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Supporting Information Text

Simulation Conditions. The pressure and temperature conditions considered in our simulations are reported in Table S1,
together with computed diffusion coefficients.

Ionic species and Ionic Lifetimes. We analyzed the presence of ionic species in compressed water as a function of time for the
~11 and ~20 GPa trajectories (see Table S1). Ionic species were defined using criteria based on hydrogen bonding analysis. We
defined a hydrogen and an oxygen atom as hydrogen bonded when the distance between them is less than the second minimum
of the OH radial distribution function (RDF) and the deviation of the O – H...O angle from a straight line is < 30◦(1). Here O
– H denotes a covalent bond and H...O an hydrogen bond. Using this definition, we constructed the hydrogen bond network of
each snapshot of our trajectories, and then mapped the network onto a graph, with oxygens as vertexes and hydrogen bonds as
direct connections between pairs of vertexes.

In this framework, a hydronium ion, composed of three hydrogens and a central oxygen, was identified as a chemical species
donating three hydrogen bonds to its vicinal neighbors. A hydroxide ion, composed of one hydrogen and one oxygen, was
identified as a chemical species donating one hydrogen bond while accepting three or more hydrogen bonds. This strategy has
also been used to identify constituent ions in water at ambient conditions (2).

The variation of the number of hydronium and hydroxide species over two short trajectories at 11 and 20 GPa is plotted
in Fig. S1, where the number of the two species has been represented in different quadrants for clarity. The formation of
H3O+ and OH– is clearly correlated, indicating that dissociation occurs as a bimolecular process. Fig. S1 shows a larger
concentration of hydroxide and hydronium ions at 20 than at 11 GPa; the same trend was found over the entire trajectory.

We also investigated whether "free hydrogens" were present in our simulations. For each hydrogen, at each step we calculated
its coordination number with respect to oxygen. A hydrogen was considered "free" if its coordination was 0, i.e. no oxygen was
present within a distance equal to the first minimum of the OH RDF. Then, for each free hydrogen, we counted the number of
contiguous snapshots over which the hydrogen persists as a free species. We defined the lifetime, τ , of the free hydrogen as
the time an hydrogen atom spends as a free species. We constructed an histogram of all computed τ . By normalizing the
histogram with respect to the total number of snapshots and total number of hydrogens, we obtained the probability, at a
given time step, to observe a free hydrogen with a lifetime τ . Fig. S2 displays the computed probabilities for two choices of
cutoff distances for a 3 ps portion of the 20 GPa trajectory containing dissociation events. We found extremely small values of
τ (<0.3 fs) with very low probabilities (< 2x10−5). Hence our results show that free hydrogens are fleeting species, with no
evidence of long-lived free hydrogens arising from unimolecular dissociation.

Ionic Conductivity. We computed the ionic conductivity within linear response, using the Green-Kubo formalism. Instead of
directly evaluating the integral of the correlation function of the total dipole moment derivative, we employed the Einstein
relation:

σ = lim
t→∞

1
6tkbTV

〈[ ~M(t)− ~M(0)]2〉 [1]

Where kb is Boltzmann’s constant, T is the temperature, V is the cell volume, and the angled brackets indicate the average
over time origins.

In order to minimize statistical errors in the evaluation of eq. 1, we partitioned the trajectories over which ~M(t) was
computed into many separate portions of length 10 ps. The results are shown in Fig. S3, where we also display the time
progression of the average. As reported in the main text, we obtain σ ∼ 1 (Ωcm)−1 at 11 ±1 GPa, 1000 K, and σ ∼ 10 (Ωcm)−1

at 20 ±1 GPa, 1000 K. We note that the values of the conductivity computed over the 10 ps segments exhibited a standard
deviation of the mean of 0.3 (Ωcm)−1 at 11 GPa, 1000 K, and 1.0 (Ωcm)−1 at 20 GPa, 1000 K. A comparison of the averages
over partitions at both conditions is presented in Fig. S4, clearly displaying the higher conductivity of the water at 20 GPa.

Our estimates of σ are compared to other experimental (3, 4) and computational (5, 6) studies on the conductivity of
water along the principal Hugoniot in Fig. S5. In Table S2 we also present the data corresponding to Fig. S5, including
temperatures. While temperatures were not reported in Refs. (4) and (6), we obtained temperatures in both cases from closely
related publications by the same authors.

Raman Spectra.

Polarizability. Within density functional perturbation theory(7), the µth Cartesian component Pµ of the polarization of a
macroscopic sample is given by:

Pµ = −4e
V

N∑
n=1

〈∆Eψn|ψ̄µn〉 [2]

where E is a perturbing electric field and ∆Eψn is the response of the nth Kohn-Sham eigenfunction of the unperturbed
Hamiltonian, Ĥ, under the influence of E. ∆Eψn and ψ̄µn are computed by solving two linear systems subsequently:
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(Ĥ − εn)|ψ̄µn〉 = Pc[Ĥ, rµ]|ψn〉, [3]

(Ĥ − εn)|∆Eψn〉 = −e
∑
µ

Eµ|ψ̄µn〉 − Pc∆V lf |ψn〉, [4]

where r is the position operator, εn and ψn are the nth eigenvalue and eigenvector of the unperturbed Hamiltonian, and n
belongs to the valence band; Pc = 1−

∑
n
|ψn〉〈ψn| is a projector operator (n runs over all occupied states), ∆V lf is the change

of the local potential arising from the change in charge density n(r): ∆En(r) = 4
∑N

n=1 ψ
?
n(r)∆Eψn(r). In our calculations, an

electric field is applied along each Cartesian axis and the elements of the polarizability tensor α are obtained by dividing the
corresponding component of the polarization by the electric field strength.

Isotropic, Anisotropic, and Unpolarized Raman. Isotropic and anisotropic Raman spectra are defined as:

Riso(ω) ∝ ~ω
kbT

∫
dte−iωt〈ᾱ(0)ᾱ(t)〉 [5]

Raniso(ω) ∝ ~ω
kbT

∫
dte−iωt〈 2

15Trβ(0)β(t)〉 [6]

In equations 5 and 6, ω is the frequency, Tr is the trace, and ᾱ and β are the isotropic and anisotropic components of the
polarizability tensor, α: ᾱ = 1

3Trα and β = α− ᾱI, where I is the identity tensor. Unpolarized Raman spectra are computed

as Runpol = Riso + 7
4Raniso

(8).

Intermolecular and Intramolecular Decomposition. In a periodic system, the ground state maximally localized Wannier functions
(MLWF), wn, may be obtained by applying a unitary transformation u to the eigenstates of the Kohn-Sham Hamiltonian:
wn =

∑
umnψm . By applying the same unitary transformation to ∆Eψ and ψ̄, we obtain the response wavefunctions ∆Ewn

and w̄n, corresponding to each of the MLWFs. By replacing ∆Eψn and ψ̄n in eq. 2 with ∆Ewn and w̄n, we obtain the
projection of the total polarization onto the nth MWLF:

Pµwn
= −4e

V
〈∆Ewn|w̄µn〉 [7]

We then define the effective polarizability of each MLWF as:

Pwn = αeffwn
E [8]

There are four MLWFs associated with each intact water molecule, corresponding to two covalent bonds pairs (BP), and two
lone pairs (LP). The effective molecular polarizability of the ith water molecule is:

αeffi = αeffi,BP1 + αeffi,BP2 + αeffi,LP1 + αeffi,LP2 [9]

The total system polarizability, α, is the sum over all αeffi . We cast the expression of the Raman intensities (eq. 5, 6) in
terms of effective molecular polarizability:

Riso(ω) ∝ ~ω
kbT

∫
dte−iωt〈

∑
i,j

ᾱeffi (0)ᾱeffj (t)〉 [10]

Raniso(ω) ∝ ~ω
kbT

∫
dte−iωt〈 2

15Tr
∑
i,j

βeffi (0)βeffj (t)〉 [11]

Where ᾱeff = 1
3Trα

eff and βeff = αeff − ᾱeffI, and I is the identity tensor. Tr denotes the trace operator. By separating
i = j and i 6= j terms of the summation, we obtain the intramolecular and intermolecular contributions to the Raman intensity,
respectively.
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Infrared Spectra. Due to the highly dissociative nature of water considered in our simulations, molecular dipole moments may
not be well defined. Hence, we expressed the infrared spectra intensity, A(ω) in terms of the time derivative of the sample
dipole moment (9):

A(ω) ∝ 2πω2β

3cV

∫
dte−iωt〈 ~M(0) ~M(t)〉

= 2πβ
3cV

∫
dte−iωt〈 ~̇M(0) ~̇M(t)〉

[12]

Where ~M(t) is defined as:

~M(t) = e ·
NH∑
i=1

~RHi (t) + 6e ·
NO∑
i=1

~ROi (t)− 2e ·
NMLWF∑
i=1

~RMLWF
i (t) [13]

as in the discussion of ionic conductivity in the main text; e is the elementary charge, ~RO(t) and ~RH(t) are the coordinates
of oxygen and hydrogen atoms, respectively, and ~RMLWF(t) are the coordinates of the center of a maximally localized Wannier
function. The summations run over all species of the simulation cell. Time derivatives of ~M(t) were computed using finite
differences.

The correlation function in eq. 12 is classical, requiring a quantum correction factor to approximate the quantum time
correlation function (10). Here we used the so-called harmonic prefactor, which has been shown to satisfy the fluctuation-
dissipation theorem and detailed balance (11).
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Fig. S1. Number of ionic species along a short 11 (A) and 20 (B) GPa trajectory (see text for definition of hydronium and hydroxide ions).
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Fig. S2. Probability to observe a free hydrogen as a function of lifetime τ (see text for definition) over a 3 ps trajectory at 20 GPa, 1000 K. We show results for two cutoff
distances: 1.25 Å, corresponding to the first minimum of the O-H RDF, and a cutoff 4% percent smaller.
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Fig. S3. Time-averaged mean squared displacement of the total dipole moment ~M as a function of separation time for multiple partitioned segments of length 10 ps from a 240
ps trajectory at 11 GPa and 1000K (A) and 20 GPa and 1000 K (B). The average over segments for 11 GPa and 1000 K is reported as a thick black curve, yielding σ ∼ 1
(Ωcm)−1. Similarly, the average over segments for 20 GPa and 1000 K is reported as a thick red curve, yielding σ ∼ 10 (Ωcm)−1 .
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Fig. S4. Comparison of the averages of time-averaged mean squared displacement of the total dipole moment ~M as a function of separation time for multiple partitioned
segments of length 10 ps at 11 GPa and 1000 K and 20 GPa and 1000 K. The average over segments for 11 GPa, 1000 K is reported as a black curve (σ ∼ 1 (Ωcm)−1) while
the average over segments for 20 GPa, 1000 K is reported as a red curve (σ ∼ 10 (Ωcm)−1)

8 of 12 Viktor Rozsa, Ding Pan, Federico Giberti, Giulia Galli



Fig. S5. The ionic conductivities of water as a function of pressure, along the principal Hugoniot. Hamann et al. (3) and Mitchell et al. (4) reported experimental shock studies.
Goldman et al. (5) reported a computational study of shocked water, using Mulliken charges, and French et al. (6) reported a computational study using diffusion coefficients of
free protons. Temperatures for all data points are presented in Table S2.
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Table S1. Density (ρ), computed temperature (T), pressure (P) and oxygen (DO) and hydrogen (DH) diffusion coefficients for three first
principles molecular dynamics trajectories. Averages were computed over 240 ps.

ρ (g/cm3) T (K) P (GPa) DO (cm2/sec) DH(cm2/sec)

1.57 1020 ± 50 11 ± 1 ~9x10−5 ~9x10−5

1.86 1020 ± 51 20 ± 1 ~3x10−5 ~7x10−5

1.86 510 ± 25 16 ± 1 nondiffusive nondiffusive
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Table S2. Pressure (P), temperature (T), and conductivity (σ) of water along the principal Hugoniot, as displayed in Fig. 4. Temperatures for
Mitchell et al. (4) were obtained from the same group’s later study, reported in Ref. (12). Temperatures for French et al. (6) were obtained
from the same group’s earlier study, reported in Ref. (13).

Study P (GPa) T (K) σ ((Ωcm)−1)

Hamann et al. (3) 5.4 547 0.00076
8.3 731 0.04
12.1 991 0.56
16.7 1326 2.3
21.9 1710 7.1

Mitchell et al. (4) 28.0 1790 14
35.0 2200 28
46.0 3030 19
47.0 3090 18
59.0 3810 29

Goldman et al. (5) 18.2 ± 0.2 791 ± 7 6.0 ± 2
26.5 ± 0.4 1167 ± 4 7.2 ± 3
42.0 ± 0.3 1995 ± 8 7.9 ± 3
53.8 ± 0.3 2744 ± 10 11.2 ± 4
67.8 ± 0.2 3654 ± 6 11.1 ± 4

French et al. (6) 14.8 1010 2 ± 1
23.5 1550 11 ± 4
30.9 2000 25 ± 7
46.8 3010 47 ± 10
62.9 4040 122 ± 26

This study 11 ± 1 1020 ± 50 ∼ 1
20 ± 1 1020 ± 51 ∼ 10
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