

Supplementary Information for

Accelerating pathway evolution by increasing the gene dosage of chromosomal segments

Melissa Tumen-Velasquez^{a,1}, Christopher W. Johnson^{b,1}, Alaa Ahmed^a, Graham Dominick^b, Emily M. Fulk^b, Payal Khanna^b, Sarah A. Lee^c, Alicia L. Schmidt^a, Jeffrey G. Linger^b, Mark A. Eiteman^{a,c}, Gregg T. Beckham^{b,2}, Ellen L. Neidle^{a,2}

^aDepartment of Microbiology, University of Georgia, Athens, GA, 30602 ^bNational Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401 ^cSchool of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, 30602 ¹These authors contributed equally to this work ²Corresponding authors: eneidle@uga.edu, gregg.beckham@nrel.gov

This PDF file includes:

Figures

- Fig. S1. Alignment of GcoA sequences
- Fig. S2. Alignment of GcoB, BenC, and AntC reductases
- Fig. S3. Guaiacol metabolism by P. putida KT2440 carrying plasmids with gcoAB genes
- Fig. S4. Introduction of foreign DNA enables growth on guaiacol
- Fig. S5. A. baylyi chromosomal arrangements
- Fig. S6. Replacement of wild-type genomic DNA with DNA from an evolved Gua⁺ strain
- Fig. S7. Selection of a gene fusion
- **Fig. S8**. Growth on guaiacol (6 mM) as the sole carbon source by *P. putida* strains with *catA-gcoA* and *gcoB* genes integrated in the chromosome

Tables

- Table S1. Sequences with homology to N-terminal residues from a guaiacol O-demethylating cytochrome P450
- Table S2. Acinetobacter baylyi strains
- Table S3. Plasmids

Table S4. Primers

- Table S5. Synthesized dsDNA fragments containing genes encoding GcoA and GcoB Rhodococcus pyridinivorans AK37, optimized for expression in P. putida KT2440
- Table S6. Mutations in ACN1850 outside the gcoAB region

References for SI

Rhodococcus pyridinivorans AK37 Rhodococcus jostii RHA1 Amycolatopsis sp. ATCC 39116	1 1 1	MTSTLSWLDEITMEELERNPYPVYERLRAEAPVAFVPVLGAYVASTTEACRAVAAG MTATLSWIDEITMTELERNPYPVYERLRAEAPLAYVPVLGSFVATTADLCRTIANS MTTTERPDLAWLDEVTMTQLERNPYEVYERLRAEAPLAFVPVLGSYVASTAEVCREVATS *:*:**:** :****** ********************	56 56 60
Rhodococcus pyridinivorans AK37 Rhodococcus jostii RHA1 Amycolatopsis sp. ATCC 39116	57 57 61	DDFDGIITPAGGRTFGHPAIIGVNGDIHRDLRSMVEPALQPAEVDRWIEDLVRPIARRYV PDFEGIITKAGGRTFGHPAVIGVNGEIHRDLRSMVDPALQPSEVDRWVDGLVRPIARRYV PDFEAVITPAGGRTFGHPAIIGVNGDIHADLRSMVEPALQPAEVDRWIDDLVRPIARRYL **** ***********	116 116 120
Rhodococcus pyridinivorans AK37 Rhodococcus jostii RHA1 Amycolatopsis sp. ATCC 39116	117 117 121	EAFESDGRADLVAOFCEPVSVRSLGDILGLKDVSSDKLREWFHKLSDSFTNAAMDEDGNF EQFENDGKADLVSOYCEPVSVRALGDILGLNEVSSDTIRDWFHRLSNSFTNAGVDADGEF ERFENDGHAELVAOYCEPVSVRSLGDILGLOEVDSDKLREWFAKLNRSFTNAAVDENGEF * **.**:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:	176 176 180
Rhodococcus pyridinivorans AK37 Rhodococcus jostii RHA1 Amycolatopsis sp. ATCC 39116	177 177 181	LNQERFDEGDRAKEEIRSVVDPLIDHWIEHPDDSAISHWLHDGMPEGOTRDRDYIYPTLY TNPEGFVQGDEAKAEIRAVVDPLIDKWTVHPDDSAISHWLHDGMPEGQVRDREYIYPTLF ANPEGFAEGDOAKAEIRAVVDPLIDKWIEHPDDSAISHWLHDGMPPGQTRDREYIYPTIY * * * :**.** ***:*******	236 236 240
Rhodococcus pyridinivorans AK37 Rhodococcus jostii RHA1 Amycolatopsis sp. ATCC 39116	237 237 241	VFLLGAMQEPGHAMSSTLAGLFTRPEQFEAVVDEPGLIPRAIAEGMRWTAPIWSGTARIA VYLLGAMQEPGHCMASTLVGLFTRPEQLEAVIDEPALIPRAISEGMRWTSPIWSATARIS VYLLGAMQEPGHCMASTLVGLFSRPEQLEEVVDDPTLIPRAIAEGLRWTSPIWSATARIS *:***********	296 296 300
Rhodococcus pyridinivorans AK37 Rhodococcus jostii RHA1 Amycolatopsis sp. ATCC 39116	297 297 301	KRDTVVSGIEISEGSVVMLSYGSANHDIDVFDAPSRYDLTRPPLPHLAFGAGKHACAGIY TKDVTLGDVFLPEGSVVLLSYGSANHDTAVYDAPSDYDMTRPPLPHLAFGSGNHACAGIY TKPVTIAGVDLPAGTPVMLSYGSANHDTGKYEAPSQYDLHRPPLPHLAFGAGNHACAGIY	356 356 360
Rhodococcus pyridinivorans AK37 Rhodococcus jostii RHA1 Amycolatopsis sp. ATCC 39116	357 357 361	FANNVSRIGLEELLETIPNLERDTSEDVEFWGWGFRGPKTLHARWEI FANHVCRIGLEELFEAIPNLERDSGADVEFWGWGFRGPTALRATWEV FANHVMRIALEELFEAIPNLERDTREGVEFWGWGFRGPTSLHVTWEV	403 403 407

Fig. S1. Alignment of GcoA Sequences. Proteins from Table S1 were aligned with Clustal Omega¹ on the UniProt² website.

Fig. S2. Alignment of GcoB, BenC, and AntC reductases. Homology searches using the deduced amino acid sequence of GcoB from *Amycolatopsis* sp. ATCC 39116 (WP_020419854) identified significant similarity with BenC and AntC, which are three-domain reductases that partner with dioxygenase components in benzoate 1,2-dioxygenase and anthranilate 1,2-dioxygenase systems, respectively, from *A. baylyi* ADP1.³⁻⁵ Sequences were aligned with Clustal W.⁶ Structural elements of BenC⁵ are marked by ENDscript/ESPript.⁷ In BenC, the N-terminal ferredoxin domain is enclosed in an orange box, and blue triangles mark conserved residues involved in iron-sulfur center binding. The other domains of BenC are indicated by a yellow box, to mark the flavin-binding domain, and a dark blue box, to mark the domain that binds NADH.

Fig. S3. Guaiacol metabolism by *P. putida* **KT2440 carrying plasmids with** *gcoAB* genes. The guaiacol remaining in culture supernatants (Y axis) is shown for *P. putida* grown in minimal medium with glucose and guaiacol. Cells carried a plasmid vector (pBLT-2) with predicted *gcoAB* genes from *R. pyridinivorans* (pCJ120), *R. jostii* (pCJ114), or *Amycolatopsis* sp. (pCJ021). The concentration of guaiacol in the culture supernatant was analyzed by HPLC. Representative data from two independent experiments is shown. Plasmids are described in Table S3.

Fig. S4. Introduction of foreign DNA enables growth on guaiacol. With plasmid-expressed *Amycolatopsis gcoAB* in *P. putida*, strain KT2440(pCJ021) completely consumed 6 mM guaiacol provided as the sole carbon source in minimal medium. The concentration of guaiacol in the culture supernatant was analyzed using HPLC. Growth was assessed by OD at 600 nm. Data points represent averages of 3 biological replicates, and error bars indicate the standard deviations of the measurements.

Fig. S5. *A. baylyi* genetic arrangements. Foreign DNA was inserted in the ADP1 chromosome (not drawn to scale). Blue numbers mark genomic positions in ADP1 (NCBI reference NC_005966). The insertion of 15 bp, GAGAGGAGGACAGCT (black triangle), includes a ribosome binding site (RBS). Since this DNA can create an in-frame coding sequence with *gcoA*, the loss of DNA spanning the ends of *catA* and ACIAD1443 can result in gene fusions that encode one protein with a functional portion of CatA connected to GcoA (in its entirety) by a peptide linker (P) consisting of some ACIAD1443 residues and 5 amino acids encoded by the sequence shown in black (ERRTA). In ACN1764, this type of tethered fusion includes a 34-amino acid peptide linker. In ACN1738, regions of CatA and GcoA are directly connected. The purple box indicates the amplified region (amplicon). A copy number of 5 to 10 was detected in different amplification mutants. The 4606 bp region of foreign DNA has a GC content of 63%. ADP1 DNA from *benA* to *catM* has a GC content of 43%.

Fig. S6. Replacement of wild-type genomic DNA with DNA from an evolved Gua⁺ strain. Mutants derived from parent strain ACN1667 (top) may have mutations (*) in the foreign DNA (purple box), and/or elsewhere in the chromosome (*). 1) The gap-repair method enables plasmid-based capture of a target region via homologous recombination (X) in vivo.⁸ 2) Plasmids thus generated carry DNA from the mutant (blue box). 3) This gap-repaired plasmid can then be linearized and used to transform a wild-type recipient to generate reconstructed strains by allelic replacement (selected by Km^R). 4) The reconstructed strain can be tested to determine whether a single copy of the evolved DNA is sufficient for Gua⁺ growth.

Fig. S7. Selection of a gene fusion. A. A 249-bp PCR product (Fragment 1) is generated with primers MTV706 and MTV707 using ACN1667 template DNA. With template DNA from ACN1764 or ACN1762, a smaller, 81-bp product forms (Fragment 2), which corresponds to a 168-bp deletion in this region. ACN1764 is a Gua⁺ derivative of ACN1690 after EASy evolution, and ACN1762 is a reconstructed strain. **B**. Chromosomal copy number of F_{62} , was monitored by qPCR for samples taken during continuous culturing of ACN1690. Because F_{62} cannot be detected in strains with the 168 bp deletion, copy number drops to zero when most of the cells in the population have been selected to encode the fused protein. **C**. PCR was used to analyze genomic DNA from samples of the evolving population of ACN1690. Letters marking the lanes in panel C correspond to the samples analyzed by qPCR for F_{62} in panel B. In samples A through O, two PCR products were evident: Fragment 1 (249-bp), the parent strain configuration, and Fragment 2 (81-bp), carrying the 168 bp deletion. Fragment 2 predominated at later time points. In the right-most lane, template DNA from ACN1762 was used.

Fig. S8. Growth on guaiacol (6 mM) as the sole carbon source by *P. putida* strains with *catA-gcoA* and *gcoB* genes integrated in the chromosome. A. Unlike the results when *gcoA* and *gcoB* were chromosomally located as separate genes, the fused gene, *catA-gcoA*, and *gcoB* enabled a KT2440-derived strain, CJ499, to consume guaiacol as the sole carbon source, after a lag. **B**. Another KT2440-derived strain, CJ501, differs from CJ499 because it carries a deletion of a second *catA2*. In *P. putida* there are two *catA* genes. In CJ501 the fused *catA-gcoA* is the only gene encoding catechol 1,2-dioxygenase. The concentration of guaiacol in the culture supernatant was analyzed using HPLC. Growth was assessed by OD at 600 nm. Data points represent averages of 3 biological replicates, and error bars indicate the standard deviations of the measurements.

v					
Bacterium	Amino acids in protein	NCBI identifier	% identity to the N- terminal query sequence ^a	% identity to WP_006553158.1	Protein classification
Rhodococcus pyridinivorans AK37ª	403	EHK82401.1 WP_006553158.1	100	100	CYP255A4
Rhodococcus jostii RHA1	403	WP_011595125.1	85.7	75.9	CYP255A2
<i>Amycolatopsis</i> sp. ATCC 39116 ^b	407	WP_020419855.1	61.9	76.4	CYP255A6

Table S1. Sequences with homology to N-terminal residues from a guaiacol O-demethylatingcytochrome P450

^a The query sequence used for the NCBI BLAST program⁹ was MTSTLSWLDEITMEELERNPY, which was determined for a guaiacol *O*-demethylating cytochrome P450 from *Rhodococcus rhodochrous* strain 116, P450_{RR1}.¹⁰

^b Previously known as *Streptomyces setonii* or *Streptomyces griseus* strain 75iv2

	Table S2. <i>Acinetobacter baylyi</i> ^a and <i>Pseudomonas putida</i> strains Relevant Characteristics	Source		
A. bavlvi str	ains			
ADP1	Wild type (BD413)	11,12		
ACN1643	ACIAD1443::sacB-Km ^R 51643: counter-selectable marker inserted downstream of catA to	This study		
	facilitate subsequent strain construction			
	pBAC1215/AatII X ADP1 ^b selected by Km ^R			
ACN1661	ACIAD1443::gcoAB51661; pCJ021 served as the gcoAB gene source	This study		
	pBAC1255/EcoRI X ACN1643 ^b selected by growth in the presence of sucrose			
ACN1667	ACIAD1443::gcoAB51661; Km ^R 51667 (ΩK ^d cassette inserted downstream of gcoB), Gua	This study		
	parent strain single copy of <i>gcoAB</i> region			
	pBAC1261/EcoRI X ACN1661° selected by Km ^R			
ACN1676	ACIAD1443::gcoAB51661; Km ^k 51667; multiple chromosomal copies of a 9.7 kbp	This study		
	amplicon including $gcoAB$ (see Fig. S5); SBF51676°, $r D A C12(2)/Faa BL X A CN1((7b) calcuted has high level Km^{R} Cure$			
	pBAC1262/ECORT A ACIN166/ selected by high-level Kin, Gua			
ACN1686	ACIAD1443::gcoAB51661; Km [*] 51667; SBF51676 [°] multiple copies of 9.7 kbp amplicon	This study		
	Derived from ACN1076 by direct selection on a guaracol plate, Gua	T 1 · · · 1		
ACN1687	ACIAD1443::gcoAB51661; Km ⁺ 51667; SBF51676 ⁺ multiple copies of 9.7 kbp amplicon	This study		
ACN1600	$\Delta CIA D1442$: geo $AB51661$: $Km^{R}51667$: SDE51676° multiple copies of 0.7 ltbp empliced	This study		
ACIN1090	Derived from ACN1676 by direct selection on a guaiacol plate Gua^+	This study		
ACN1738	$cat A_{acc} A_{51738}$; $acc B_{51661}$; Km^{R}_{51667} ; $FAS_{v}_{derived}$ Gua^{+} isolate from evolving	This study		
ACINI750	population of ACN1687 (see Fig. S5)	This study		
ACN1739	catA-gcoA51738 · gcoB51661: Km ^R 51667: Reconstructed strain Gua ⁺	This study		
1101(175)	pBAC1314/NdeI X ADP1 ^b selected by Km ^R	i ilio stady		
ACN1762	<i>catA-p-gcoA51764</i> ; <i>gcoB51661</i> ; Km ^R 51667; Reconstructed strain, Gua ⁺	This study		
	pBAC1337/NdeI X ADP1 ^b selected by Km ^R	-		
ACN1764	<i>catA-p-gcoA51764</i> ; <i>gcoB51661</i> ; Km ^R 51667; EASy-derived Gua ⁺ isolate from evolving	This study		
	population of ACN1690 (see Fig. S5)			
ACN1850	ACIAD1443::gcoA51850 [encodes GcoA(G72D)], gcoB51850 [encodes GcoB(A4T)];	This study		
	Km [*] 51667; EASy-derived Gua ⁺ isolate from evolving population of ACN1686			
	Mutations identified in genome outside the <i>gcoAB</i> region (see Table S4)			
ACN1863	ACIAD1443::gcoA51661,gcoB51850 [encodes GcoB(A4T)]; Km [*] 51667; Reconstructed	This study		
	nBAC1446/NdeLX ADP1b selected by KmR			
ACN1881	ACIAD1443 ^{••} gco451850 [encodes GcoA(G72D)] gcoB51661 [•] Km ^R 51667 [•] Reconstructed	This study		
110111001	strain, Gua	1 mo oranj		
	pBAC1456/NdeI X ADP1 ^b selected by Km ^R			
ACN1886	ACIAD1443::gcoA51850 [encodes GcoA(G72D)], gcoB51850 [encodes GcoB(A4T)];	This study		
	Km ^R 5166; Reconstructed strain, Gua			
	pBAC1459/NdeI X ADP1 [°] selected by Km [×]			
ACN1887	<i>catA-p-gcoA51887; gcoB51661;</i> Km ^s 51667; Reconstructed strain, Gua ⁻ introduces the	This study		
	342-bp deletion encoding a fused protein observed in the evolving population of ACN168/			
	pBAC1479/AatII X ADP1 ^b selected by Km ^R			
P. putida strains				
KT2440	Wild type	ATCC		
		47054		
CJ499	<i>catA:gcoAB</i> (<i>catA-gcoA</i> fused), Gua ⁺	This study		

	Table S2. Acinetobacter baylyi ^a and Pseudomonas putida strains (continued)	
	Relevant characteristics and descriptions	Source
CJ501	$\Delta catA2 \ catA: gcoAB \ (catA-gcoA \ fused \ gene), \ Gua^+$	This study
CJ514	$\Delta catRBC$::Ptac: $catA$: $gcoAB$, converts guaiacol to muconate	This study
CJ516	$\Delta catRBC$::Ptac:catA:gcoAB (catA-gcoA fused gene), converts guaiacol to muconate	This study

^a A. baylyi strains were derived from ADP1, previously known as Acinetobacter calcoaceticus or Acinetobacter sp.¹²

^b In strains constructed by allelic replacement, blue text indicates the donor DNA and the restriction enzyme used to linearize the plasmid (pBAC number/Enzyme). The donor DNA transformed (X) the indicated recipient strain.

^CThe synthetic bridging fragment (SBF51676) corresponds to linearized pBAC1262

 ${}^{d}\Omega K$ indicates the omega drug-resistance cassette for Km^R from pUI1637

Table S3. Plasmids			
Plasmid	Relevant characteristics	Source	
pUC18, pUC19	Ap ^R ; cloning vectors	13	
pUI1637	Source of omega Km ^R cassette	14	
pRMJ1	Source of <i>sacB</i> -Km ^R cassette	15	
pBAC1152	Ap ^R ; SacI-SphI DNA from ADP1 (1,440,498-1,442,424) ^a , PCR product (primers ST69 and ST70) in pUC19 (partial <i>catA</i> , ACIAD1443, partial ACIAD1444)	This study	
pBAC1153	Ap ^R ; Changed GGATCA (1,441,335-1,441,340) ^a in ACIAD1443 on pBAC1152 to GGATCC (BamHI site) by site-directed mutagenesis. This change encodes a P instead of Q in the encoded protein.	This study	
pBAC1215	Ap ^R , Km ^R ; ACIAD1443:: <i>sacB</i> -Kan ^R 51643; <i>sacB</i> -Km ^R excised from pRMJ1 as a BamHI fragment, inserted into the BgIII site of pBAC1152	This study	
pBAC1250	Ap ^R ; Derived from pBAC1153 by site-directed mutagenesis to introduce two restriction sites. An EcoRV site (GATATC) was created (T \rightarrow C, 1,441,050 ^a) with primers MTV343 and MTV344. An SpeI site (ACTAGT) was created (C \rightarrow G, 1,441,024 ^a) with primers MTV341 and MTV342.	This study	
pBAC1255	Ap ^R ; ACIAD1443:: <i>gcoAB51661</i> ; <i>gcoAB</i> DNA was excised from pCJ021 by digestion with XbaI and EcoRV and ligated to pBAC1250 digested with SpeI and EcoRV. <i>gcoAB</i> are inserted in <i>A. baylyi</i> DNA downstream of <i>catA</i> .	This study	
pBAC1261	Ap ^R , Km ^R ; ACIAD1443:: <i>gcoAB51661;</i> Km ^R 51667; ΩKm ^R cassette was excised from pUI1637 as an EcoRV fragment and ligated to EcoRV-digested pBAC1255	This study	
pBAC1262	Ap ^R ; SBF51676. ACIAD1444 region (1,442,139-1,443,156) ^a upstream of <i>benE</i> region (1,438,049-1,439,238) ^a , constructed by SOEing ²⁰ PCR using primers MTV362-MTV365 cloned into SacI and PstI sites of pUC18	This study	
pBAC1278	Ap ^R , Made by excising the internal EcoRI fragment of pBAC1261; carries part of ACIAD1443 and ACIAD1444 from pBAC1261. Also carries EcoRV and BamHI sites introduced by site directed mutagenesis (see pBAC1153 and pBAC1250). Used to construct the gap-repair plasmid pBAC1282.	This study	
pBAC1280	Ap ^R ; <i>catA</i> -ACIAD1443 region $(1,439,827-1,441,020)^{a}$ with an engineered stop codon [TGA] introduced by changing C \rightarrow T at position 1,441,018. ^a cloned into EcoRI and EcoRV sites of pBAC1278 by incorporating these same sites at the ends of this region with PCR primers MTV388 and MTV390.	This study	
pBAC1282	Ap ^R , Km ^R ; Ω Kan ^R cassette from pUI1637 cut by Ecl136II and XmnI was cloned into EcoRV- digested pBAC1280. This plasmid, linearized with XbaI and EcoRV, allows capture of the <i>A</i> . <i>baylyi</i> chromosomal region containing <i>gcoAB</i> using the gap-repair method.	This study	
pBAC1314	Ap ^R , Km ^R ; <i>catA-gcoA51738</i> ; <i>gcoB51661</i> ; Km ^R 51667; DNA recovered from ACN1738 by the gap-repair method using linearized pBAC1282	This study	

Table S3. Plasmids (continued)				
Plasmid	Relevant characteristics	Source		
pBAC1337	Ap ^R , Km ^R ; <i>catA-p-gcoA51764</i> ; <i>gcoB51661</i> ; Km ^R 51667; DNA recovered from ACN1764 by the gap-repair method using linearized pBAC1282	This study		
pBAC1446	Ap ^R , Km ^R ; <i>gcoB51850</i> ; [encodes GcoB(A4T)] made by replacing the SbfI-PspOMI fragment of pBAC1261 with comparable DNA carrying the <i>gcoB</i> mutation discovered in ACN1850	This study		
pBAC1456	Ap ^R , Km ^R ; ACIAD1443:: <i>gcoA51850</i> ; [encodes GcoB(A4T)] made by replacing the SbfI-BsiWI fragment of pBAC1261 with comparable DNA carrying the <i>gcoA</i> mutation discovered in ACN1850	This study		
pBAC1459	Ap ^R , Km ^R ; ACIAD1443:: <i>gcoA51850; gcoB51850</i> [encodes GcoA(G72D) and GcoB(A4T)] constructed by replacing the BbvCI-BsiWI fragment of pBAC1261 with comparable DNA carrying both mutations discovered in ACN1850	This study		
pBAC1479	Ap ^R , Km ^R ; <i>catA-p-gcoAB51887</i> ; <i>gcoB51661</i> ; Km ^R 51667; the deletion revealed by Fragment 2 at day 23 (Sample B) in the evolving ACN1687 culture (Figure 3C) was reconstructed on a plasmid. A PCR product (generated with primers MTV388 and MTV704) was isolated and digested with BsiWI and EcoRI. This DNA was cloned by ligating to DNA with the same sequence as the largest fragment resulting from digestion of pBAC1337 with BsiWI and EcoRI. Essentially this method swaps the DNA sequence of the tethered fusion.	This study		
pBTL-2	Km ^R ; pBBR1-based broad host range plasmid used for expression in <i>P. putida</i> KT2440. (Addgene plasmid # 22806). A gift from Ryan Gill.	16		
pCJ004	Cm ^R ,Tc ^R ; For deletion of <i>catA2</i> in <i>P. putida</i> KT2440	17		
pCJ021	Km ^R ; The genes encoding GcoA (WP_020419855.1) and GcoB (WP_020419854.1) were amplified from <i>Amycolatopsis</i> sp. ATCC 39116 gDNA with primers oCJ169 and oCJ170 (2,291 bp) and assembled into pBTL-2 amplified linearly with primers oCJ160 and oCJ161 (2,595 bp).	This study		
pCJ114	Km ^R ; The genes encoding GcoA (WP_011595125.1) and GcoB (WP_011595126) were amplified from <i>Rhodococcus jostii</i> RHA1 gDNA with primers oCJ173 and oCJ174 (2262 bp) and assembled into pBTL-2 amplified linearly with primers oCJ160 and oCJ161 (2,595 bp).	This study		
pCJ120	Km ^R ; The genes encoding GcoA (EHK82401) and GcoB (EHK82400) from <i>Rhodococcus pyridinivorans</i> AK37 were codon optimized for expression in <i>P. putida</i> KT2440 and synthesized as two dsDNA fragments (1,159 and 1,160 bp) by SGI-DNA and assembled into pBTL-2 amplified linearly with primers oCJ160 and oCJ161 (2,595 bp).	This study		
pCJ121	Km ^R ; Plasmid for integration of genes encoding the CYP255A guaiacol O-demethylase and reductase from <i>Amycolatopsis</i> sp. ATCC39116 downstream of <i>catA</i> in <i>P. putida</i> KT2440. The genes encoding GcoA (WP_020419855.1) and GcoB (WP_020419854.1) were amplified from <i>Amycolatopsis</i> sp. ATCC 39116 gDNA with primers oCJ617/oCJ618 (2,308 bp) and assembled into pMFL56, ¹⁸ which contains the targeting regions for integration downstream of <i>catA</i> , amplified linearly with oCJ615 and oCJ616 (7,655 bp).	This study		
pCJ126	Km ^R ; Plasmid for integration of genes encoding the CYP255A guaiacol O-demethylase and reductase from Amycolatopsis sp. ATCC39116 downstream of <i>catA</i> in <i>P. putida</i> KT2440, with <i>gcoA</i> fused to <i>catA</i> . The fusion was created by amplifying pCJ121 with primers oCJ619 and oCJ620 (9,878 bp) and using the Q5 Site-Directed Mutagenesis Kit (New England Biolabs) to circularize the product according to the manufacturer's instructions.	This study		
pMFL22	Cm^{R}, Tc^{R} ; For deletion of <i>catBC</i> and integration of the tac promoter upstream of <i>catA</i> in <i>P. putida</i> KT2440.	18		
pCJ021	Km ^R ; The genes encoding GcoA (WP_020419855.1) and GcoB (WP_020419854.1) were amplified from <i>Amycolatopsis</i> sp. ATCC 39116 gDNA with primers oCJ169 and oCJ170 (2,291 bp) and assembled into pBTL-2 amplified linearly with primers oCJ160 and oCJ161 (2,595 bp).	This study		

^aGenomic positions in ADP1 (NCBI reference NC_005966)

Table S4. Primers					
Name	Sequence $(5' \rightarrow 3')$	Uses and Notes			
MTV274	GCTCGACGCCTTCTATTTCAA	For <i>rpoA</i> copy number analysis; used with MTV275 for qPCR			
MTV275	TTTACGTCGCATTCTATTGTCTTCTT	For <i>rpoA</i> copy number analysis; used with MTV274 for qPCR			
MTV302	GCGTTGGCTACCCGTGATA	For Km copy number analysis; used with MTV303 for qPCR			
MTV303	GGAAGCGGTCAGCCCATT	For Km copy number analysis; used with MTV302 for qPCR			
MTV341	TCATGGTAAAAGCCG <mark>ACTAGT</mark> CAATGAGCTG ATCG	With MTV342 for C \rightarrow G mutagenesis; creates Spel site to change pBAC1153 to pBAC1250			
MTV342	CGATCAGCTCATTG <mark>ACTAGT</mark> CGGCTTTTACC TGA	With MTV341 for C \rightarrow G mutagenesis; creates Spel site to change pBAC1153 to pBAC1250			
MTV343	ATGAGCTGATCGGGACA <mark>GATATC</mark> TTTTCTGT TGCCG	With MTV344 for T \rightarrow C mutagenesis; creates EcoRV site to change pBAC1153 to pBAC1250			
MTV344	CGGCAACAGAAAA <mark>G</mark> ATATCTGTCCCGATCAG CTCAT	With MTV343 for T \rightarrow C mutagenesis; creates EcoRV site to change pBAC1153 to pBAC1250			
MTV357	CTGGGGCTGGGGCTTCC	With MTV358 amplifies 468 bp of <i>gcoAB</i> region			
MTV358	CGACCAGCTCGACGTACTGC	With MTV357 amplifies 468 bp of <i>gcoAB</i> region			
MTV362	GAGTCA <mark>GAGCTC</mark> ACATTCAATTGTTTATCGA AC	Used to make SBF (pBAC1262); with MTV363 amplifies 1018 bp of ACIAD1444; SacI site			
MTV363	GTTTTTAACAGGGTTGTCAT <mark>GGTAAAACCTT</mark> AAACCTTCAA	Used to make SBF (pBAC1262); with MTV362 amplifies 1018 bp of ACIAD1444; overlapping sequence (<i>benE</i>) for SOEing ²⁰ PCR			
MTV364	TTGAAGGTTTAAGGTTTTACCATGACAACCC TGTTAAAAAC	Used to make SBF (pBAC1262); with MTV365 amplifies 1190 bp of <i>benE</i> ; overlapping sequence (ACIAD1444) for SOEing ²⁰ PCR			
MTV365	GATGAT <mark>CTGCAG</mark> TTAGTTTAGCTGGCTTTGG	Used to make SBF (pBAC1262); with MTV364 amplifies 1190 bp of <i>benE</i> ; PstI site			
MTV379	TTTAAGCGTATTGCCGAATCAG	For fragment 62 (F ₆₂) copy number analysis. Used with MTV380 for qPCR			
MTV380	CAAACTGCATCAGACGAACCA	For fragment 62 (F ₆₂) copy number analysis. Used with MTV379 for qPCR			
MTV388	GAGTCA <mark>GAATTC</mark> GGCGATTTCAAG	Used with MTV390 to amplify <i>catA</i> -ACIAD1443 DNA and to introduce an EcoRI site for cloning. Also used with MTV704 to amplify fragment 2 (Figure 3C) for construction of pBAC1479.			
MTV390	GATGAT <mark>GATATC</mark> TC A GCTTTTACCATGATTA TATTTACC	Used with MTV388 to amplify <i>catA</i> -ACIAD1443 DNA and introduce a stop codon in ACIAD1443. Introduces an EcoRV site for cloning; C→T at position 1,441,018			
MTV459	GATGAT <mark>TCTAGA</mark> TTACACCGCTAGACGTG	Used with MTV388 to amplify <i>catA</i> region and to introduce an Xbal site for cloning			
MTV704	AGCCGCTCGTACACCTCGTA	Used with MTV388 to amplify fragment 2 (Figure 3C) from DNA of evolving ACN1687 (isolated at day 23). Used to make pBAC1479			
MTV706	ATCAGACGAACCAAGCGTG	Binds to ACIAD1443. Used with MTV707 to detect deletions that occur during evolution, including some that create tethered fusions (<i>catA-p-gcoA</i>).			
MTV707	CGATCTAAAATTGACGCGTTTG	Binds to <i>catA</i> . Used with MTV706 to detect deletions that occur during evolution, including some that create tethered fusions (<i>catA-p-gcoA</i>).			
MTV714	CGACCCAACAGGCGAGCAGCA	Binds to <i>catA</i> . With MTV715 used to detect deletions that occur during EASy evolution of strains growing on guaiacol.			
MTV715	CGAGATCGGGCCGTTCGGTTTGG	With MTV714 used to detect deletions that occur during EASy evolution of strains growing on guaiacol.			
MTV751	GAGATCGGGCCGTTCGGT	Binds to <i>gcoA</i> . With MTV770 used to detect deletions that occur during evolution, including some that create fusions (<i>catA-gcoA</i> or <i>catA-p-gcoA</i>).			
MTV770	TGCTGAATCAGTTGGGCCG	Binds to <i>catA</i> . With MTV751 used to detect deletions that occur during evolution, including some that create fusions (<i>catA-gcoA</i> or <i>catA-p-gcoA</i>).			
ST69	GTTATC <mark>GAGCTC</mark> ATGGTAACCGCCCTG	With ST70 amplifies region between <i>catA-ACIAD1444</i> (1,440,498-1,442,425). ST69 introduces a SacI site to <i>catA</i> . Used to make pBAC1152			
ST70	GTCTAA <mark>GCATGC</mark> AAGCAACATCACCCGATC	With ST69 amplifies region between <i>catA</i> -ACIAD1444 (1,440,498-1,442,425). ST70 introduces a SphI site to ACIAD1444 Used to make pBAC1152			

	Table S4. Primers (continued)				
Name	Sequence $(5' \rightarrow 3')$	Uses and Notes			
ST71	GATCAGATACC <mark>GGATCC</mark> GACAATTTTAACCC AG	Used with ST72 to introduce a BamHI site in pBAC1153			
ST72	CTGGGTTAAAATTGTC <mark>GGATCC</mark> GGTATCTGA TC	Used with ST71 to introduce a BamHI site in pBAC1153			
oCJ160	GATATCATTCAGGACGAGCCTCAGACTCC	Forward primer for linear amplification of pBTL-2			
oCJ161	CTCTAGAGTGTGAAATTGTTATCCGCTCACA ATTCC	Reverse primer for linear amplification of pBTL-2			
oCJ169	aacaatttcacacTCTAGAgAGGAGGACAGC TATGACGACGACCGAACGGCC	Forward primer for amplification of the genes encoding GcoA and GcoB from <i>Amycolatopsis</i> sp. ATCC 39116 gDNA, incorporating a <u>Shine-</u> <u>Dalgarno consensus RBS</u> and overlapping sequence for assembly into pBTL- 2			
oCJ170	ggctcgtcctgaatGATATC GCGTG	Reverse primer for amplification of the genes encoding GcoA and GcoB from <i>Amycolatopsis</i> sp. ATCC 39116 gDNA with overlapping sequence for assembly into pBTL-2			
oCJ173	aacaatttcacacTCTAGAgAGGAGGACAGC TATGACCGCCACCCTGTCTTGG	Forward primer for amplification of the genes encoding GcoA and GcoB from <i>R. jostii</i> RHA1 gDNA, incorporating a Shine-Dalgarno consensus RBS and overlapping sequence for assembly into pBTL-2			
oCJ174	ggctcgtcctgaatGATATC GCG	Reverse primer for amplification of the genes encoding GcoA and GcoB from <i>R. jostii</i> RHA1 gDNA with overlapping sequence for assembly into pBTL-2			
oCJ615	gttcgaggttatgtcactgtgattttgcctg	Forward primer for amplification of the downstream targeting region for integration downstream of <i>catA</i> from pMFL56			
oCJ616	CTCGAGtcagccctcctgcaac	Reverse primer for amplification of the upstream targeting region for integration downstream of <i>catA</i> from pMFL56			
oCJ617	cgcgggcgttgcaggagggctgaCTCGAG <mark>AG</mark> <u>GAGGTAATAC</u> atgacgaccgaacggc	Forward primer for amplification of the genes encoding GcoA and GcoB from <i>Amycolatopsis</i> sp. ATCC 39116, incorporating a <u>RBS</u> calculated using the Salis <u>RBS</u> calculator ¹⁹ and overlapping sequence for assembly with the upstream targeting region for integration downstream of <i>catA</i> in <i>P. putida</i> KT2440			
oCJ618	aggcaaaatcacagtgacataacctcgaac <mark>G</mark> TTTAAACtcacgaggccggcgtgaac	Reverse primer for amplification of the genes encoding GcoA and GcoB from <i>Amycolatopsis</i> sp. ATCC 39116 with a Pmel site and overlapping sequence for assembly with the downstream targeting region for integration downstream of <i>catA</i> in <i>P. putida</i> KT2440			
oCJ619	accgaacggcccgatctcg	Forward primer for site directed mutagenesis of pCJ121 to generate the CatA-GcoA fusion in <i>P. putida</i> KT2440			
oCJ620	cgcctcggcgtcaggc	Forward primer for site directed mutagenesis of pCJ121 to generate the CatA-GcoA fusion in <i>P. putida</i> KT2440			

Table S5. Syn optimized for	Table S5. Synthesized dsDNA fragments containing genes encoding GcoA and GcoB Rhodococcus pyridinivorans AK37,optimized for expression in P. putida KT2440				
Name	Sequence (5' \rightarrow 3'). Overlaps for assembly together into pBTL-2 are in gray, RBSs calculated using the Salis ¹⁹ RBS calculator are <u>underlined</u> , and start and stop codons are in bold .				
Fragment 1 (GcoA)	gtgagcggataacaatttcacacTCTAGAg GACGAAAGTATT atgaccagcaccctctcgtggctcgacgagatcaccatggaggagctggagcg taacccgtatccggtgtacgaacgtctgcgcgcagaagcaccagtggcctttgttccagtgctgggcgcctatgtggccagtaccactgaagcct gacgtgcagtagcagcggtgatcgcagcagcagcggtggatcgtcgacgggggggg				
Fragment 2 (GcoA, GcoB)	gcatcggcctggaagagctgttggagaccatccgaacctggaacgcgacaccagcgaagacgtggagttctggggttggggcttcagaggcccg aaaaccctgcatgcacgctgggagatc tga AGGAGAGAACT atg ccgtacaccctcaccgctggaaccggtgttgtgccatgcgaaccaggtcg taccgtgctggaagccttcctgcgtaacggcaactggatgccgaacagctgcaaccaggggcacctgtggtacctgcaagatcaaggtgctggacg gcgagctggaccatcgtaatagcccggaagagccctgaccgcgacgaattagcagccggttcgtggtggtggaccgtaacaggtggggattcg gatgtggccttcgaaaccccagccaccgaagaaccagccggtacccatgtgctgcggatgtggtggaggtgaccgtaacggagattgg cgccgatacccgcaagtgctgctgactgccgacgaggagccaggaactggagctggattcgcgcgatgggggggg				

Genes with	ADP1	Nucleotide	Amino acid change	Potential function of gene product
mutations	Genome position of	Codon change	Total residues	
	mutation ^c	course enange	1000110010000	
ACIAD1064	1,061,077	C→T	G→D	Putative ester hydrolase (EstB)
		GGC→GAC	141/312	
		(reverse strand)		
<i>pbpA</i>	1,091,644	C→T	W→stop	Penicillin-Binding Protein 2
ACIAD1101		UGG→UAG	366/675	
		(reverse strand)		
lon	1,103,385-	39 bp deletion	In frame deletion of 13	DNA-binding ATP-dependent
ACIAD1115	1,103,423	(reverse strand)	residues	protease
			(EYFLNEKMKVIQR)	
			between R237 and	
			E251/808 aa WT protein	
ACIAD1354	1,350,431	G→A	W→stop	Putative phospholipase A1
			385/386	precursor (PldA)
ACIAD1807	1,814,453-	47 bp deletion	After Y238, frame shift	Dipeptidyl-aminopeptidase/
	1,814,499		adds 5 residues (LGCKP)	acylaminoacyl-peptidase
			and stop	
	-		386 aa WT protein	
ACIAD3076	3,003,892-	207 bp deletion	Prevents translation	Small hypothetical protein of
	3,004,098		117 aa WT protein	unknown function (12 kDa)
ACIAD3450	3,372,250	1 bp deletion	After G345, frame shift	Putative transport protein, unknown
			adds 11 residues	function, major facilitator
			(AFLAVRWVGNC) and	superfamily (MFS) member
			stop	
			454 aa WT protein	
			frame shift occurs in the 11 th	
			of 12 transmembrane	
			helices	

Table S6. Mutations in ACN1850 outside the gcoAB region^{a,b}

^aMutations were identified as differences between the sequence of the parent strain and the evolved strain by whole genome resequencing ^bSequence changes were observed in 80% or more of the reads ^cNumbers correspond to positions in the ADP1 genome deposited in NCBI (NC_005966)

REFERENCES

- 1. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Systems Biol.* **7**, 539 (2011).
- 2. The UniProt, C. UniProt: the universal protein knowledgebase. *Nucleic Acids Res.* **45**, D158-D169 (2017).
- Bundy, B.M., Campbell, A.L. & Neidle, E.L. Similarities between the *antABC*-encoded anthranilate dioxygenase and the *benABC*-encoded benzoate dioxygenase of *Acinetobacter* sp. strain ADP1. *J. Bacteriol.* 180, 4466-4474 (1998).
- 4. Eby, D.M., Beharry, Z.M., Coulter, E.D., Kurtz, D.M., Jr. & Neidle, E.L. Characterization and evolution of anthranilate 1,2-dioxygenase from *Acinetobacter* sp. strain ADP1. *J. Bacteriol.* **183**, 109-118 (2001).
- 5. Karlsson, A. et al. X-ray crystal structure of benzoate 1,2-dioxygenase reductase from *Acinetobacter* sp. strain ADP1. *J*.*Mol. Biol.* **318**, 261-272 (2002).
- 6. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948 (2007).
- 7. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res.* **42**, W320-324 (2014).
- 8. Gregg-Jolly, L.A. & Ornston, L.N. Recovery of DNA from the Acinetobacter calcoaceticus chromosome by gap repair. *J Bacteriol* **172**, 6169-6172 (1990).
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 (1990).
- 10.Eltis, L.D., Karlson, U. & Timmis, K.N. Purification and characterization of cytochrome P450RR1 from *Rhodococcus rhodochrous*. *Eur. J. Biochem.* **213**, 211-216 (1993).
- 11. Juni, E. & Janik, A. Transformation of *Acinetobacter calcoaceticus* (Bacterium anitratum). J. Bacteriol. 98, 281-288 (1969).
- 12. Vaneechoutte, M. et al. Naturally transformable *Acinetobacter* sp. strain ADP1 belongs to the newly described species *Acinetobacter baylyi*. *App. Environ. Microbiol.* **72**, 932-936 (2006).
- 13. Yanisch-Perron, C., Vieira, J. & Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. *Gene* **33**, 103-119 (1985).
- 14. Eraso, J.M. & Kaplan, S. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in *Rhodobacter sphaeroides*. J. Bacteriol. **176**, 32-43 (1994).
- 15.Jones, R.M. & Williams, P.A. Mutational analysis of the critical bases involved in activation of the AreR-regulated σ54-dependent promoter in *Acinetobacter* sp. strain ADP1. *App. Environ. Microbiol.* **69**, 5627-5635 (2003).
- 16.Lynch, M.D. & Gill, R.T. Broad host range vectors for stable genomic library construction. *Biotechnol. Bioeng.* 94, 151-158 (2006).
- 17. Johnson, C.W. & Beckham, G.T. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. *Metab. Eng.* 28, 240-247 (2015).
- 18. Vardon, D.R. et al. Adipic acid production from lignin. Energy Environ. Sci. 8, 617-628 (2015).
- 19. Salis, H.M., Mirsky, E.A. & Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. *Nature biotechnol.* **27**, 946 (2009).
- 20. Horton R.M., Cai Z.L., Ho S.N., & Pease L.R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. *Biotechniques* 8, 528-535 (1990).