title compound was obtained as its corresponding TFA salt from 44 and 3methoxyaniline using a procedure similar to that described for the synthesis of 4 (67% yield). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.16 (d, *J* = 8.2 Hz, 1H), 7.83 (t, *J* = 7.9 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.50–7.46 (comp, 2H), 7.37 (t, *J* = 8.2 Hz, 1H), 7.19 (t, *J* = 1.8 Hz, 1H), 7.08 (dd, *J* = 8.0, 1.9 Hz, 1H), 6.90 (dd, *J* = 8.4, 2.3 Hz, 1H), 6.36 (dd, J = 3.1, 2.0 Hz, 1H), 6.31 (d, J = 3.1 Hz, 1H), 4.87 (s, 2H), 3.81 (s, 3H). LRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₀H₁₉N₄O₂ 347.2; found 347.1. LC-MS ^tR (UV 214): 1.279 min.

 N^4 -(Furan-2-ylmethyl)- N^2 -(4-methoxyphenyl)quinazoline-2,4-diamine (9)

The title compound was obtained as its corresponding TFA salt from **44** and 4methoxyaniline using a procedure similar to that described for the synthesis of **4** (37% yield). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.14 (d, *J* = 8.2 Hz, 1H), 7.80 (t, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.47–7.39 (comp, 4H), 7.03 (d, *J* = 8.8 Hz, 2H), 6.36 (dd, *J* = 3.0, 1.9 Hz, 1H), 6.26 (br s, 1H), 4.83 (s, 2H), 3.85 (s, 3H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₀H₁₉N₄O₂ 347.2; found 347.1. LC-MS ^{*t*}R (UV 214): 1.240 min.

N^2 -(3,4-Dimethylphenyl)- N^4 -(furan-2-ylmethyl)quinazoline-2,4-diamine (10)

The title compound was obtained as its corresponding TFA salt from 44 and 3,4dimethylaniline using a procedure similar to that described for the synthesis of 4 (43% yield). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.14 (d, *J* = 8.2 Hz, 1H), 7.81 (t, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.48–7.44 (comp, 2H), 7.32 (s, 1H), 7.22 (s, 2H), 6.36 (dd, *J* = 3.0, 2.0 Hz, 1H), 6.27 (br s, 1H), 2.31 (s, 3H), 2.30 (s, 3H). LRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₁N₄O 345.2; found 345.1. LC-MS ^{*t*}R (UV 214 nm): 1.411 min.

 N^2 -(3,5-Dimethylphenyl)- N^4 -(furan-2-ylmethyl)quinazoline-2,4-diamine (11)

The title compound was obtained as its corresponding TFA salt from **44** and 3,5dimethylaniline using a procedure similar to that described for the synthesis of **4** (54% yield). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.14 (d, *J* = 8.1 Hz, 1H), 7.82 (t, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 8.3 Hz, 1H), 7.49–7.45 (comp, 2H), 7.17 (s, 2H), 6.98 (s, 1H), 6.36 (dd, *J* = 3.1, 2.1 Hz, 1H), 6.28 (br d, *J* = 2.9 Hz, 1H), 4.87 (s, 2H), 2.33 (s, 6H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₂₁N₄O 345.2; found 345.1. LC-MS ^{*t*}R (UV 214): 1.442 min.

N^2 -(3,5-Dichlorophenyl)- N^4 -(furan-2-ylmethyl)quinazoline-2,4-diamine (13)

To a microwave vial were added **44** (50.0 mg, 0.193 mmol, 1.00 equiv), 3,5dichloroaniline (46.8 mg, 0.289 mmol, 1.50 equiv), 2-propanol (0.48 mL), and 4 M HCl in dioxane (3 drops). The resulting mixture was heated to 180 °C for 30 min in a microwave reactor, after which time the mixture was concentrated in vacuo. The residue was purified by reversed-phase preparative HPLC. The title compound was obtained as its corresponding TFA salt (26.0 mg, 0.0521 mmol, 27% yield). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.18 (d, J = 8.3 Hz, 1H), 7.89–7.85 (m, 1H), 7.70 (d, J = 1.8 Hz, 2H), 7.57 (d, J = 8.4 Hz, 1H), 7.53–7.49 (m, 1H), 7.47 (dd, J = 1.8, 0.8 Hz, 1H), 7.33 (t, J = 1.7 Hz, 1H), 6.37 (dd, J = 3.2, 1.9 Hz, 1H), 6.32 (br d, J = 3.2 Hz, 1H), 4.88 (s, 2H). LRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₅Cl₂N₄O 385.1; found 384.9. LC-MS ^{*t*}R (UV 214): 1.536 min.

 N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(furan-2-ylmethyl)quinazoline-2,4-diamine (14)

The title compound was obtained as its corresponding TFA salt from **44** and 3-chloro-4-fluoroaniline using a procedure similar to that described for the synthesis of **13** (43% yield). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.17 (d, *J* = 8.4 Hz, 1H), 7.87–7.82 (comp, 2H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.52–7.45 (comp, 3H), 7.33 (t, *J* = 8.8 Hz, 1H), 6.37 (dd, *J* = 3.2, 2.0 Hz, 1H), 6.27 (d, *J* = 2.6 Hz, 1H), 4.84 (s, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₉H₁₅ClFN₄O 369.1; found 369.0. LC-MS ^{*t*}R (UV 214): 1.378 min.

 N^2 -(3-Chloro-4-fluorophenyl)- N^4 -ethyl- N^4 -(furan-2-ylmethyl)quinazoline-2,4diamine (15)

STEP 1: A solution of 44 (50.0 mg, 0.193 mmol, 1.00 equiv) in DMF (2.0 mL) was stirred at room temperature. Next, NaH (60% dispersion in mineral oil) (8.5 mg, 0.21 mmol, 1.10 equiv) was added. The mixture was allowed to stir for 10 min and then

iodoethane (0.019 mL, 36 mg, 0.23 mmol, 1.20 equiv) was added. The progress of the reaction was monitored by LC-MS analysis. When the starting material had been completely consumed, the reaction mixture was diluted with H_2O (25 mL) and extracted with CH_2Cl_2 (25 mL). The resulting mixture was passed through a phase separator and concentrated in vacuo. The product 2-chloro-*N*-ethyl-*N*-(furan-2-ylmethyl)quinazolin-4-amine **45** was used without further purification.

STEP 2: To a microwave vial were added **45** (theoretically 0.193 mmol, 1.00 equiv), 3chloro-4-fluoroaniline (56.1 mg, 0.385 mmol, 2.00 equiv), and DMF (2.0 mL). The resulting mixture was heated to 160 °C in a microwave reactor for 30 min, after which time the mixture was concentrated in vacuo. The residue was purified by reversed-phase preparative HPLC. The title compound was obtained as its corresponding TFA salt (15.1 mg, 0.0296 mmol, 15% yield over two steps). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.22 (d, *J* = 8.5 Hz, 1H), 7.86–7.81 (comp, 2H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.55 (s, 1H), 7.48–7.40 (comp, 2H), 7.29 (t, *J* = 8.8 Hz, 1H), 6.45–6.43 (m, 1H), 6.41 (br s, 1H), 5.07 (s, 2H), 3.92 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₁₉CIFN₄O 397.1; found 397.0. LC-MS ^{*i*}R (UV 214): 1.575 min.

N-(2-((3-Chloro-4-fluorophenyl)amino)quinazolin-4-yl)-*N*-(furan-2ylmethyl)acetamide (16)

The title compound was obtained as its corresponding TFA salt from **44**, acetyl chloride, and 3-chloro-4-fluoroaniline using a procedure similar to that described for the synthesis

of **15** (8% yield over two steps). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.20 (dd, *J* = 6.7, 2.7 Hz, 1H), 7.81–7.72 (comp, 3H), 7.58 (d, *J* = 8.2 Hz, 1H), 7.34–7.29 (comp, 2H), 7.20 (t, *J* = 9.0 Hz, 1H), 6.21 (dd, *J* = 3.2, 1.8 Hz, 1H), 6.19 (d, *J* = 3.2 Hz, 1H), 5.14 (s, 2H), 2.00 (s, 3H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₁₇ClFN₄O₂ 411.1; found 411.0. LC-MS ^{*t*}R (UV 214): 1.857 min.

Scheme S2. Preparation of Compounds 19–29^a

^{*a*}Reagents and conditions: (a) **47–57**, Et₃N, THF, 60 °C. (b) 3-Chloro-4-fluoroaniline, 4 M HCl in dioxane, EtOH, 120 °C μ W.

 N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(cyclopropylmethyl)quinazoline-2,4-diamine (19)

STEP 1: To a solution of 2,4-dichloroquinazoline **43** (250 mg, 1.26 mmol, 1.00 equiv) in THF (4.2 mL) were added Et₃N (0.219 mL, 159 mg, 1.57 mmol, 1.25 equiv) and cyclopropylmethanamine **47** (0.113 mL, 93.8 mg, 1.32 mmol, 1.05 equiv). The resulting mixture was heated to 60 °C and the progress of the reaction was monitored by LC-MS

analysis. When the starting material had been completely consumed, the mixture was allowed to cool to room temperature and concentrated in vacuo. The residue was partitioned between EtOAc (25 mL) and saturated aqueous NH₄Cl (25 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2 x 10 mL). The organic layers were combined, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel chromatography to provide 2-chloro-*N*-(cyclopropylmethyl)quinazolin-4-amine (259 mg, 1.11 mmol, 88% yield). White solid. ¹H NMR (400 MHz, CDCl₃, δ): 7.78–7.71 (comp, 3H), 7.48–7.44 (m, 1H), 6.10 (br s, 1H), 3.52 (dd, *J* = 7.2, 5.1 Hz, 2H), 1.21–1.14 (m, 1H), 0.65–0.60 (m, 2H), 0.38–0.34 (m, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₂H₁₃CIN₃ 234.1; found 234.1. LC-MS ^{*I*}R (UV 214): 1.401 min.

STEP 2: To a microwave vial were added 2-chloro-*N*-(cyclopropylmethyl)quinazolin-4amine (30.0 mg, 0.128 mmol, 1.00 equiv), 3-chloro-4-fluoroaniline (37.4 mg, 0.257 mmol, 2.00 equiv), 4 M HCl in dioxane (0.032 mL, 0.13 mmol, 1.00 equiv), and EtOH (0.64 mL). The resulting mixture was heated to 120 °C in a microwave reactor for 30 min, after which time the mixture was concentrated in vacuo. The residue was purified by reversed-phase preparative HPLC. The title compound was obtained as its corresponding TFA salt (43.0 mg, 0.0941 mmol, 73% yield). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.19 (d, *J* = 8.4 Hz, 1H), 7.91 (dd, *J* = 6.5, 2.5 Hz, 1H), 7.86–7.82 (m, 1H), 7.55 (d, *J* = 8.1 Hz, 1H), 7.52–7.48 (m, 1H), 7.44 (ddd, *J* = 8.8, 4.2, 2.7 Hz, 1H), 7.32 (t, *J* = 8.9 Hz, 1H), 3.53 (d, *J* = 7.1 Hz, 2H), 1.31–1.21 (m, 1H), 0.61–0.56 (m, 2H), 0.35–0.31 (m, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₇ClFN₄ 343.1; found 343.0. LC-MS 'R (UV 214): 1.420 min. N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(cyclobutylmethyl)quinazoline-2,4-diamine (20)

The title compound was obtained as its corresponding TFA salt from 2,4dichloroquinazoline **43**, cyclobutylmethanamine **48**, and 3-chloro-4-fluoroaniline using a procedure similar to that described for the synthesis of **19** (36% yield over two steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.14 (dd, *J* = 8.3, 0.8 Hz, 1H), 7.93 (dd, *J* = 6.7, 2.6 Hz, 1H), 7.83 (ddd, *J* = 8.3, 7.3, 1.3 Hz, 1H), 7.54 (d, *J* = 8.1 Hz, 1H), 7.48 (ddd, *J* = 8.2, 7.3, 1.1 Hz, 1H), 7.46–7.42 (m, 1H), 7.33 (t, *J* = 8.8 Hz, 1H), 3.70 (d, *J* = 7.4 Hz, 2H), 2.84–2.73 (m, 1H), 2.16–2.08 (m, 2H), 1.98–1.88 (m, 2H), 1.87–1.77 (m, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₉H₁₉ClFN₄ 357.1; found 357.0. LC-MS ^{*t*}R (UV 214): 1.641 min.

N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(cyclopentylmethyl)quinazoline-2,4-diamine (21)

The title compound was obtained as its corresponding TFA salt from 2,4dichloroquinazoline **43**, cyclopentylmethanamine **49** HCl salt, and 3-chloro-4fluoroaniline using a procedure similar to that described for the synthesis of **19** (39% yield over two steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.16 (d, *J* = 8.4 Hz, 1H), 7.88 (dd, *J* = 6.6, 2.5 Hz, 1H), 7.84 (td, *J* = 7.7, 1.2 Hz, 1H), 7.54 (d, *J* = 8.2 Hz, 1H), 7.49 (td, *J* = 7.7, 0.9 Hz, 1H), 7.44 (ddd, *J* = 9.0, 4.0, 2.6 Hz, 1H), 7.33 (t, *J* = 8.9 Hz, 1H), 3.59 (d, J = 7.6 Hz, 2H), 2.43–2.32 (m, 1H), 1.83–1.75 (m, 2H), 1.70–1.54 (m, 4H), 1.36–1.30 (m, 2H). LRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₁ClFN₄ 371.1; found 371.1. LC-MS ^tR (UV 214): 1.864 min.

(R)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylethyl)quinazoline-2,4-diamine (22)

The title compound was obtained as its corresponding TFA salt from 2,4dichloroquinazoline **43**, (*R*)-1-cyclopropylethan-1-amine **50**, and 3-chloro-4-fluoroaniline using a procedure similar to that described for the synthesis of **19** (67% yield over two steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.27 (d, *J* = 8.2 Hz, 1H), 7.85–7.82 (comp, 2H), 7.53 (d, *J* = 8.6 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.40–7.36 (m, 1H), 7.33 (t, *J* = 8.7 Hz, 1H), 3.83 (dq, *J* = 8.0, 6.7 Hz, 1H), 1.42 (d, *J* = 6.7 Hz, 3H), 1.21–1.13 (m, 1H), 0.68–0.62 (m, 1H), 0.57–0.49 (m, 1H), 0.38–0.32 (m, 1H), 0.32–0.26 (m, 1H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₉H₁₉ClFN₄ 357.1; found 357.0. LC-MS ^{*I*}R (UV 214): 1.543 min.

(S)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylethyl)quinazoline-2,4-diamine (23)

The title compound was obtained as its corresponding TFA salt from 2,4dichloroquinazoline **43**, (*S*)-1-cyclopropylethan-1-amine **51**, and 3-chloro-4-fluoroaniline using a procedure similar to that described for the synthesis of **19** (69% yield over two steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.27 (d, *J* = 8.2 Hz, 1H), 7.86–7.82 (comp, 2H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 1H), 7.40–7.36 (m, 1H), 7.32 (t, *J* = 8.7 Hz, 1H), 3.83 (dq, *J* = 8.0, 6.7 Hz, 1H), 1.42 (d, *J* = 6.7 Hz, 3H), 1.22–1.13 (m, 1H), 0.68–0.62 (m, 1H), 0.58–0.49 (m, 1H), 0.38–0.32 (m, 1H), 0.32–0.26 (m, 1H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₉H₁₉CIFN₄ 357.1; found 357.0. LC-MS ^{*I*}R (UV 214): 1.539 min.

(*R*)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylpropyl)quinazoline-2,4-diamine (24)

The title compound was obtained as its corresponding TFA salt from 2,4dichloroquinazoline **43**, (*R*)-1-cyclopropylpropan-1-amine **52** HCl salt, and 3-chloro-4fluoroaniline using a procedure similar to that described for the synthesis of **19** (49% yield over two steps). White solid. ¹H NMR (400 MHz, CDCl₃, δ): 7.97 (dd, *J* = 6.6, 2.6 Hz, 1H), 7.74–7.68 (comp, 3H), 7.40–7.34 (comp, 2H), 7.10 (t, *J* = 8.7 Hz, 1H), 6.55 (d, *J* = 8.0 Hz, 1H), 3.70–3.62 (m, 1H), 1.92–1.81 (comp, 2H), 1.05 (t, *J* = 7.5 Hz, 3H), 1.06–0.99 (m, 1H), 0.78–0.71 (m, 1H), 0.56–0.51 (m, 1H), 0.51–0.43 (m, 1H), 0.35–0.29 (m, 1H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₀H₂₁ClFN₄ 371.1; found 371.1. LC-MS ^{*r*}R (UV 214 nm): 1.542 min. (S)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylpropyl)quinazoline-2,4-diamine (25)

The title compound was obtained as its corresponding TFA salt from 2,4dichloroquinazoline **43**, (*S*)-1-cyclopropylpropan-1-amine **53** HCl salt, and 3-chloro-4fluoroaniline using a procedure similar to that described for the synthesis of **19** (45% yield over two steps). White solid. ¹H NMR (400 MHz, CDCl₃, δ): 7.97 (dd, *J* = 6.6, 2.6 Hz, 1H), 7.75–7.68 (comp, 3H), 7.40–7.34 (comp, 2H), 7.11 (t, *J* = 8.7 Hz, 1H), 6.53 (d, *J* = 8.0 Hz, 1H), 3.70–3.62 (m, 1H), 1.92–1.81 (comp, 2H), 1.05 (t, *J* = 7.5 Hz, 3H), 1.06–0.99 (m, 1H), 0.78–0.71 (m, 1H), 0.56–0.51 (m, 1H), 0.50–0.43 (m, 1H), 0.35–0.29 (m, 1H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₀H₂₁ClFN₄ 371.1; found 371.1. LC-MS [']R (UV 214): 1.535 min.

(*R*)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylbutyl)quinazoline-2,4-diamine (26)

The title compound was obtained as its corresponding TFA salt from 2,4dichloroquinazoline **43**, (*R*)-1-cyclopropylbutan-1-amine **54** HCl salt, and 3-chloro-4fluoroaniline using a procedure similar to that described for the synthesis of **19** (29% yield over two steps). White solid. ¹H NMR (400 MHz, CDCl₃, δ): 7.95 (dd, *J* = 6.6, 2.6 Hz, 1H), 7.73–7.66 (comp, 3H), 7.39–7.34 (comp, 2H), 7.10 (t, J = 8.7 Hz, 1H), 6.58 (d, J = 8.4 Hz, 1H), 3.81–3.73 (m, 1H), 1.85–1.74 (comp, 2H), 1.51–1.42 (comp, 2H), 1.07–0.98 (m, 1H), 0.91 (t, J = 7.3 Hz, 3H), 0.75–0.68 (m, 1H), 0.54–0.49 (m, 1H), 0.48–0.41 (m, 1H), 0.36–0.30 (m, 1H). LRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₃ClFN₄ 385.2; found 385.0. LC-MS ^tR (UV 214): 1.606 min.

(*R*)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropyl-3-methylbutyl)quinazoline-2,4diamine (27)

The title compound was obtained as its corresponding TFA salt from 2,4dichloroquinazoline **43**, (*R*)-1-cyclopropyl-3-methylbutan-1-amine **55** HCl salt, and 3chloro-4-fluoroaniline using a procedure similar to that described for the synthesis of **19** (35% yield over two steps). White solid. ¹H NMR (400 MHz, CDCl₃, δ): 7.91 (dd, *J* = 6.6, 2.6 Hz, 1H), 7.72–7.66 (comp, 3H), 7.39–7.32 (comp, 2H), 7.09 (t, *J* = 8.7 Hz, 1H), 6.54 (d, *J* = 8.9 Hz, 1H), 4.01–3.93 (m, 1H), 1.73–1.66 (comp, 4H), 1.02–0.96 (m, 1H), 0.90 (d, *J* = 6.0 Hz, 3H), 0.84 (d, *J* = 6.0 Hz, 3H), 0.70–0.64 (m, 1H), 0.50–0.35 (comp, 3H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₂H₂₅ClFN₄ 399.2; found 399.1. LC-MS ^{*t*}R (UV 214): 1.649 min.

(*R*)-*N*²-(3-Chloro-4-fluorophenyl)-*N*⁴-(1-cyclobutylethyl)quinazoline-2,4-diamine (28)

The title compound was obtained as its corresponding TFA salt from 2,4dichloroquinazoline **43**, (*R*)-1-cyclobutylethan-1-amine **56** HCl salt, and 3-chloro-4fluoroaniline using a procedure similar to that described for the synthesis of **19** (45% yield over two steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.24 (dd, *J* = 8.3, 0.8 Hz, 1H), 7.96 (dd, *J* = 6.6, 2.6 Hz, 1H), 7.84 (ddd, *J* = 8.4, 7.3, 1.3 Hz, 1H), 7.54 (d, *J* = 8.5 Hz, 1H), 7.48 (ddd, *J* = 8.3, 7.3, 1.1 Hz, 1H), 7.44–7.40 (m, 1H), 7.35 (t, *J* = 8.8 Hz, 1H), 4.56–4.49 (m, 1H), 2.67–2.56 (m, 1H), 2.18–2.10 (m, 1H), 2.07–2.00 (m, 1H), 1.95– 1.88 (m, 1H), 1.86–1.76 (comp, 3H), 1.23 (d, *J* = 6.6 Hz, 3H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₀H₂₁ClFN₄ 371.1; found 371.0. LC-MS ^{*t*}R (UV 214): 1.663 min.

(*R*)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclobutylpropyl)quinazoline-2,4-diamine (29)

The title compound was obtained as its corresponding TFA salt from 2,4dichloroquinazoline **43**, (*R*)-1-cyclobutylpropan-1-amine **57** HCl salt, and 3-chloro-4fluoroaniline using a procedure similar to that described for the synthesis of **19** (31% yield over two steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.26 (dd, *J* = 8.3, 0.7 Hz, 1H), 7.96 (dd, *J* = 6.6, 2.5 Hz, 1H), 7.84 (ddd, *J* = 8.4, 7.2, 1.3 Hz, 1H), 7.55 (d, *J* = 8.1 Hz, 1H), 7.49 (ddd, *J* = 8.3, 7.2, 1.1 Hz, 1H), 7.44–7.40 (m, 1H), 7.35 (t, *J* = 8.7 Hz, 1H), 4.44 (td, *J* = 9.5, 4.1 Hz, 1H), 2.66–2.58 (m, 1H), 2.17–2.09 (m, 1H), 2.03–1.96 (m, 1H), 1.95–1.88 (m, 1H), 1.85–1.68 (comp, 4H), 1.59–1.48 (m, 1H), 0.91 (t, J = 7.5 Hz, 3H). LRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₁H₂₃ClFN₄ 385.2; found 385.0. LC-MS ^{*t*}R (UV 214): 1.699 min.

Scheme S3. Preparation of Amines 52–57 Used for the Synthesis of Compounds 24–29^{*a*}

(a) Cycloalkylcarboxaldehyde, Ti(OEt)₄, THF. (b) RMgX, CH₂Cl₂, −61 to 23 °C. (c) 4 M HCl in dioxane, MeOH.

(R)-1-Cyclopropylpropan-1-amine (52)

STEP 1: According to the procedure reported by Ellman and coworkers,² Ti(OEt)₄ (6.92 mL, 7.53 g, 33.0 mmol, 2.00 equiv) and cyclopropanecarboxaldehyde (1.36 mL, 1.27 g, 18.2 mmol, 1.10 equiv) were dissolved in THF (33 mL). The resulting mixture was stirred at room temperature and (*S*)-(–)-2-methyl-2-propanesulfinamide **58** (2.00 g, 16.5 mmol, 1.00 equiv) was added. After 4 h, the reaction mixture was poured into brine and the resulting mixture was filtered over diatomaceous earth with the aid of CH_2Cl_2 . The layers were separated and the aqueous phase was extracted with CH_2Cl_2 (100 mL). The

organic layers were combined, dried over MgSO₄, and concentrated in vacuo. The residue was purified by silica gel chromatography to provide (*S*)-*N*-(cyclopropylmethylene)-2-methylpropane-2-sulfinamide (2.65 g, 15.3 mmol, 93% yield). Clear oil. ¹H NMR (400 MHz, CDCl₃, δ): 7.46 (d, *J* = 8.0 Hz, 1H), 2.03–1.94 (m, 1H), 1.19 (s, 9H), 1.11–1.07 (comp, 2H), 0.96–0.94 (comp, 2H). Characterization data for this compound were in good agreement with the data previously reported.³

STEP 2: According to the procedure reported by Ellman and coworkers,⁴ (*S*)-*N*-(cyclopropylmethylene)-2-methylpropane-2-sulfinamide (1.04 g, 6.00 mmol, 1.00 equiv) was dissolved in CH₂Cl₂ (35 mL). The solution was cooled to -61 °C and ethylmagnesium bromide (3 M in Et₂O) (4.00 mL, 12.0 mmol, 2.00 equiv) was added. The resulting mixture was stirred at -61 °C for 2 h and then allowed to warm to room temperature. After an additional 18 h, the reaction was quenched with saturated aqueous NH₄Cl (200 mL) and extracted with CH₂Cl₂ (3 x 100 mL). The organic layers were combined, dried over MgSO₄, and concentrated in vacuo. The resulting diastereomeric mixture was separated by silica gel chromatography to give (*S*)-*N*-((*R*)-1-cyclopropylpropyl)-2-methylpropane-2-sulfinamide (1.08 g, 5.33 mmol, 89% yield). White solid. ¹H NMR (400 MHz, CDCl₃, δ): 3.11 (br s, 1H), 2.51–2.45 (m, 1H), 1.74–1.66 (comp, 2H), 1.22 (s, 9H), 1.01 (t, *J* = 7.5 Hz, 3H), 0.83–0.74 (m, 1H), 0.59–0.48 (comp, 2H), 0.38–0.33 (m, 1H), 0.23–0.18 (m, 1H).

STEP 3: To a flask containing (*S*)-*N*-((*R*)-1-cyclopropylpropyl)-2-methylpropane-2sulfinamide (1.08 g, 5.33 mmol, 1.00 equiv) were added MeOH (2.7 mL) and 4 M HCl in dioxane (2.66 mL, 10.7 mmol, 2.00 equiv). The resulting mixture was stirred at room temperature for 30 min and then concentrated to near dryness. The residue was diluted with Et₂O to precipitate the amine HCl salt, which was collected by filtration. The solid was washed with Et₂O/hexanes (1:1 v/v) and then dried in vacuo to give (*R*)-1-cyclopropylpropan-1-amine **52** as its corresponding HCl salt (667 mg, 4.92 mmol, 92% yield). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 2.34 (dt, *J* = 10.0, 6.8 Hz, 1H), 1.79 (quint, *J* = 7.3 Hz, 2H), 1.08 (t, *J* = 7.5 Hz, 3H), 0.95–0.87 (m, 1H), 0.77–0.72 (m, 1H), 0.67–0.62 (m, 1H), 0.45–0.38 (comp, 2H).

(S)-1-Cyclopropylpropan-1-amine (53)

The title compound was obtained as its corresponding HCl salt from (*R*)-(+)-2methylpropane-2-sulfinamide **59**, cyclopropanecarboxaldehyde, and ethylmagnesium bromide using a procedure similar to that described for the synthesis of **52** (55% yield over three steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 2.34 (dt, *J* = 10.0, 6.8 Hz, 1H), 1.79 (quint, *J* = 7.3 Hz, 2H), 1.08 (t, *J* = 7.5 Hz, 3H), 0.96–0.87 (m, 1H), 0.77– 0.72 (m, 1H), 0.68–0.63 (m, 1H), 0.45–0.38 (comp, 2H).

(R)-1-Cyclopropylbutan-1-amine (54)

The title compound was obtained as its corresponding HCl salt from (*S*)-(–)-2-methyl-2propanesulfinamide **58**, cyclopropanecarboxaldehyde, and propylmagnesium chloride using a procedure similar to that described for the synthesis of **52** (61% yield over three steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 2.41 (dt, *J* = 10.0, 6.8 Hz, 1H), 1.76–1.70 (comp, 2H), 1.59–1.44 (comp, 2H), 0.99 (t, *J* = 7.3 Hz, 3H), 0.95–0.87 (m, 1H), 0.76–0.70 (m, 1H), 0.68–0.63 (m, 1H), 0.45–0.37 (comp, 2H).

(*R*)-1-Cyclopropyl-3-methylbutan-1-amine (55)

The title compound was obtained as its corresponding HCl salt from (*S*)-(–)-2-methyl-2propanesulfinamide **58**, cyclopropanecarboxaldehyde, and isobutylmagnesium bromide using a procedure similar to that described for the synthesis of **52** (42% yield over three steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 2.49 (dt, *J* = 9.9, 7.1 Hz, 1H), 1.92– 1.82 (m, 1H), 1.68–1.56 (comp, 2H), 0.98 (d, *J* = 2.3 Hz, 3H), 0.96 (d, *J* = 2.3 Hz, 3H), 0.94–0.86 (m, 1H), 0.78–0.71 (m, 1H), 0.69–0.63 (m, 1H), 0.49–0.38 (comp, 2H).

(R)-1-Cyclobutylethan-1-amine (56)

The title compound was obtained as its corresponding HCl salt from (*S*)-(–)-2-methyl-2propanesulfinamide **58**, cyclobutanecarboxaldehyde, and methylmagnesium bromide using a procedure similar to that described for the synthesis of **52** (53% yield over three steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 3.20 (dq, *J* = 9.5, 6.6 Hz, 1H), 2.47–2.37 (m, 1H), 2.15–2.04 (comp, 2H), 2.01–1.78 (comp, 4H), 1.19 (d, *J* = 6.6 Hz, 3H).

(R)-1-Cyclobutylpropan-1-amine (57)

The title compound was obtained as its corresponding HCl salt from (*S*)-(–)-2-methyl-2propanesulfinamide **58**, cyclobutanecarboxaldehyde, and ethylmagnesium bromide using a procedure similar to that described for the synthesis of **52** (46% yield over three steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 3.04 (ddd, *J* = 9.6, 7.2, 5.0 Hz, 1H), 2.55– 2.44 (m, 1H), 2.15–2.05 (comp, 2H), 2.01–1.80 (comp, 4H), 1.72–1.61 (m, 1H), 1.56– 1.45 (m, 1H), 1.00 (t, *J* = 7.6 Hz, 3H).

^{*a*}Reagents and conditions: (a) Urea, 160 °C. (b) POCl₃, 100 °C. (c) (*R*)-1-Cyclopropylethan-1-amine, *i*-Pr₂NEt, *i*-PrOH, 60 °C. (d) 3-Chloro-4-fluoroaniline, 4 M HCl in dioxane, *i*-PrOH, 180 °C μ W. (e) CuCN, NMP, 150 °C. (f) ZnCl₂, LiBH₄, THF, 60 °C.

(*R*)-8-Bromo- N^2 -(3-chloro-4-fluorophenyl)- N^4 -(1-cyclopropylethyl)quinazoline-2,4diamine (62)

STEP 1: A vial containing 2-amino-3-bromobenzoic acid **60** (1.00 g, 4.63 mmol, 1.00 equiv) was heated to 160 °C as urea (2.78 g, 46.3 mmol, 10.00 equiv) was added in portions. After 12 h, more urea (2.78 g, 46.3 mmol, 10.00 equiv) was added in portions. The reaction mixture was stirred for an additional 8 h. The vial was then cooled to 100 °C and H₂O (20 mL) was added. The resulting suspension was stirred for 1 h at 100 °C before being allowed to cool to room temperature. The solid was collected by filtration. The product 8-bromoquinazoline-2,4(1*H*,3*H*)-dione was used without further purification (883 mg, 3.66 mmol, 79% yield). Tan solid. ¹H NMR (400 MHz, DMSO-*d*₆, δ): 10.76 (br s, 2H), 7.93 (d, *J* = 7.8 Hz, 2H), 7.13 (t, *J* = 7.8 Hz, 1H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₈H₆BrN₂O₂ 241.0 (⁷⁹Br) and 243.0 (⁸¹Br); found 241.0 (⁷⁹Br) and 243.0 (⁸¹Br). LC-MS 'R (UV 214): 0.866 min. Characterization data for this compound were in good agreement with the data previously reported.⁵⁻⁷

STEP 2: To a flask containing 8-bromoquinazoline-2,4(1*H*,3*H*)-dione (500 mg, 2.07 mmol, 1.00 equiv) was slowly added POCl₃ (4.83 mL, 51.9 mmol, 25.00 equiv). The resulting mixture was heated to 100 °C and the progress of the reaction was monitored by TLC analysis (hexanes/EtOAc 2:1 v/v). Upon complete consumption of the starting material, the reaction mixture was cooled to room temperature and transferred in portions to an Erlenmeyer flask containing crushed ice with the aid of CH_2Cl_2 . The resulting mixture was stirred for 20 min and then extracted with CH_2Cl_2 . The organic phases were combined, washed with saturated aqueous NaHCO₃ (3 x 40 mL), brine, dried over Na₂SO₄, and concentrated in vacuo. The crude solid was purified by silica gel

chromatography to provide 8-bromo-2,4-dichloroquinazoline **61** (377 mg, 1.36 mmol, 65% yield). White solid. ¹H NMR (400 MHz, CDCl₃, δ): 8.29 (d, *J* = 7.6 Hz, 1H), 8.26 (d, *J* = 8.4 Hz, 1H), 7.60 (t, *J* = 8.1 Hz, 1H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₈H₄BrCl₂N₂ 276.9 (⁷⁹Br) and 278.9 (⁸¹Br); found 276.9 (⁷⁹Br) and 278.9 (⁸¹Br). LC-MS ¹R (UV 214): 1.511 min. Characterization data for this compound were in good agreement with the data previously reported.⁵⁻⁷

STEP 3: To a flask containing 61 (4.53 g, 16.3 mmol, 1.00 equiv) was added 2-propanol (55 mL). Next, *i*-Pr₂NEt (3.55 mL, 2.63 g, 20.4 mmol, 1.25 equiv) was added, followed by (R)-1-cyclopropylethan-1-amine (1.58 mL, 1.46 g, 17.1 mmol, 1.05 equiv). The resulting mixture was heated to 60 °C and the progress of the reaction was monitored by TLC analysis (hexanes/EtOAc 2:1 v/v). Upon complete consumption of the starting material, the reaction mixture was allowed to cool to room temperature and concentrated in vacuo. The residual oil was dissolved in EtOAc (300 mL) and treated with 50% aqueous NH_4Cl (200 mL). The layers were separated and the aqueous phase was extracted with EtOAc (100 mL). The organic phases were combined, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel chromatography to provide (R)-8-bromo-2-chloro-N-(1-cyclopropylethyl)quinazolin-4amine (5.12 g, 15.7 mmol, 96% yield). Tan solid. ¹H NMR (400 MHz, CDCl₃, δ): 8.02 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 5.98 (br d, J = 6.4Hz, 1H), 3.91-3.82 (m, 1H), 1.37 (d, J = 6.5 Hz, 3H), 1.04-0.95 (m, 1H), 0.64-0.60 (m, 1H), 0.55–0.50 (m, 1H), 0.50–0.44 (m, 1H), 0.40–0.34 (m, 1H). LRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₄BrClN₃ 326.0 (⁷⁹Br) and 328.0 (⁸¹Br); found 325.9 (⁷⁹Br) and 327.9 (⁸¹Br). LC-MS ^tR (UV 214): 1.704 min.

STEP 4: To a flask containing (*R*)-8-bromo-2-chloro-*N*-(1-cyclopropylethyl)quinazolin-4-amine (200 mg, 0.612 mmol, 1.00 equiv) was added 2-propanol (1.5 mL). Next, 3chloro-4-fluoroaniline (93.6 mg, 0.643 mmol, 1.05 equiv) was added, followed by 4 M HCl in dioxane (3 drops). The resulting mixture was heated to 180 °C for 30 min in a microwave reactor, after which time the mixture was concentrated in vacuo. The residue was purified by reversed-phase preparative HPLC. The title compound was obtained as its free base by washing with a solution of K₂CO₃ (221 mg, 0.507 mmol, 83% yield). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.66 (dd, *J* = 6.8, 2.2 Hz, 1H), 8.02 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.91 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.59 (ddd, *J* = 9.4, 3.6, 2.7 Hz, 1H), 7.11 (t, *J* = 9.0 Hz, 1H), 7.07 (dd, *J* = 8.1, 7.7 Hz, 1H), 3.94 (dq, *J* = 9.1, 6.7 Hz, 1H), 1.39 (d, *J* = 6.7 Hz, 3H), 1.18–1.10 (m, 1H), 0.62–0.56 (m, 1H), 0.53–0.47 (m, 1H), 0.45–0.41 (m, 1H), 0.33–0.27 (m, 1H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₉H₁₈BrClFN₄ 435.0 (⁷⁹Br) and 437.0 (⁸¹Br); found 434.8 (⁷⁹Br) and 436.9 (⁸¹Br). LC-MS 'R (UV 214): 1.509 min.

(*R*)-2-((3-Chloro-4-fluorophenyl)amino)-4-((1-cyclopropylethyl)amino)quinazoline-8-carbonitrile (63)

To a vial were added **62** (500 mg, 1.15 mmol, 1.00 equiv), copper(I) cyanide (617 mg, 6.89 mmol, 6.00 equiv), and NMP (3.8 mL). The resulting mixture was heated to 150 °C and the progress of the reaction was monitored by LC-MS analysis. Upon complete consumption of the starting material, the mixture was allowed to cool to room

temperature, whereupon EtOAc (50 mL) and saturated aqueous NH₄Cl/NH₄OH (9:1 v/v) (50 mL) were added. The resulting biphasic mixture was stirred vigorously for 30 min before being filtered over a plug of cotton. The layers of the filtrate were separated and the aqueous phase was extracted with EtOAc (2 x 25 mL). The organic phases were combined, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel chromatography to provide **63** (396 mg, 1.04 mmol, 90% yield). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.35 (dd, *J* = 6.9, 2.7 Hz, 1H), 8.29 (d, *J* = 8.2 Hz, 1H), 7.97 (d, *J* = 7.5 Hz, 1H), 7.69 (br s, 1H), 7.23 (dd, *J* = 8.0, 7.5 Hz, 1H), 7.12 (t, *J* = 9.0 Hz, 1H), 3.93 (dq, *J* = 9.0, 6.9 Hz, 1H), 1.40 (d, *J* = 6.7 Hz, 3H), 1.18–1.10 (m, 1H), 0.64–0.57 (m, 1H), 0.53–0.48 (m, 1H), 0.46–0.40 (m, 1H), 0.34–0.28 (m, 1H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₀H₁₈ClFN₅ 382.1; found 382.0. LC-MS Ret time (UV 214): 1.488 min.

(*R*)-8-(Aminomethyl)- N^2 -(3-chloro-4-fluorophenyl)- N^4 -(1cyclopropylethyl)quinazoline-2,4-diamine (30)

To a vial were added zinc(II) chloride (22.4 mg, 0.164 mmol, 1.10 equiv) and THF (0.20 mL). To this suspension was added LiBH₄ (2 M in THF) (0.164 mL, 0.328 mmol, 2.20 equiv), and the resulting mixture was heated to 50 °C. After 50 min, a solution of **63** TFA salt—prepared as described for **63**, except that the product was purified by reversed-phase preparative HPLC—(74.0 mg, 0.149 mmol, 1.00 equiv) in THF (0.40 + 0.40 mL) was added. The temperature was increased to 60 °C and the progress of the reaction was

monitored by LC-MS analysis. After 18 h, a second portion of $Zn(BH_4)_2$ (0.0820 mmol)—prepared as above—was added. After an additional 3 h, the reaction mixture was allowed to cool to room temperature and quenched by the slow addition of H₂O (15 mL). When the effervescence had ceased, the mixture was extracted with EtOAc (2 x 20 mL). The organic phases were combined, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by reversed-phase preparative HPLC. The title compound was obtained as its corresponding TFA salt (37.0 mg, 0.0740 mmol, 50% yield). White Solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.35–8.30 (m, 1H), 8.05–8.02 (m, 1H), 7.91–7.85 (m, 1H), 7.51–7.43 (comp, 2H), 7.26 (t, *J* = 8.9 Hz, 1H), 4.53 (s, 2H), 3.87–3.84 (m, 1H), 1.44 (d, *J* = 6.6 Hz, 3H), 1.23–1.19 (m, 1H), 0.68–0.63 (m, 1H), 0.56–0.51 (m, 1H), 0.34–0.29 (comp, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₀H₂₂ClFN₅ 386.2; found 386.1. LC-MS 'R (UV 214): 1.266 min.

Scheme S5. Preparation of Compounds 31–33^a

^{*a*}Reagents and conditions: (a) Potassium (*N*-Boc-aminoalkyl)trifluoroborate, Pd(OAc)₂, RuPhos, Cs₂CO₃, PhMe/H₂O (3:1 v/v), 85 °C. (b) Potassium (*N*-Bocaminoalkyl)trifluoroborate, Pd(OAc)₂, RuPhos, K₃PO₄, DME/H₂O (5:2 v/v), 120 °C. (c) TFA, CH₂Cl₂.

(R)-8-(Azetidin-3-yl)- N^2 -(3-chloro-4-fluorophenyl)- N^4 -(1-

cyclopropylethyl)quinazoline-2,4-diamine (31)

STEP 1: To a vial were added **62** (75.0 mg, 0.172 mmol, 1.00 equiv), potassium (1-(*tert*butoxycarbonyl)azetidin-3-yl)trifluoroborate (67.9 mg, 0.258 mmol, 1.50 equiv), Pd(OAc)₂ (3.9 mg, 0.017 mmol, 0.10 equiv), RuPhos (16.1 mg, 0.0344 mmol, 0.20 equiv) and Cs₂CO₃ (168 mg, 0.516 mmol, 3.00 equiv). The vial was sealed and subsequently evacuated/refilled with N₂. The evacuation/refill cycle was repeated two additional times and then degassed toluene/H₂O (3:1 v/v) (0.86 mL) was added. The reaction mixture was heated to 95 °C. After 72 h, the reaction mixture was allowed to cool to room temperature and diluted with CH₂Cl₂ (5 mL) and saturated aqueous NH₄Cl (5 mL). The resulting biphasic mixture was passed through a phase separator and concentrated in vacuo to give *tert*-butyl (*R*)-3-(2-((3-chloro-4-fluorophenyl)amino)-4-((1cyclopropylethyl)amino)quinazolin-8-yl)azetidine-1-carboxylate, which was used without further purification.

STEP 2: To a vial containing *tert*-butyl (*R*)-3-(2-((3-chloro-4-fluorophenyl)amino)-4-((1cyclopropylethyl)amino)quinazolin-8-yl)azetidine-1-carboxylate (theoretically 0.172 mmol) was added CH_2Cl_2 (4.0 mL). Next, TFA (1.0 mL) was added and the resulting mixture was stirred at room temperature. The progress of the reaction was monitored by LC-MS analysis. Upon complete consumption of the starting material, the reaction mixture was concentrated in vacuo and purified by reversed-phase preparative HPLC. The title compound was obtained as its corresponding TFA salt (4.0 mg, 0.0067 mmol, 4% yield over two steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.25–8.19 (m, 1H), 8.05–7.86 (comp, 2H), 7.53–7.45 (m, 1H), 7.39 (ddd, 8.9, 4.1, 2.7 Hz, 1H), 7.30–7.24 (m, 1H), 4.78–4.68 (m, 1H), 4.63–4.59 (comp, 2H), 4.41–4.37 (comp, 2H), 3.90–3.84 (m, 1H), 1.43 (d, *J* = 6.6 Hz, 3H), 1.22–1.13 (m, 1H), 0.67–0.61 (m, 1H), 0.55–0.49 (m, 1H), 0.39–0.26 (comp, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₂H₂₄ClFN₅ 412.2; found 412.1. LC-MS ^{*t*}R (UV 214): 1.281 min.

(*R*)-8-(2-Aminoethyl)- N^2 -(3-chloro-4-fluorophenyl)- N^4 -(1cyclopropylethyl)quinazoline-2,4-diamine (32)

STEP 1: To a vial were added 62 (100 mg, 0.230 mmol, 1.00 equiv), potassium tert-butyl N-[2-(trifluoroboranuidyl)ethyl]carbamate (86.4 mg, 0.344 mmol, 1.50 equiv), Pd(OAc)₂ (7.7 mg, 0.034 mmol, 0.15 equiv), RuPhos (32.1 mg, 0.0689 mmol, 0.30 equiv) and K_3PO_4 (146 mg, 0.689 mmol, 3.00 equiv). The vial was sealed and subsequently evacuated/refilled with N₂. The evacuation/refill cycle was repeated two additional times and then degassed DME/H₂O (5:2 v/v) (0.60 mL) was added. The reaction mixture was heated to 120 °C. After 3 h. more potassium *tert*-butyl N-[2-(trifluoroboranuidyl)ethyl]carbamate (86.4 mg, 0.344 mmol), Pd(OAc)₂ (7.7 mg, 0.034 mmol), and RuPhos (32.1 mg, 0.0689 mmol) were added. After an additional 17 h, the reaction mixture was allowed to cool to room temperature and diluted with 50% aqueous NH₄Cl (50 mL). The resulting mixture was extracted with EtOAc (3 x 25 mL). The organic phases were combined, washed with brine, dried over Na₂SO₄, and concentrated

in vacuo. The residue was partially purified by silica gel chromatography to give *tert*butyl (R)-(2-((3-chloro-4-fluorophenyl)amino)-4-((1-cvclopropylethyl)amino)guinazolin-8-yl)ethyl)carbamate.

STEP 2: To a vial containing *tert*-butyl (*R*)-(2-(2-((3-chloro-4-fluorophenyl)amino)-4-((1-cyclopropylethyl)amino)quinazolin-8-yl)ethyl)carbamate (theoretically 0.230 mmol) was added CH₂Cl₂ (4.0 mL). Next, TFA (1.0 mL) was added and the resulting mixture was stirred at room temperature. The progress of the reaction was monitored by LC-MS analysis. Upon complete consumption of the starting material, the reaction mixture was concentrated in vacuo and purified by reversed-phase preparative HPLC. The title compound was obtained as its corresponding TFA salt (33.0 mg, 0.0642 mmol, 28% yield over two steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.24 (d, *J* = 8.4 Hz, 1H), 8.02 (dd, *J* = 6.6, 2.6 Hz, 1H), 7.77 (d, *J* = 6.9 Hz, 1H), 7.46 (t, *J* = 7.9 Hz, 1H), 7.42 (ddd, *J* = 9.0, 4.0, 2.7 Hz, 1H), 7.30 (t, *J* = 8.9 Hz, 1H), 3.85 (dq, *J* = 9.1, 6.6 Hz, 1H), 3.35–3.33 (comp, 2H), 3.27–3.22 (comp, 2H), 1.45 (d, *J* = 6.7 Hz, 3H), 1.24–1.15 (m, 1H), 0.69–0.64 (m, 1H), 0.56–0.51 (m, 1H), 0.37–0.29 (comp, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₂₄CIFN₅ 400.2; found 400.2. LC-MS ^{*t*}R (UV 214): 1.330 min.

(*R*)-8-(Azetidin-3-ylmethyl)- N^2 -(3-chloro-4-fluorophenyl)- N^4 -(1cyclopropylethyl)quinazoline-2,4-diamine (33)

The title compound was obtained as its corresponding TFA salt from **62** and potassium (1-Boc-azetidin-3-yl)methyltrifluoroborate using a procedure similar to that described for the synthesis of **32** (6% yield over two steps). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.21 (dd, J = 8.2, 1.0 Hz, 1H), 8.00 (dd, J = 6.6, 2.6 Hz, 1H), 7.71 (d, J = 7.3 Hz, 1H), 7.45 (t, J = 7.9 Hz, 1H), 7.42 (ddd, J = 8.9, 4.1, 2.7 Hz, 1H), 7.29 (t, J = 8.9 Hz, 1H), 4.16 (dd, J = 10.4, 8.1 Hz, 2H), 3.95 (dd, J = 10.8, 6.0 Hz, 2H), 3.84 (dq, J = 9.1, 6.7 Hz, 1H), 3.35 (br s, 3H), 1.44 (d, J = 6.8 Hz, 3H), 1.23–1.15 (m, 1H), 0.68–0.63 (m, 1H), 0.56–0.50 (m, 1H), 0.36–0.28 (comp, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₃H₂₆ClFN₅ 426.2; found 426.1. LC-MS ^{*t*}R (UV 214): 1.291 min.

Scheme S6. Preparation of Compounds 34, 35, and 41^a

(a) Boronate ester, Pd(dppf)Cl₂, K₂CO₃, DMF/EtOH (4:1 v/v) 90 °C. (b) TFA, CH₂Cl₂.
(c) LiAlH₄, THF, 60 °C.

tert-Butyl (*R*)-4-(2-((3-chloro-4-fluorophenyl)amino)-4-((1-

cyclopropylethyl)amino)quinazolin-8-yl)-3,6-dihydropyridine-1(2H)-carboxylate

(64)

To a vial were added 62 (65.0 mg, 0.149 mmol, 1.00 equiv), N-Boc-3,6-dihydro-2Hpyridine-4-boronic acid pinacol ester (69.2 mg, 0.224 mmol, 1.50 equiv), Pd(dppf)Cl₂ (10.9 mg, 0.0149 mmol, 0.10 equiv), and K₂CO₃ (61.9 mg, 0.448 mmol, 3.00 equiv). The vial was sealed and subsequently evacuated/refilled with N₂. The evacuation/refill cycle was repeated two additional times and then degassed DMF/EtOH (4:1 v/v) (1.5 mL) was added. The mixture was heated to 90 °C and the progress of the reaction was monitored by LC-MS analysis. Upon complete consumption of the starting material, the reaction mixture was allowed to cool to room temperature and then diluted with CH₂Cl₂ (20 mL) and saturated aqueous NH₄Cl (10 mL). The resulting biphasic mixture was passed through a phase separator and concentrated in vacuo. The residue was purified by silica gel chromatography to provide 64 (74.0 mg, 0.138 mmol, 92% yield). Light yellow solid. ¹H NMR (400 MHz, CDCl₃, δ): 8.14 (dd, J = 6.7, 2.6 Hz, 1H), 7.51 (dd, J = 8.1, 1.1 Hz, 1H), 7.44 (dd, J = 7.2, 1.1 Hz, 1H), 7.35 (ddd, J = 9.0, 3.7, 2.8 Hz, 1H), 7.16 (t, J = 7.7Hz, 1H), 7.05 (t, J = 8.8 Hz, 1H), 5.87–5.84 (br m, 1H), 5.62 (d, J = 7.3 Hz, 1H), 4.14 (br d, J = 2.3 Hz, 2H), 3.87–3.78 (m, 1H), 3.72 (t, J = 5.5 Hz, 2H), 2.69 (br s, 2H), 1.52 (s, 9H), 1.38 (d, J = 6.5 Hz, 3H), 1.07–1.00 (m, 1H), 0.65–0.58 (m, 1H), 0.56–0.49 (m, 1H), 0.45–0.39 (m, 1H), 0.39–0.33 (m, 1H). LRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₉H₃₄ClFN₅O₂ 538.2; found 538.0. LC-MS Ret time (UV 214): 2.006 min.

(R)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylethyl)-8-(1,2,3,6-tetrahydropyridin-4-yl)quinazoline-2,4-diamine (34)

To a vial containing **64** (98.0 mg, 0.182 mmol) was added CH₂Cl₂ (4.0 mL). Next, TFA (1.0 mL) was added and the resulting mixture was stirred at room temperature. The progress of the reaction was monitored by LC-MS analysis. Upon complete consumption of the starting material, the reaction mixture was concentrated in vacuo and purified by reversed-phase preparative HPLC. The title compound was obtained as its corresponding TFA salt (78.0 mg, 0.141 mmol, 78% yield). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.28 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.97 (dd, *J* = 6.6, 2.6 Hz, 1H), 7.72 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.41 (ddd, *J* = 8.9, 4.2, 2.7 Hz, 1H), 7.31 (t, *J* = 8.9 Hz, 1H), 6.03–6.01 (m, 1H), 3.93 (dd, *J* = 5.5, 2.4 Hz, 2H), 3.85 (dq, *J* = 9.1, 6.6 Hz, 1H), 3.62 (t, *J* = 6.1 Hz, 2H), 2.79–2.76 (comp, 2H), 1.45 (d, *J* = 6.7 Hz, 3H), 1.25–1.16 (m, 1H), 0.71–0.65 (m, 1H), 0.58–0.52 (m, 1H), 0.38–0.29 (comp, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₄H₂₆ClFN₅ 438.2; found 438.1. LC-MS ^rR (UV 214): 1.349 min.

(R)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylethyl)-8-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)quinazoline-2,4-diamine (35)

A flask containing a solution of **64** (74.0 mg, 0.138 mmol, 1.00 equiv) in THF (1.4 mL) was cooled to 0 °C. Solid LiAlH₄ (15.7 mg, 0.413 mmol, 3.00 equiv) was then added. The cooling bath was removed and the mixture was heated to 60 °C. After stirring at this

temperature for 1 h, the mixture was recooled to 0 °C and slowly quenched by the sequential addition of H₂O (0.016 mL), 3 M NaOH (0.016 mL), and H₂O (0.048 mL).⁸ The suspension was warmed to room temperature and stirred for 15 min. The resulting mixture was filtered over diatomaceous earth and the filter cake was washed with EtOAc. The layers of the filtrate were separated. The organic phase was dried over Na₂SO₄, concentrated in vacuo, and purified by reversed-phase preparative HPLC. The title compound was obtained as its corresponding TFA salt (21.0 mg, 0.0371 mmol, 27% yield). White solid. ¹H NMR (400 MHz, CDCl₃, δ): 11.24 (br s, 1H), 8.63 (br s, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 7.87 (dd, *J* = 6.6, 2.6 Hz, 1H), 7.50 (d, *J* = 7.3 Hz, 1H), 7.30–7.24 (comp, 2H), 7.12 (t, *J* = 8.7 Hz, 1H), 5.80 (s, 1H), 3.99–3.89 (comp, 2H), 3.82–3.70 (comp, 2H), 3.59 (dd, *J* = 11.0, 5.7 Hz, 1H), 3.17–2.99 (m, 1H), 2.99 (s, 3H), 2.51 (br d, *J* = 16.7 Hz, 1H), 1.41 (d, *J* = 6.4 Hz, 3H), 1.22–1.14 (m, 1H), 0.65–0.60 (m, 1H), 0.52–0.48 (m, 1H), 0.33–0.25 (comp, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₅H₂₈ClFN₅ 452.2; found 452.1. LC-MS 'R (UV 214): 1.383 min.

(R)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylethyl)-8-(3,6-dihydro-2*H*-pyran-4-yl)quinazoline-2,4-diamine (41)

The title compound was obtained as its corresponding TFA salt from **62** and 3,6-dihydro-2*H*-pyran-4-boronic acid pinacol ester using a procedure similar to that described for the synthesis of **64** (32.4 mg, 0.0587 mmol, 39% yield). Tan solid. ¹H NMR (400 MHz, CDCl₃, δ): 7.91 (dd, *J* = 6.6, 2.6 Hz, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 7.3 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.34–7.30 (m, 1H), 7.09 (t, J = 8.7 Hz, 1H), 7.00 (d, J = 7.3 Hz, 1H), 5.97 (s, 1H), 4.35 (dd, J = 5.3, 2.6 Hz, 2H), 4.10 (t, J = 5.3 Hz, 2H), 3.83–3.73 (m, 1H), 2.41 (s, 2H), 1.41 (d, J = 6.5 Hz, 3H), 1.13–1.04 (m, 1H), 0.70–0.65 (m, 1H), 0.57–0.52 (m, 1H), 0.40–0.32 (comp, 2H). LRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₂₅ClFN₄O 439.2; found 439.0. LC-MS ^{*t*}R (UV 214): 1.529 min.

Scheme S7. Preparation of Compounds 36 and 42^{*a*}

^{*a*}Reagents and conditions: (a) Secondary amine, $Pd(OAc)_2$, (±)-BINAP, NaOt-Bu, dioxane, 80 °C.

(R)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylethyl)-8-(piperazin-1yl)quinazoline-2,4-diamine (36)

To a vial were added **62** (50.0 mg, 0.115 mmol, 1.00 equiv), piperazine (14.8 mg, 0.172 mmol, 1.50 equiv), $Pd(OAc)_2$ (2.6 mg, 0.011 mmol, 0.10 equiv), (±)-BINAP (7.9 mg, 0.013 mmol, 0.11 equiv) and NaOt-Bu (22.1 mg, 0.229 mmol, 2.00 equiv). The vial was sealed and subsequently evacuated/refilled with N₂. The evacuation/refill cycle was repeated two additional times and then degassed dioxane (0.38 mL) was added. The

resulting mixture was heated to 80 °C and the progress of the reaction was monitored by LC-MS analysis. Upon complete consumption of the starting material, the reaction mixture was allowed to cool to room temperature and diluted with CH₂Cl₂ (10 mL) and saturated aqueous NH₄Cl (5 mL). The resulting biphasic mixture was passed through a phase separator and concentrated in vacuo. The residue was purified by reversed-phase preparative HPLC. The title compound was obtained as its corresponding TFA salt (26.0 mg, 0.0468 mmol, 41% yield). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.15 (dd, *J* = 8.3, 1.1 Hz, 1H), 8.00 (dd, *J* = 6.6, 2.6 Hz, 1H), 7.81 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.40 (ddd, *J* = 8.9, 4.1, 2.6 Hz, 1H), 7.31 (t, *J* = 8.8 Hz, 1H), 3.84 (dq, *J* = 9.2, 6.7 Hz, 1H), 3.58 (br s, 4H), 3.26–3.23 (br m, 4H), 1.45 (d, *J* = 6.7 Hz, 3H), 1.24–1.15 (m, 1H), 0.69–0.64 (m, 1H), 0.56–0.51 (m, 1H), 0.37–0.29 (comp, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₃H₂₇CIFN₆ 441.2; found 441.1. LC-MS ^{*I*}R (UV 214): 1.227 min.

(*R*)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylethyl)-8-morpholinoquinazoline-2,4-diamine (42)

The title compound was obtained as its corresponding TFA salt from **62** and morpholine using a procedure similar to that described for the synthesis of **36** (34% yield). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.09 (dd, *J* = 8.3, 0.9 Hz, 1H), 8.00 (d, *J* = 6.5 Hz, 1H), 7.80 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.50 (t, *J* = 8.1 Hz, 1H), 7.37–7.33 (comp, 2H), 3.95 (t, *J* = 4.0 Hz, 4H), 3.90–3.82 (m, 1H), 3.00 (t, *J* = 4.0 Hz, 4H), 1.46 (d, *J* = 6.7 Hz, 3H), 1.25–1.16 (m, 1H), 0.70–0.65 (m, 1H), 0.57–0.52 (m, 1H), 0.39–0.30 (comp, 2H). LRMS

(ESI) m/z: $[M+H]^+$ calcd for C₂₃H₂₆ClFN₅O 442.2; found 442.0. LC-MS ^{*t*}R (UV 214): 1.630 min.

Scheme S8. Preparation of Compounds 37 and 38^a

^{*a*}Reagents and conditions: (a) Primary amine, Pd(OAc)₂, (\pm)-BINAP, NaOt-Bu, dioxane, 150 °C μ W.

(R)- N^{8} -(2-Aminoethyl)- N^{2} -(3-chloro-4-fluorophenyl)- N^{4} -(1-

cyclopropylethyl)quinazoline-2,4,8-triamine (37)

To a microwave vial were added **62** (75.0 mg, 0.172 mmol, 1.00 equiv), 1,2diaminoethane (0.115 mL, 103 mg, 1.72 mmol, 10.00 equiv), $Pd(OAc)_2$ (5.8 mg, 0.026 mmol, 0.15 equiv), (\pm)-BINAP (16.1 mg, 0.0258 mmol, 0.15 equiv), and NaO*t*-Bu (49.6 mg, 0.516 mmol, 3.00 equiv). The vial was sealed and subsequently evacuated/refilled with N₂. The evacuation/refill cycle was repeated two additional times and then degassed dioxane (0.57 mL) was added. The resulting mixture was heated to 150 °C in a microwave reactor for 1.5 h, after which time the mixture was diluted with EtOAc (10 mL) and filtered over diatomaceous earth. The filtrate was concentrated in vacuo and the residue was purified by reversed-phase preparative HPLC. The title compound was obtained as its corresponding TFA salt (27.0 mg, 0.0510 mmol, 30% yield). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.04 (dd, J = 6.7, 2.6 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.45 (ddd, J = 9.0, 4.0, 2.7 Hz, 1H), 7.36 (t, J = 8.1 Hz, 1H), 7.26 (t, J = 8.9 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 3.86 (dq, J = 9.1, 6.7 Hz, 1H), 3.54 (dd, J = 7.0, 5.1 Hz, 2H), 3.35 (dd, J = 6.0, 4.0 Hz, 2H), 1.44 (d, J = 6.7 Hz, 3H), 1.24–1.15 (m, 1H), 0.68–0.63 (m, 1H), 0.56–0.50 (m, 1H), 0.37–0.29 (comp, 2H). LRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₅ClFN₆ 415.2; found 415.1. LC-MS 'R (UV 214): 1.354 min.

(R)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylethyl)- N^8 -(2-(dimethylamino)ethyl)quinazoline-2,4,8-triamine (38)

The title compound was obtained as its corresponding TFA salt from **62** and 2-(dimethylamino)ethylamine using a procedure similar to that described for the synthesis of **37** (16% yield). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.03 (dd, J = 6.7, 2.6 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.43 (ddd, J = 8.9, 4.1, 2.7 Hz, 1H), 7.37 (t, J = 8.1 Hz, 1H), 7.26 (t, J = 8.9 Hz, 1H), 7.22 (d, J = 7.9 Hz, 1H), 3.85 (dq, J = 9.1, 6.6 Hz, 1H), 3.68 (t, J = 5.9 Hz, 2H), 3.55 (t, J = 5.9 Hz, 2H), 2.99 (s, 6H), 1.44 (d, J = 6.7 Hz, 3H), 1.24–1.15 (m, 1H), 0.68–0.63 (m, 1H), 0.56–0.50 (m, 1H), 0.37–0.29 (comp, 2H). LRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₃H₂₉ClFN₆ 443.2; found 443.1. LC-MS ^tR (UV 214): 1.423 min.

Scheme S9. Preparation of Compound 39^a

(a) CuSO₄, NMP, 110 °C.

(R)-2-((2-((3-Chloro-4-fluorophenyl)amino)-4-((1-

cyclopropylethyl)amino)quinazolin-8-yl)amino)ethan-1-ol (39)

To a vial were added **62** (100 mg, 0.229 mmol, 1.00 equiv), 2-amino-1-ethanol (0.277 mL, 280 mg, 4.59 mmol, 20.00 equiv), and copper(II) sulfate (36.6 mg, 0.229 mmol, 1.00 equiv). The vial was sealed and subsequently evacuated/refilled with N₂. The evacuation/refill cycle was repeated two additional times and then degassed NMP (0.23 mL) was added. The resulting mixture was heated to 110 °C and the progress of the reaction was monitored by LC-MS analysis. Upon complete consumption of the starting material, the mixture was allowed to cool to room temperature. Next, H₂O (30 mL) was added and the resulting mixture was extracted with EtOAc (3 x 15 mL). The organic phases were combined, washed with H₂O, brine, dried over Na₂SO₄, and concentrated in

vacuo. The residue was purified first by silica gel chromatography and then by reversedphase preparative HPLC. The title compound was obtained as its corresponding TFA salt (37.0 mg, 0.0698 mmol, 30% yield). Tan solid. ¹H NMR (400 MHz, CD₃OD, δ): 7.97 (dd, *J* = 6.6, 2.6 Hz, 1H), 7.59 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.38 (ddd, *J* = 9.0, 4.1, 2.6 Hz, 1H), 7.35 (t, *J* = 8.1 Hz, 1H), 7.28 (t, *J* = 8.8 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 3.88 (t, *J* = 5.4 Hz, 2H), 3.83 (dq, *J* = 9.1, 6.7 Hz, 1H), 3.36 (t, *J* = 5.6 Hz, 2H), 1.43 (d, *J* = 6.7 Hz, 3H), 1.23–1.14 (m, 1H), 0.68–0.62 (m, 1H), 0.55–0.49 (m, 1H), 0.37–0.27 (comp, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₂₄ClFN₅O 416.2; found 416.1. LC-MS ^{*t*}R (UV 214): 1.477 min.

Scheme S10. Preparation of Compound 40^a

(a) (*E*)-2-ethoxyvinylboronic acid pinacol ester, Pd(dppf)Cl₂, K₂CO₃, DMF/EtOH (4:1 v/v) 90 °C. (b) Pt/C, H₂, EtOAc/MeOH (1:1 v/v).

(R)- N^2 -(3-Chloro-4-fluorophenyl)- N^4 -(1-cyclopropylethyl)-8-(2-

ethoxyethyl)quinazoline-2,4-diamine (40)

STEP 1: To a vial were added **62** (284 mg, 0.652 mmol, 1.00 equiv), (*E*)-2ethoxyvinylboronic acid pinacol ester (194 mg, 0.978 mmol, 1.50 equiv), $Pd(dppf)Cl_2$

(47.7 mg, 0.0652 mmol, 0.10 equiv), and K₂CO₃ (270 mg, 1.96 mmol, 3.00 equiv). The vial was sealed and subsequently evacuated/refilled with N₂. The evacuation/refill cycle was repeated two additional times and then degassed DMF/EtOH (4:1 v/v) (3.3 mL) was added. The mixture was heated to 90 °C and the progress of the reaction was monitored by LC-MS analysis. Upon complete consumption of the starting material, the reaction mixture was allowed to cool to room temperature and then diluted with CH₂Cl₂ (20 mL) and saturated aqueous NH₄Cl (10 mL). The resulting biphasic mixture was passed through a phase separator and concentrated in vacuo. The residue was purified by silica (R,E)- N^2 -(3-chloro-4-fluorophenyl)- N^4 -(1gel chromatography to provide cyclopropylethyl)-8-(2-ethoxyvinyl)quinazoline-2,4-diamine 65 (158 mg, 0.370 mmol, 57% yield). Orange, glassy solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.46 (dd, J = 6.9, 2.7Hz, 1H), 7.79 (dd, J = 8.1, 1.2 Hz, 1H), 7.63 (dd, J = 7.4, 1.0 Hz, 1H), 7.43 (ddd, J = 8.9, 4.1, 2.7 Hz, 1H), 7.27 (d, J = 13.2 Hz, 1H), 7.12–7.08 (comp, 2H), 6.69 (d, J = 13.2 Hz, 1H), 3.49 (q, J = 7.0 Hz, 2H), 3.97-3.90 (m, 1H), 1.38 (d, J = 6.6 Hz, 3H), 1.37 (t, J = 7.0 Hz, 2H)Hz, 3H), 1.17–1.10 (m, 1H), 0.61–0.55 (m, 1H), 0.52–0.47 (m, 1H), 0.47–0.40 (m, 1H), 0.32–0.26 (m, 1H). LRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₃H₂₅ClFN₄O 427.2; found 427.0. LC-MS ^tR (UV 214): 1.844 min.

STEP 2: A vial containing **65** (77.0 mg, 0.180 mmol, 1.00 equiv) and EtOAc/MeOH (1:1 v/v) (1.8 mL) was purged with N₂. To this solution was added Pt/C (5% w/w) (10.0 mg). The flask was then placed under an atmosphere of H₂ (balloon) and the reaction mixture was stirred for 18 h. After this time, the flask was purged with N₂ and the reaction mixture was filtered over diatomaceous earth. The filtrate was concentrated in vacuo and purified by reversed-phase preparative HPLC. The title compound was obtained as its

corresponding TFA salt (30.2 mg, 0.0556 mmol, 31% yield). White solid. ¹H NMR (400 MHz, CD₃OD, δ): 8.19 (d, *J* = 8.1 Hz, 1H), 7.95 (dd, *J* = 6.5, 2.2 Hz, 1H), 7.77 (d, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.9 Hz, 1H), 7.39–7.31 (comp, 2H), 3.89–3.81 (m, 1H), 3.77 (t, *J* = 5.8 Hz, 2H), 3.49 (q, *J* = 7.0 Hz, 2H), 3.14 (t, *J* = 5.8 Hz, 2H), 1.44 (d, *J* = 6.7 Hz, 3H), 1.24–1.16 (m, 1H), 1.12 (t, *J* = 7.0 Hz, 3H), 0.70–0.63 (m, 1H), 0.57–0.51 (m, 1H), 0.39–0.29 (comp, 2H). LRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₃H₂₇ClFN₄O 429.2; found 429.1. LC-MS 'R (UV 214): 1.582 min.

■ BIOLOGY EXPERIMENTAL SECTION

Nucleotide Exchange Assay. Nucleotide exchange assays were conducted as reported previously.⁹⁻¹¹

Cell Culture and Compounds. HeLa (ATCC CCL-2) and NCI-H727 (ATCC CRL-5815) cells were obtained from the ATCC and cultured in DMEM or RPMI supplemented with 10% (v/v) FBS, where appropriate. Cell lines were authenticated by STR profiling using PowerPlex 16HS technology and were tested negative for mycoplasma using the eMYCO Plus kit PCR test in October 2017 (Genetica DNA Laboratories). After thawing from liquid N_2 , cells were passaged at least twice before use in experiments, and passaged for a maximum of 25 times.

Active RAS-GTP Pull-Down and Western Blotting. Cells were seeded to reach 70% confluency after 24 h incubation, and subsequently treated as indicated. Lysates were resolved by SDS-PAGE and transferred onto Immobilon-FL PVDF membranes (Millipore). Membranes were probed with primary antibodies as indicated, incubated with labeled secondary antibody, and scanned using an Odyssey imager (LI-COR). Levels of RAS-GTP were determined using an active RAS pull-down and detection kit according to the manufacturer's instructions (Thermo Scientific #16117). Total RAS and α -tubulin were included as input loading controls for the RAF1-RBD pull-down. ERK1/2 lysates were prepared separately using 1X LI-COR Protein Loading Buffer with 10 mM DTT. Primary antibodies used for western blotting—pan-RAS (KRAS, NRAS and HRAS isoforms; #3339), ERK1/2 (#9102), pERK1/2^{T202/Y204} (#9106), and α -tubulin (#3873)—were all purchased from Cell Signaling. EGF was purchased from R&D Systems. Quantification of western blots was performed using ImageJ64 software.

	(N / I)	р	ERK ^{T202/Y20}	4	-	RAS-GTP	
	(μινι)	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3
	DMSO	1.00	1.00	1.00	1.00	1.00	1.00
2	3.13	1.16	1.11	1.28	0.95	0.82	1.03
d 2	6.25	1.03	1.03	1.83	0.85	1.05	0.84
un	12.5	1.67	1.67	2.73	0.53	1.07	0.89
odu	25.0	1.61	2.36	3.83	0.69	0.95	1.24
on	50.0	3.68	5.55	9.34	1.26	0.93	1.00
\circ	100	4.01	8.34	9.95	1.39	1.23	1.32
	EGF	5.34	7.38	12.4	2.83	1.85	1.81
	DMSO	1.00	1.00	1.00	1.00	1.00	1.00
0	3.13	1.05	1.23	0.88	1.15	0.85	1.00
q 3	6.25	0.94	1.25	1.16	1.39	1.02	0.80
un	12.5	1.83	1.76	0.94	0.98	1.24	1.06
odu	25.0	2.52	2.04	2.23	1.18	0.89	1.28
on	50.0	2.43	2.52	1.66	1.14	0.92	1.36
\circ	100	0.59	0.96	1.13	1.54	1.20	1.60
	EGF	4.83	4.18	5.50	1.87	1.77	6.10
	DMSO	1.00	1.00	1.00	1.00	1.00	1.00
2	3.13	1.11	1.03	1.17	1.22	1.31	1.04
d 3	6.25	1.82	1.16	2.45	1.64	1.05	1.24
un	12.5	1.59	1.77	2.36	0.97	1.36	1.02
Jpc	25.0	1.87	2.19	2.03	1.58	1.41	1.41
On	50.0	1.18	0.89	1.89	1.61	1.39	1.54
\cup	100	0.44	0.51	0.83	1.66	2.22	3.48
	EGF	4.61	6.16	6.29	2.54	3.89	6.09
	DMSO	1.00	1.00	1.00	1.00	1.00	1.00
4	3.13	1.43	0.91	1.46	1.41	1.18	1.52
d 3	6.25	1.29	1.60	2.01	1.08	1.00	1.53
un	12.5	1.98	4.22	2.47	1.72	1.19	1.51
odu	25.0	1.98	4.13	3.20	1.60	1.33	1.19
on	50.0	1.16	1.46	2.75	1.56	0.98	1.82
	100	0.58	1.13	0.89	1.51	3.28	3.99
	EGF	4.62	8.93	7.04	2.64	8.22	3.41

Table S1. Quantification of Western Blots From Figure 4^{*a*}

^{*a*}Quantification of western blots from Figure 4 assessing compound effects on RAS-GTP and pERK1/2^{T202/Y204} protein levels. The levels of RAS-GTP were normalized to the total RAS protein levels and to the DMSO control. The levels of pERK1/2^{T202/Y204} were normalized to the total ERK1/2 protein levels and to the DMSO control. Trends are highlighted by conditional formatting of the data.

Figure S1. $pERK1/2^{T202/Y204}$ and total ERK1/2 protein levels from HeLa cells that were treated for 30 min with up to 100 μ M of compound **13**, **25**, **27**, **28** or **29**. EGF treatment (50 ng/mL for 5 min) was used as a positive control for pathway activation. Data are representative of two independent experiments.

■ STRUCTURAL BIOLOGY EXPERIMENTAL SECTION

Protein Expression and Purification. Details regarding protein expression and purification have been reported previously.^{9-10,12}

Crystallization, X-ray Data Collection, Structure Solution, and Refinement. Details regarding X-ray crystallography have been reported previously.^{9-10,12} Individual refinement statistics for all new structures are given in Table S2.

HRAS ^{WT} :SOS1 ^{cat} :HRAS ^{Y64A} :GppNHp Complex	Compound 1	Compound 22	Compound 34
PDB Entry	6CUO	6CUP	6CUR
Data collection			
Space group	I 4 2 2	I 4 2 2	I 4 2 2
Cell dimensions			
<i>a, b, c</i> (Å)	183.81, 183.81, 178.87	184.65, 184.65, 179.35	184.05, 184.05, 179.13
α, β, γ (°)	90.00, 90.00, 90.00	90.00, 90.00, 90.00	90.00, 90.00, 90.00
P ossibution $(Å)^a$	36.05-1.73	37.51-1.83	35.17-1.73
Kesolution (A)	(1.76–1.73)	(1.86–1.83)	(1.76–1.73)
$R_{ m merge}^{b}$	11.4 (136.6)	13.2 (134.3)	9.6 (96.6)
Ι/σΙ	18.87 (2.00)	15.67 (1.75)	22.12 (2.82)
Completeness (%)	100.00 (100.00)	100.00 (100.00)	100.00 (100.00)
Redundancy	12.2 (11.8)	12.0 (11.5)	11.4 (10.2)
Structure Refinement			
No. reflections	157959	134176	158314
$R_{ m work}$ / $R_{ m free}$	16.34 / 17.76	15.99 / 17.37	15.87 / 17.78
<i>B</i> -factors ^c			
Protein	24.95	34.57	20.61
Water	39.98	47.15	37.66
Ligand	32.89	43.43	23.64
R.m.s. deviations			
Bond lengths (Å)	0.007	0.008	0.008
Bond angles (°)	1.14	1.18	1.19

Table S2. X-ray Data Collection and Refinement Statistics

^{*a*}Values in parentheses describe the highest resolution shell.

 ${}^{b}R_{\text{merge}} = \sum_{hkl} \sum_{i} |I_{i}(hkl) - (I(hkl))| / \sum_{hkl} \sum_{i} I_{i}(hkl)$, where $I_{i}(hkl)$ is the observed intensity and is the average intensity obtained from multiple observations of symmetry-related reflections.

^cMean *B* factors were calculated with Analyze Model Geometry program from CCP4 suite, version 7.0.045.

Kinase	% Enzyme Activity ^d			IC ₅₀ (M) Staurosporine ^{e,f}	IC ₅₀ (M) Alternate Control Compd ^g	Alternate Compd ID
	Data 1	Data 2	Average			
ABL1	69.09	70.03	69.56	4.94 x 10 ⁻⁸		
ABL2/ARG	66.42	65.06	65.74	2.01×10^{-8}		
ACK1	60.67	58.51	59.59	4.91 x 10 ⁻⁸		
AKT1	85.90	81.96	83.93	9.10 x 10 ⁻⁹		
AKT2	64.19	73.08	68.63	2.43×10^{-8}		
AKT3	63.13	61.41	62.27	$4.29 \ge 10^{-9}$		
ALK	70.34	69.97	70.15	$2.86 \ge 10^{-9}$		
ALK1/ACVRL1	87.39	97.22	92.31	ND	6.41 x 10 ⁻⁹	LDN193189
ALK2/ACVR1	57.23	53.13	55.18	ND	1.86 x 10 ⁻⁸	LDN193189
ALK3/BMPR1A	129.55	148.17	138.86	ND	4.97 x 10 ⁻⁹	LDN193189
ALK4/ACVR1B	70.90	69.18	70.04	ND	$4.88 \ge 10^{-7}$	LDN193189
ALK5/TGFBR1	53.03	58.85	55.94	ND	$3.20 \ge 10^{-7}$	LDN193189
ALK6/BMPR1B	139.26	131.10	135.18	ND	3.67 x 10 ⁻⁹	LDN193189
ARAF	83.91	76.11	80.01	ND	5.68 x 10 ⁻⁹	GW5074
ARK5/NUAK1	52.70	52.15	52.42	$7.94 \ge 10^{-10}$		
ASK1/MAP3K5	63.31	62.69	63.00	2.44×10^{-8}		
Aurora A	66.62	72.50	69.56	1.71 x 10 ⁻⁹		
Aurora B	20.74	23.00	21.87	$1.28 \ge 10^{-8}$		
Aurora C	36.72	36.36	36.54	3.15×10^{-9}		
AXL	24.54	24.21	24.38	$1.13 \ge 10^{-8}$		
BLK	29.46	33.27	31.37	$2.80 \ge 10^{-9}$		
BMPR2	62.07	64.23	63.15	5.23×10^{-7}		
BMX/ETK	80.56	79.71	80.14	8.67 x 10 ⁻⁹		
BRAF	85.37	83.84	84.60	ND	9.88 x 10 ⁻⁹	GW5074
BRK	43.23	42.50	42.87	$1.09 \ge 10^{-7}$		

 Table S3. Reaction Biology Corp. Kinase Profiling Report for Compound 22^{a,b,c}

BRSK1	74.06	71.99	73.02	$2.96 \ge 10^{-10}$	
BRSK2	101.38	96.54	98.96	5.78 x 10 ⁻⁹	
ВТК	70.90	68.32	69.61	$1.73 \ge 10^{-8}$	
c-Kit	115.23	111.47	113.35	$2.27 \text{ x } 10^{-8}$	
c-MER	61.85	62.27	62.06	$1.82 \ge 10^{-8}$	
c-MET	18.15	16.52	17.33	5.91 x 10 ⁻⁸	
c-Src	90.33	88.29	89.31	$3.08 \ge 10^{-9}$	
CAMK1a	0.28	0.25	0.26	3.15 x 10 ⁻⁹	
CAMK1b	0.33	0.42	0.37	2.25×10^{-8}	
CAMK1d	1.78	0.72	1.25	$3.97 \ge 10^{-10}$	
CAMK1g	3.25	7.10	5.18	7.73 x 10 ⁻⁹	
CAMK2a	1.30	0.76	1.03	$1.08 \ge 10^{-10}$	
CAMK2b	7.79	7.19	7.49	$9.85 \ge 10^{-11}$	
CAMK2d	1.53	1.84	1.68	$<7.63 \text{ x } 10^{-11}$	
CAMK2g	1.40	0.60	1.00	$1.24 \ge 10^{-9}$	
CAMK4	1.78	1.01	1.40	$5.20 \ge 10^{-7}$	
CAMKK1	7.24	4.31	5.77	$2.95 \ge 10^{-8}$	
САМКК2	70.67	69.98	70.32	$4.47 \ge 10^{-8}$	
CDC7/DBF4	96.29	90.51	93.40	3.46×10^{-8}	
CDK1/cyclin A	55.12	53.02	54.07	5.46 x 10 ⁻⁹	
CDK1/cyclin B	51.13	55.10	53.12	3.06 x 10 ⁻⁹	
CDK1/cyclin E	25.22	30.84	28.03	3.49 x 10 ⁻⁹	
CDK16/cyclin Y (PCTAIRE)	26.87	29.69	28.28	$1.75 \ge 10^{-8}$	
CDK2/cyclin A	66.55	66.03	66.29	1.27 x 10 ⁻⁹	
CDK2/cyclin A1	44.70	47.50	46.10	2.47 x 10 ⁻⁹	
CDK2/cyclin E	64.52	67.87	66.19	$1.10 \ge 10^{-9}$	
CDK3/cyclin E	62.41	62.34	62.38	$7.80 \ge 10^{-9}$	
CDK4/cyclin D1	63.90	55.57	59.74	2.12×10^{-8}	
CDK4/cyclin D3	76.36	74.68	75.52	7.11 x 10 ⁻⁸	
CDK5/p25	86.20	85.13	85.67	3.19×10^{-9}	

CDK5/p35	72.70	72.65	72.67	2.46 x 10 ⁻⁹		
CDK6/cyclin D1	73.31	71.07	72.19	6.93 x 10 ⁻⁹		
CDK6/cyclin D3	84.25	80.75	82.50	$1.15 \ge 10^{-7}$		
CDK7/cyclin H	93.95	90.69	92.32	$4.65 \ge 10^{-7}$		
CDK9/cyclin K	68.28	75.33	71.81	3.81×10^{-8}		
CDK9/cyclin T1	105.37	98.73	102.05	$2.49 \ge 10^{-8}$		
CHK1	81.02	75.14	78.08	$9.80 \ge 10^{-11}$		
CHK2	55.51	55.35	55.43	6.03 x 10 ⁻⁹		
CK1a1	45.17	41.74	43.46	$7.27 \ge 10^{-6}$		
CK1d	24.23	23.49	23.86	ND	1.51 x 10 ⁻⁷	D4476
CK1epsilon	39.08	38.36	38.72	ND	2.87×10^{-7}	D4476
CK1g1	9.37	9.21	9.29	$1.05 \ge 10^{-5}$		
CK1g2	2.09	2.45	2.27	2.88×10^{-6}		
CK1g3	9.77	9.42	9.60	2.71 x 10 ⁻⁶		
CK2a	74.31	71.65	72.98	ND	1.69 x 10 ⁻⁷	GW5074
CK2a2	151.54	142.54	147.04	$6.04 \ge 10^{-7}$		
CLK1	21.51	26.49	24.00	1.43 x 10 ⁻⁸		
CLK2	8.49	7.92	8.21	$6.40 \ge 10^{-9}$		
CLK3	59.82	61.14	60.48	$2.47 \ge 10^{-6}$		
CLK4	21.61	22.82	22.22	$3.56 \ge 10^{-8}$		
COT1/MAP3K8	70.01	73.36	71.69	ND	1.56 x 10 ⁻⁵	Ro-31-8220
CSK	94.82	96.07	95.45	$1.28 \ge 10^{-8}$		
CTK/MATK	39.46	42.68	41.07	2.38×10^{-6}		
DAPK1	51.07	49.55	50.31	$3.06 \ge 10^{-8}$		
DAPK2	2.31	5.54	3.93	$1.19 \ge 10^{-8}$		
DCAMKL1	75.86	68.98	72.42	7.93 x 10 ⁻⁷		
DCAMKL2	75.47	72.19	73.83	$4.78 \ge 10^{-8}$		
DDR1	47.52	51.73	49.62	3.71×10^{-9}		
DDR2	33.85	34.22	34.03	2.14×10^{-8}		
DLK/MAP3K12	44.70	45.74	45.22	6.74 x 10 ⁻⁹		

DMPK	103.60	98.93	101.26	8.33×10^{-8}		
DMPK2	2.92	2.95	2.93	$8.66 \ge 10^{-10}$		
DRAK1/STK17A	3.91	1.88	2.89	2.51×10^{-8}		
DYRK1/DYRK1A	3.86	3.07	3.47	$3.78 \ge 10^{-9}$		
DYRK1B	6.59	5.00	5.80	$1.47 \ge 10^{-9}$		
DYRK2	76.65	71.51	74.08	$3.50 \ge 10^{-7}$		
DYRK3	53.65	57.18	55.42	$4.97 \ge 10^{-8}$		
DYRK4	87.55	88.82	88.19	ND	3.97 x 10 ⁻⁶	GW5074
EGFR	87.53	88.36	87.95	$1.79 \ge 10^{-7}$		
EPHA1	84.01	81.49	82.75	$1.90 \ge 10^{-7}$		
EPHA2	97.93	99.55	98.74	6.03×10^{-8}		
ЕРНАЗ	61.57	55.44	58.51	$3.68 \ge 10^{-8}$		
EPHA4	96.63	102.78	99.70	$1.55 \ge 10^{-8}$		
EPHA5	95.00	96.42	95.71	$3.37 \ge 10^{-8}$		
ЕРНА6	12.15	15.74	13.95	$1.31 \ge 10^{-8}$		
EPHA7	86.90	87.09	86.99	$4.47 \ge 10^{-8}$		
EPHA8	92.78	92.84	92.81	$2.24 \text{ x } 10^{-7}$		
EPHB1	90.77	86.08	88.43	$3.70 \ge 10^{-8}$		
EPHB2	108.70	101.66	105.18	$1.06 \ge 10^{-7}$		
EPHB3	93.01	87.54	90.27	$1.63 \ge 10^{-6}$		
EPHB4	87.03	83.61	85.32	2.73×10^{-7}		
ERBB2/HER2	94.16	92.81	93.49	$2.67 \ge 10^{-7}$		
ERBB4/HER4	86.20	86.26	86.23	$4.46 \ge 10^{-7}$		
ERK1	89.34	94.07	91.71	$>2.00 \text{ x } 10^{-5}$		
ERK2/MAPK1	79.55	78.28	78.92	$1.38 \ge 10^{-5}$		
ERK5/MAPK7	51.28	61.23	56.25	$>2.00 \text{ x } 10^{-5}$		
ERK7/MAPK15	31.88	27.26	29.57	$1.22 \ge 10^{-8}$		
FAK/PTK2	86.64	86.81	86.72	$1.06 \ge 10^{-8}$		
FER	51.30	50.87	51.08	$6.78 \ge 10^{-10}$		
FES/FPS	77.81	74.71	76.26	1.25×10^{-9}		

FGFR1	84.35	82.20	83.27	7.44 x 10 ⁻⁹		
FGFR2	105.78	96.67	101.23	$3.87 \ge 10^{-9}$		
FGFR3	86.01	92.42	89.22	2.03×10^{-8}		
FGFR4	24.89	30.03	27.46	$1.61 \ge 10^{-7}$		
FGR	70.18	70.70	70.44	$1.22 \ge 10^{-9}$		
FLT1/VEGFR1	74.08	74.65	74.37	9.75 x 10 ⁻⁹		
FLT3	1.64	1.59	1.61	$9.57 \ge 10^{-10}$		
FLT4/VEGFR3	102.31	98.63	100.47	5.85 x 10 ⁻⁹		
FMS	57.71	60.20	58.96	$1.29 \ge 10^{-9}$		
FRK/PTK5	86.77	93.71	90.24	$1.56 \ge 10^{-8}$		
FYN	86.49	88.31	87.40	$2.17 \text{ x } 10^{-9}$		
GCK/MAP4K2	62.54	55.58	59.06	$3.44 \ge 10^{-10}$		
GLK/MAP4K3	68.20	65.01	66.61	$8.74 \text{ x } 10^{-11}$		
GRK1	112.79	135.35	124.07	9.49 x 10 ⁻⁸		
GRK2	96.59	102.82	99.70	$1.28 \ge 10^{-6}$		
GRK3	122.16	128.42	125.29	$7.31 \ge 10^{-7}$		
GRK4	105.57	104.46	105.02	$1.52 \ge 10^{-7}$		
GRK5	102.39	101.35	101.87	8.99 x 10 ⁻⁸		
GRK6	107.63	112.43	110.03	$5.56 \ge 10^{-8}$		
GRK7	210.19	215.81	213.00	$7.08 \ge 10^{-9}$		
GSK3a	77.10	75.90	76.50	1.00 x 10 ⁻⁸		
GSK3b	76.92	72.59	74.75	$1.38 \ge 10^{-8}$		
Haspin	81.64	75.27	78.45	2.66 x 10 ⁻⁸		
НСК	33.96	30.33	32.15	1.38 x 10 ⁻⁹		
HGK/MAP4K4	35.08	37.61	36.35	5.51 x 10 ⁻¹⁰		
HIPK1	38.07	39.95	39.01	ND	3.21 x 10 ⁻⁷	Ro-31-8220
HIPK2	71.21	72.13	71.67	2.37 x 10 ⁻⁶		
НІРКЗ	78.01	76.30	77.15	1.89 x 10 ⁻⁶		
HIPK4	48.58	41.68	45.13	$8.27 \ge 10^{-7}$		
HPK1/MAP4K1	78.75	80.69	79.72	ND	6.15×10^{-8}	Ro-31-8220

IGF1R	90.40	90.36	90.38	3.88 x 10 ⁻⁸		
IKKa/CHUK	51.12	47.93	49.53	$2.42 \ge 10^{-7}$		
IKKb/IKBKB	72.52	72.60	72.56	$3.31 \ge 10^{-7}$		
IKKe/IKBKE	122.53	134.45	128.49	$2.55 \ge 10^{-10}$		
IR	79.98	67.80	73.89	1.99 x 10 ⁻⁸		
IRAK1	50.24	46.35	48.30	$1.10 \ge 10^{-7}$		
IRAK4	28.45	28.17	28.31	2.22 x 10 ⁻⁸		
IRR/INSRR	3.23	3.32	3.28	2.01 x 10 ⁻⁸		
ITK	47.52	44.67	46.09	3.14 x 10 ⁻⁸		
JAK1	78.52	91.15	84.83	9.36 x 10 ⁻¹⁰		
JAK2	52.42	51.79	52.11	7.25 x 10 ⁻¹⁰		
JAK3	74.41	74.32	74.37	7.68 x 10 ⁻¹¹		
JNK1	64.31	66.70	65.50	1.76 x 10 ⁻⁶		
JNK2	59.19	57.56	58.37	4.97 x 10 ⁻⁶		
JNK3	78.41	80.18	79.29	ND	3.27×10^{-7}	JNKi VIII
KDR/VEGFR2	93.97	93.48	93.72	1.82 x 10 ⁻⁸		
KDR/VEGFR2 KHS/MAP4K5	93.97 59.82	93.48 58.60	93.72 59.21	$\frac{1.82 \text{ x } 10^{-8}}{3.29 \text{ x } 10^{-10}}$		
KDR/VEGFR2 KHS/MAP4K5 LATS1	93.97 59.82 59.20	93.48 58.60 58.09	93.72 59.21 58.65	$\frac{1.82 \times 10^{-8}}{3.29 \times 10^{-10}}$ 1.43×10^{-8}		
KDR/VEGFR2 KHS/MAP4K5 LATS1 LATS2	93.97 59.82 59.20 26.79	93.48 58.60 58.09 26.17	93.72 59.21 58.65 26.48	$ \begin{array}{r} 1.82 \times 10^{-8} \\ 3.29 \times 10^{-10} \\ 1.43 \times 10^{-8} \\ 5.68 \times 10^{-9} \\ \end{array} $		
KDR/VEGFR2 KHS/MAP4K5 LATS1 LATS2 LCK	93.97 59.82 59.20 26.79 37.43	93.48 58.60 58.09 26.17 35.95	93.72 59.21 58.65 26.48 36.69	$ \begin{array}{r} 1.82 \times 10^{-8} \\ 3.29 \times 10^{-10} \\ 1.43 \times 10^{-8} \\ 5.68 \times 10^{-9} \\ 2.63 \times 10^{-9} \end{array} $		
KDR/VEGFR2 KHS/MAP4K5 LATS1 LATS2 LCK LCK2/ICK	93.97 59.82 59.20 26.79 37.43 -0.73	93.48 58.60 58.09 26.17 35.95 3.73	93.72 59.21 58.65 26.48 36.69 3.73	$ \begin{array}{r} 1.82 \times 10^{-8} \\ 3.29 \times 10^{-10} \\ 1.43 \times 10^{-8} \\ 5.68 \times 10^{-9} \\ 2.63 \times 10^{-9} \\ 1.54 \times 10^{-7} \end{array} $		
KDR/VEGFR2 KHS/MAP4K5 LATS1 LATS2 LCK LCK2/ICK LIMK1	93.97 59.82 59.20 26.79 37.43 -0.73 99.90	93.48 58.60 58.09 26.17 35.95 3.73 99.79	93.72 59.21 58.65 26.48 36.69 3.73 99.84	$ \begin{array}{r} 1.82 \times 10^{-8} \\ 3.29 \times 10^{-10} \\ 1.43 \times 10^{-8} \\ 5.68 \times 10^{-9} \\ 2.63 \times 10^{-9} \\ 1.54 \times 10^{-7} \\ 7.85 \times 10^{-9} \end{array} $		
KDR/VEGFR2 KHS/MAP4K5 LATS1 LATS2 LCK LCK2/ICK LIMK1 LIMK2	93.97 59.82 59.20 26.79 37.43 -0.73 99.90 76.19	93.48 58.60 58.09 26.17 35.95 3.73 99.79 80.22	93.72 59.21 58.65 26.48 36.69 3.73 99.84 78.20	$\begin{array}{r} 1.82 \times 10^{-8} \\ \hline 3.29 \times 10^{-10} \\ \hline 1.43 \times 10^{-8} \\ \hline 5.68 \times 10^{-9} \\ \hline 2.63 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \\ \hline 7.85 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \end{array}$		
KDR/VEGFR2 KHS/MAP4K5 LATS1 LATS2 LCK LCK2/ICK LIMK1 LIMK2 LKB1	93.97 59.82 59.20 26.79 37.43 -0.73 99.90 76.19 26.47	93.48 58.60 58.09 26.17 35.95 3.73 99.79 80.22 28.49	93.72 59.21 58.65 26.48 36.69 3.73 99.84 78.20 27.48	$\begin{array}{r} 1.82 \times 10^{-8} \\ \hline 3.29 \times 10^{-10} \\ \hline 1.43 \times 10^{-8} \\ \hline 5.68 \times 10^{-9} \\ \hline 2.63 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \\ \hline 7.85 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \\ \hline 9.33 \times 10^{-8} \end{array}$		
KDR/VEGFR2 KHS/MAP4K5 LATS1 LATS2 LCK LCK2/ICK LIMK1 LIMK2 LKB1 LOK/STK10	$\begin{array}{r} 93.97 \\ 59.82 \\ 59.20 \\ 26.79 \\ 37.43 \\ -0.73 \\ 99.90 \\ 76.19 \\ 26.47 \\ 24.46 \end{array}$	93.48 58.60 58.09 26.17 35.95 3.73 99.79 80.22 28.49 24.15	93.72 59.21 58.65 26.48 36.69 3.73 99.84 78.20 27.48 24.30	$\begin{array}{r} 1.82 \times 10^{-8} \\ \hline 3.29 \times 10^{-10} \\ \hline 1.43 \times 10^{-8} \\ \hline 5.68 \times 10^{-9} \\ \hline 2.63 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \\ \hline 7.85 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \\ \hline 9.33 \times 10^{-8} \\ \hline 4.90 \times 10^{-9} \end{array}$		
KDR/VEGFR2KHS/MAP4K5LATS1LATS2LCKLCK2/ICKLIMK1LIMK2LKB1LOK/STK10LRRK2	93.97 59.82 59.20 26.79 37.43 -0.73 99.90 76.19 26.47 24.46 7.95	93.48 58.60 58.09 26.17 35.95 3.73 99.79 80.22 28.49 24.15 8.07	93.72 59.21 58.65 26.48 36.69 3.73 99.84 78.20 27.48 24.30 8.01	$\begin{array}{r} 1.82 \times 10^{-8} \\ \hline 3.29 \times 10^{-10} \\ \hline 1.43 \times 10^{-8} \\ \hline 5.68 \times 10^{-9} \\ \hline 2.63 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \\ \hline 7.85 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \\ \hline 9.33 \times 10^{-8} \\ \hline 4.90 \times 10^{-9} \\ \hline 1.28 \times 10^{-8} \end{array}$		
KDR/VEGFR2KHS/MAP4K5LATS1LATS2LCKLCK2/ICKLIMK1LIMK2LKB1LOK/STK10LRRK2LYN	$\begin{array}{r} 93.97\\ 59.82\\ 59.20\\ 26.79\\ 37.43\\ -0.73\\ 99.90\\ 76.19\\ 26.47\\ 24.46\\ 7.95\\ 85.60\\ \end{array}$	93.48 58.60 58.09 26.17 35.95 3.73 99.79 80.22 28.49 24.15 8.07 83.87	93.72 59.21 58.65 26.48 36.69 3.73 99.84 78.20 27.48 24.30 8.01 84.74	$\begin{array}{r} 1.82 \times 10^{-8} \\ 3.29 \times 10^{-10} \\ 1.43 \times 10^{-8} \\ 5.68 \times 10^{-9} \\ 2.63 \times 10^{-9} \\ 1.54 \times 10^{-7} \\ 7.85 \times 10^{-9} \\ 1.54 \times 10^{-7} \\ 9.33 \times 10^{-8} \\ 4.90 \times 10^{-9} \\ 1.28 \times 10^{-8} \\ 1.29 \times 10^{-9} \end{array}$		
KDR/VEGFR2KHS/MAP4K5LATS1LATS2LCKLCK2/ICKLIMK1LIMK2LKB1LOK/STK10LRRK2LYNLYN B	$\begin{array}{r} 93.97\\ 59.82\\ 59.20\\ 26.79\\ 37.43\\ -0.73\\ 99.90\\ 76.19\\ 26.47\\ 24.46\\ 7.95\\ 85.60\\ 104.09\end{array}$	93.48 58.60 58.09 26.17 35.95 3.73 99.79 80.22 28.49 24.15 8.07 83.87 103.84	93.72 59.21 58.65 26.48 36.69 3.73 99.84 78.20 27.48 24.30 8.01 84.74 103.96	$\begin{array}{r} 1.82 \times 10^{-8} \\ \hline 3.29 \times 10^{-10} \\ \hline 1.43 \times 10^{-8} \\ \hline 5.68 \times 10^{-9} \\ \hline 2.63 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \\ \hline 7.85 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \\ \hline 9.33 \times 10^{-8} \\ \hline 4.90 \times 10^{-9} \\ \hline 1.28 \times 10^{-8} \\ \hline 1.29 \times 10^{-9} \\ \hline 4.58 \times 10^{-9} \end{array}$		
KDR/VEGFR2KHS/MAP4K5LATS1LATS2LCKLCK2/ICKLIMK1LIMK2LKB1LOK/STK10LRRK2LYNLYN BMAPKAPK2	$\begin{array}{r} 93.97\\ 59.82\\ 59.20\\ 26.79\\ 37.43\\ -0.73\\ 99.90\\ 76.19\\ 26.47\\ 24.46\\ 7.95\\ 85.60\\ 104.09\\ 106.87\\ \end{array}$	93.48 58.60 58.09 26.17 35.95 3.73 99.79 80.22 28.49 24.15 8.07 83.87 103.84 106.55	93.72 59.21 58.65 26.48 36.69 3.73 99.84 78.20 27.48 24.30 8.01 84.74 103.96 106.71	$\begin{array}{r} 1.82 \times 10^{-8} \\ \hline 3.29 \times 10^{-10} \\ \hline 1.43 \times 10^{-8} \\ \hline 5.68 \times 10^{-9} \\ \hline 2.63 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \\ \hline 7.85 \times 10^{-9} \\ \hline 1.54 \times 10^{-7} \\ \hline 9.33 \times 10^{-8} \\ \hline 4.90 \times 10^{-9} \\ \hline 1.28 \times 10^{-8} \\ \hline 1.29 \times 10^{-9} \\ \hline 4.58 \times 10^{-9} \\ \hline 2.70 \times 10^{-7} \end{array}$		

MAPKAPK5/PRAK	81.84	77.19	79.52	$4.14 \ge 10^{-7}$	
MARK1	87.21	94.06	90.63	$1.02 \ge 10^{-10}$	
MARK2/PAR-1Ba	92.37	90.93	91.65	1.09 x 10 ⁻¹⁰	
MARK3	95.25	93.52	94.39	2.59 x 10 ⁻¹⁰	
MARK4	82.92	81.61	82.26	$1.18 \ge 10^{-10}$	
MEK1	98.91	93.57	96.24	3.33 x 10 ⁻⁸	
MEK2	81.17	84.60	82.88	3.78 x 10 ⁻⁸	
MEK3	98.27	88.10	93.19	6.86 x 10 ⁻⁸	
MEKK1	104.19	104.32	104.26	8.09 x 10 ⁻⁷	
MEKK2	99.83	95.79	97.81	2.70 x 10 ⁻⁸	
MEKK3	74.56	79.72	77.14	9.01 x 10 ⁻⁹	
MELK	1.39	0.63	1.01	$5.05 \ge 10^{-10}$	
MINK/MINK1	57.05	57.60	57.32	1.41 x 10 ⁻⁹	
MKK4	87.26	90.03	88.64	1.84 x 10 ⁻⁶	
MKK6	122.66	125.26	123.96	1.33 x 10 ⁻⁸	
MLCK/MYLK	8.19	6.38	7.28	3.43 x 10 ⁻⁸	
MLCK2/MYLK2	9.22	16.55	12.89	3.84 x 10 ⁻⁸	
MLK1/MAP3K9	48.70	49.49	49.09	3.90×10^{-10}	
MLK2/MAP3K10	14.66	14.13	14.40	3.85 x 10 ⁻⁹	
MLK3/MAP3K11	37.25	37.13	37.19	6.76 x 10 ⁻⁹	
MNK1	17.93	18.36	18.14	6.80 x 10 ⁻⁸	
MNK2	62.34	62.38	62.36	2.83 x 10 ⁻⁸	
MRCKa/CDC42BPA	27.76	25.00	26.38	1.12 x 10 ⁻⁸	
MRCKb/CDC42BPB	9.95	10.35	10.15	6.88 x 10 ⁻⁹	
MSK1/RPS6KA5	12.49	12.89	12.69	$7.22 \ge 10^{-10}$	
MSK2/RPS6KA4	7.04	6.71	6.87	2.10 x 10 ⁻⁹	
MSSK1/STK23	27.00	26.66	26.83	1.37 x 10 ⁻⁶	
MST1/STK4	51.61	50.94	51.27	$4.96 \ge 10^{-10}$	
MST2/STK3	83.10	86.41	84.75	5.36 x 10 ⁻⁹	
MST3/STK24	59.93	54.92	57.42	2.61 x 10 ⁻⁹	

MST4	8.21	8.49	8.35	3.96 x 10 ⁻⁹		
MUSK	33.81	33.26	33.53	$1.59 \ge 10^{-7}$		
MYLK3	99.01	93.24	96.12	2.02×10^{-7}		
MYO3b	57.33	58.41	57.87	$1.08 \ge 10^{-8}$		
NEK1	108.62	96.47	102.54	1.96 x 10 ⁻⁸		
NEK11	26.46	25.45	25.95	$1.22 \ge 10^{-6}$		
NEK2	-0.19	2.02	2.02	$5.60 \ge 10^{-7}$		
NEK3	103.22	109.89	106.55	$1.24 \ge 10^{-5}$		
NEK4	39.38	37.58	38.48	$1.57 \ge 10^{-7}$		
NEK5	50.61	52.14	51.37	9.17 x 10 ⁻⁸		
NEK6	50.12	47.52	48.82	ND	$>2.00 \text{ x } 10^{-5}$	PKR Inhibitor
NEK7	95.49	92.95	94.22	ND	2.71 x 10 ⁻⁶	PKR Inhibitor
NEK9	59.47	52.20	55.84	$1.85 \ge 10^{-7}$		
NLK	62.22	67.16	64.69	8.34 x 10 ⁻⁸		
OSR1/OXSR1	4.64	3.93	4.29	$1.08 \ge 10^{-7}$		
P38a/MAPK14	57.70	57.12	57.41	ND	7.10 x 10 ⁻⁹	SB202190
P38b/MAPK11	69.61	65.03	67.32	ND	1.64 x 10 ⁻⁸	SB202190
P38d/MAPK13	109.83	111.23	110.53	$3.12 \ge 10^{-7}$		
P38g	117.26	102.31	109.79	$2.08 \ge 10^{-7}$		
p70S6K/RPS6KB1	48.18	50.55	49.36	$5.61 \ge 10^{-10}$		
p70S6Kb/RPS6KB2	15.81	13.62	14.71	3.34 x 10 ⁻⁹		
PAK1	87.61	99.85	93.73	$5.00 \ge 10^{-10}$		
PAK2	81.35	84.64	82.99	2.21 x 10 ⁻⁹		
PAK3	97.68	90.46	94.07	$4.07 \ge 10^{-10}$		
PAK4	89.08	84.99	87.03	3.96 x 10 ⁻⁸		
PAK5	98.57	100.48	99.52	3.56 x 10 ⁻⁹		
PAK6	101.10	99.25	100.18	8.15 x 10 ⁻⁸		
PASK	2.01	3.73	2.87	$1.50 \ge 10^{-8}$		
РВК/ТОРК	65.18	76.40	70.79	8.26 x 10 ⁻⁸		
PDGFRa	80.02	83.59	81.80	9.19 x 10 ⁻¹⁰		

PDGFRb	66.70	65.33	66.02	1.60 x 10 ⁻⁹	
PDK1/PDPK1	113.47	119.11	116.29	1.35 x 10 ⁻⁹	
PHKg1	44.53	36.83	40.68	$8.66 \ge 10^{-10}$	
PHKg2	28.36	21.47	24.91	$6.06 \ge 10^{-10}$	
PIM1	6.12	4.94	5.53	5.86 x 10 ⁻⁹	
PIM2	75.88	80.36	78.12	6.75 x 10 ⁻⁸	
PIM3	12.09	14.51	13.30	$1.58 \ge 10^{-10}$	
РКА	82.65	83.49	83.07	1.64 x 10 ⁻⁹	
PKAcb	15.36	15.51	15.43	2.21 x 10 ⁻⁹	
PKAcg	24.77	23.26	24.02	1.25 x 10 ⁻⁸	
РКСа	78.65	77.59	78.12	$5.51 \ge 10^{-10}$	
PKCb1	25.77	25.63	25.70	3.39 x 10 ⁻⁹	
PKCb2	16.31	16.39	16.35	$7.33 \ge 10^{-10}$	
PKCd	71.69	72.89	72.29	$1.16 \ge 10^{-10}$	
PKCepsilon	38.83	35.73	37.28	$1.62 \ge 10^{-10}$	
PKCeta	50.03	48.09	49.06	3.72 x 10 ⁻⁹	
РКСд	81.61	65.31	73.46	2.49 x 10 ⁻⁹	
PKCiota	72.17	72.85	72.51	2.54 x 10 ⁻⁸	
PKCmu/PRKD1	32.56	33.29	32.93	1.92 x 10 ⁻⁹	
PKCnu/PRKD3	15.87	15.80	15.84	1.46 x 10 ⁻⁹	
PKCtheta	55.13	56.74	55.93	1.58 x 10 ⁻⁹	
PKCzeta	80.67	83.02	81.84	9.76 x 10 ⁻⁸	
PKD2/PRKD2	31.93	34.93	33.43	1.96 x 10 ⁻⁹	
PKG1a	88.24	88.97	88.60	1.06 x 10 ⁻⁹	
PKG1b	90.62	90.96	90.79	2.49 x 10 ⁻⁹	
PKG2/PRKG2	95.18	91.73	93.45	3.73 x 10 ⁻⁹	
PKN1/PRK1	18.53	18.53	18.53	7.76 x 10 ⁻¹¹	
PKN2/PRK2	36.54	38.34	37.44	5.42×10^{-10}	
PKN3/PRK3	112.24	112.48	112.36	2.51 x 10 ⁻⁸	
PLK1	91.25	89.60	90.42	2.16×10^{-7}	

PLK2	93.59	102.07	97.83	1.05 x 10 ⁻⁶		
PLK3	93.18	102.11	97.65	$4.04 \ge 10^{-7}$		
PLK4/SAK	103.45	98.90	101.17	$2.08 \ge 10^{-8}$		
PRKX	97.71	96.44	97.08	2.71 x 10 ⁻⁹		
РҮК2	82.30	83.32	82.81	5.75 x 10 ⁻⁹		
RAF1	90.17	96.15	93.16	ND	3.26 x 10 ⁻⁹	GW5074
RET	28.27	28.92	28.60	3.72 x 10 ⁻⁹		
RIPK2	63.11	62.79	62.95	2.21 x 10 ⁻⁷		
RIPK3	117.84	115.61	116.73	ND	$1.08 \ge 10^{-5}$	GW5074
RIPK5	9.98	10.06	10.02	6.68 x 10 ⁻⁸		
ROCK1	87.90	86.19	87.04	1.05 x 10 ⁻⁹		
ROCK2	92.93	89.02	90.98	$4.27 \ge 10^{-10}$		
RON/MST1R	39.52	42.40	40.96	$3.17 \ge 10^{-7}$		
ROS/ROS1	15.77	14.43	15.10	$1.77 \ge 10^{-10}$		
RSK1	26.44	24.94	25.69	$2.39 \ge 10^{-10}$		
RSK2	55.08	57.13	56.11	$1.97 \ge 10^{-10}$		
RSK3	36.92	40.46	38.69	2.95 x 10 ⁻¹⁰		
RSK4	33.21	32.06	32.64	$1.44 \ge 10^{-10}$		
SGK1	49.35	57.06	53.21	1.37 x 10 ⁻⁸		
SGK2	6.57	9.77	8.17	3.52 x 10 ⁻⁸		
SGK3/SGKL	75.96	78.47	77.22	1.19 x 10 ⁻⁷		
SIK1	69.45	62.36	65.91	$5.17 \ge 10^{-10}$		
SIK2	34.67	34.91	34.79	$2.38 \ge 10^{-10}$		
SIK3	32.29	34.48	33.39	1.74 x 10 ⁻⁹		
SLK/STK2	72.28	71.23	71.75	5.10 x 10 ⁻⁹		
SNARK/NUAK2	91.08	91.09	91.09	4.11 x 10 ⁻⁸		
SRMS	28.23	29.92	29.07	1.91 x 10 ⁻⁵		
SRPK1	25.65	21.66	23.66	3.94×10^{-8}		
SRPK2	62.17	65.49	63.83	2.95×10^{-7}		
SSTK/TSSK6	64.89	70.73	67.81	2.51×10^{-7}		

STK16	66.52	75.58	71.05	$3.70 \ge 10^{-7}$		
STK22D/TSSK1	89.63	89.91	89.77	$8.50 \ge 10^{-11}$		
STK25/YSK1	57.09	55.70	56.39	1.64 x 10 ⁻⁹		
STK32B/YANK2	98.86	98.92	98.89	$1.75 \ge 10^{-7}$		
STK32C/YANK3	61.81	54.65	58.23	$2.86 \ge 10^{-7}$		
STK33	16.11	17.89	17.00	2.71 x 10 ⁻⁸		
STK38/NDR1	88.99	93.70	91.34	1.99 x 10 ⁻⁸		
STK38L/NDR2	81.08	79.95	80.51	1.60 x 10 ⁻⁹		
STK39/STLK3	2.23	0.97	1.60	5.78 x 10 ⁻⁸		
SYK	80.34	75.39	77.86	1.89 x 10 ⁻¹⁰		
TAK1	74.49	78.97	76.73	3.77 x 10 ⁻⁸		
TAOK1	29.31	32.47	30.89	1.45 x 10 ⁻⁹		
TAOK2/TAO1	23.55	25.84	24.70	3.23 x 10 ⁻⁹		
TAOK3/JIK	48.29	50.74	49.51	1.67 x 10 ⁻⁹		
TBK1	126.55	126.61	126.58	1.76 x 10 ⁻⁹		
TEC	67.14	62.93	65.04	6.35 x 10 ⁻⁸		
TESK1	26.36	36.74	31.55	9.39 x 10 ⁻⁷		
TGFBR2	109.10	93.42	101.26	ND	7.20 x 10 ⁻⁶	GW5074
TIE2/TEK	52.02	50.08	51.05	9.51 x 10 ⁻⁸		
TLK1	90.50	87.49	88.99	4.19 x 10 ⁻⁸		
TLK2	93.03	99.68	96.35	4.02 x 10 ⁻⁹		
TNIK	19.11	17.56	18.33	5.86 x 10 ⁻¹⁰		
TNK1	27.56	26.53	27.04	1.41 x 10 ⁻⁹		
TRKA	6.34	4.99	5.67	2.23 x 10 ⁻⁹		
TRKB	88.82	87.84	88.33	$1.23 \ge 10^{-10}$		
TRKC	64.27	62.19	63.23	4.73 x 10 ⁻¹⁰		
TSSK2	85.27	83.49	84.38	9.51 x 10 ⁻⁹		
TSSK3/STK22C	1.27	0.73	1.00	$1.01 \ge 10^{-8}$		
TTBK1	76.81	75.16	75.99	$>2.00 \text{ x } 10^{-5}$		
TTBK2	71.16	66.74	68.95	$>2.00 \times 10^{-5}$		

ТХК	34.55	33.24	33.89	2.28 x 10 ⁻⁸		
TYK1/LTK	50.89	51.78	51.34	2.22 x 10 ⁻⁸		
TYK2	41.19	41.81	41.50	$2.47 \ge 10^{-10}$		
TYRO3/SKY	63.50	62.54	63.02	6.22 x 10 ⁻⁹		
ULK1	83.31	88.63	85.97	7.34 x 10 ⁻⁹		
ULK2	91.22	87.02	89.12	4.16 x 10 ⁻⁹		
ULK3	156.53	193.52	175.03	2.14 x 10 ⁻⁹		
VRK1	93.33	95.78	94.55	ND	6.42 x 10 ⁻⁷	Ro-31-8220
VRK2	158.16	164.66	161.41	ND	1.39 x 10 ⁻⁵	Ro-31-8220
WEE1	101.13	100.20	100.67	ND	9.95 x 10 ⁻⁸	Wee1 inhibitor
WNK1	79.41	51.46	65.44	$>2.00 \text{ x } 10^{-5}$		
WNK2	49.41	50.07	49.74	1.51 x 10 ⁻⁶		
WNK3	78.43	72.95	75.69	ND	2.32 x 10 ⁻⁶	Wee1 inhibitor
YES/YES1	90.21	87.78	89.00	2.25 x 10 ⁻⁹		
ZAK/MLTK	43.83	44.23	44.03	ND	1.18×10^{-6}	GW5074
ZAP70	45.23	43.81	44.52	$1.01 \ge 10^{-8}$		
ZIPK/DAPK3	10.97	9.46	10.21	4.81 x 10 ⁻⁹		

^{*a*}Compound **22** was tested in single dose duplicate mode at a concentration of 20 μ M.

^{*b*}Reactions were carried out at 10 µM ATP.

^cCurve fit was performed where the enzyme activity at the highest concentration of compound was less than 65%.

^{*d*}Relative to DMSO controls.

^eStaurosporine was tested in 10-dose IC₅₀ mode with 4-fold serial dilution starting at 20 μ M.

 f ND = not tested.

^{*g*}Alternate control compounds were tested in 10-dose IC₅₀ mode with 3-fold serial dilution starting at 20 μ M.

■ REFERENCES

1. Van Horn, K. S.; Burda, W. N.; Fleeman, R.; Shaw, L. N.; Manetsch, R. Antibacterial Activity of a Series of N^2 , N^4 -Disubstituted Quinazoline-2,4-diamines. *J. Med. Chem.* **2014**, *57* (7), 3075–3093.

2. Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. Synthesis of Enantiomerically Pure *N-tert*-Butanesulfinyl Imines (*tert*-Butanesulfinimines) by the Direct Condensation of *tert*-Butanesulfinamide with Aldehydes and Ketones. *J. Org. Chem.* **1999**, *64* (4), 1278–1284.

3. Lim, J.; Taoka, B.; Otte, R. D.; Spencer, K.; Dinsmore, C. J.; Altman, M. D.; Chan, G.; Rosenstein, C.; Sharma, S.; Su, H.-P.; Szewczak, A. A.; Xu, L.; Yin, H.; Zugay-Murphy, J.; Marshall, C. G.; Young, J. R. Discovery of 1-Amino-5*H*-pyrido[4,3-*b*]indol-4-carboxamide Inhibitors of Janus Kinase 2 (JAK2) for the Treatment of Myeloproliferative Disorders. *J. Med. Chem.* **2011**, *54* (20), 7334–7349.

4. Cogan, D. A.; Liu, G.; Ellman, J. Asymmetric Synthesis of Chiral Amines by Highly Diastereoselective 1,2-Additions of Organometallic Reagents to *N-tert*-Butanesulfinyl Imines. *Tetrahedron* **1999**, *55* (29), 8883–8904.

Jacobs, R. T.; Folmer, J.; Simpson, T. R.; Chaudhari, B.; Frazee, W. J.; Davenport, T.
 W. Therapeutic Quinazoline Compounds. WO 01/21598, 2001.

6. Huang, L.; Liu, S.; Lunney, E. A.; Planken, S. P. Substituted 2-Amino-Fused Heterocyclic Compounds. WO 2007/125405, 2007.

 Hernández, A. R.; Kool, E. T. The Components of xRNA: Synthesis and Fluorescence of a Full Genetic Set of Size-Expanded Ribonucleosides. *Org. Lett.* 2011, *13* (4), 676– 679. 8. Fieser, L. F.; Fieser, M. Reagents for Organic Synthesis. In *Reagents for Organic Synthesis*; Wiley: New York, 1967; Vol. 1, pp 581–595.

9. Burns, M. C.; Sun, Q.; Daniels, R. N.; Camper, D.; Kennedy, J. P.; Phan, J.; Olejniczak, E. T.; Lee, T.; Waterson, A. G.; Rossanese, O. W.; Fesik, S. W. Approach for Targeting Ras With Small Molecules That Activate SOS-Mediated Nucleotide Exchange. *Proc. Natl. Acad. Sci. U.S.A.* **2014**, *111* (9), 3401–3406.

10. Burns, M. C.; Howes, J. E.; Sun, Q.; Little, A. J.; Camper, D. V.; Abbott, J. R.; Phan, J.; Lee, T.; Waterson, A. G.; Rossanese, O. W.; Fesik, S. W. High-Throughput Screening Identifies Small Molecules That Bind to the RAS:SOS:RAS Complex and Perturb RAS Signaling. *Anal. Biochem.* **2018**, *548*, 44–52.

Abbott, J. R.; Hodges, T. R.; Daniels, R. N.; Patel, P. A.; Kennedy, J. P.; Howes, J. E.; Akan, D. T.; Burns, M. C.; Sai, J.; Sobolik, T.; Beesetty, Y.; Lee, T.; Rossanese, O. W.; Phan, J.; Waterson, A. G.; Fesik, S. W. Discovery of Aminopiperidine Indoles That Activate the Guanine Nucleotide Exchange Factor SOS1 and Modulate RAS Signaling. *J. Med. Chem.* **2018**, *61* (14), 6002–6017.

Sun, Q.; Burke, J. P.; Phan, J.; Burns, M. C.; Olejniczak, E. T.; Waterson, A. G.; Lee, T.; Rossanese, O. W.; Fesik, S. W. Discovery of Small Molecules that Bind to K-Ras and Inhibit Sos-Mediated Activation. *Angew. Chem., Int. Ed.* **2012**, *51* (25), 6140–6143.