SUPPORTING INFORMATION

The *Methanosarcina mazei MM2060* gene encodes a bifunctional kinase/decarboxylase enzyme involved in cobamide biosynthesis

Norbert K. Tavares¹, Carmen L. Zayas^{2§}, and Jorge C. Escalante-Semerena^{1*}

¹Department of Microbiology, University of Georgia, Athens, GA 30602, USA ²Department of Bacteriology, University of Wisconsin, Madison, 53706, USA

Running title: a new bifunctional archaeal L-Thr kinase / L-Thr-P decarboxylase

*To whom correspondence should be addressed: Jorge C. Escalante-Semerena, Department of Microbiology, University of Georgia, 212C Biological Sciences Building, 120 Cedar Street, Athens, GA, 30602, USA. Phone: 706-542-2651, Fax: 706-542-2815 email: jcescala@uga.edu, www.escalab.com

[§]Current address: Aurora Medical Center, Summit WI 53066

Keywords: Bacterial metabolism, kinase, decarboxylase, coenzyme biosynthesis, zinc finger, B12

SUPPORTING FIGURES

Figure S1. Multiple sequence alignment of CobD from methanogenic archaea with CobD from S. enterica - Conserved residues are highlighted in red. Residues with similar properties are boxed in blue. The top row displays the secondary structure of the protein based on the crystal structure of CobD from S. enterica.

Figure S2. The intracellular concentration of Cby is the limiting factor for the complementation of S. enterica by MmCobD - Cobalamin-dependent growth was assessed in minimal medium supplemented with glycerol and Cby. Shown is the effect of increasing levels of Cby (1, 10, 20, and 50 nM) on the complementation of a *S. enterica cobD* strain with plasmids expressing (*A*) $MmCobD^{1-385}$ (pMmCOBD7) or (*B*) MmCobD (pMmCOBD18), relative to SeCobD (pCOBD6, black squares). Growth analysis was performed in duplicate independent experiments in three technical replicates with error bars indicating the standard error of the mean. Error bars are present but smaller than the symbols due to the low deviation between replicates in these representative growth curves. (*C*) Table of growth rates, lag times, and generation times as a function of Cby concentration.

A	∆ <i>cobD</i> /p <i>Mm</i> CobD ¹⁻³⁸⁵	В	∆ <i>cobD</i> /p <i>Mm</i> CobD	С	Strain	Cby (nM)	growth rate (h)	lag time (h)
						()		
ensity (630 nm) 🔒		1 (uu		∆col	bD/pMmCobD ¹⁻³⁸⁵	1	8.2	12
						10	4.5	10
		530r				20	4.3	11
		ity ((50	3.7	4
		ensi		∆col	b <i>D</i> /p <i>Mm</i> CobD	1	9.2	16
al D		al D				10	2.2	12
ptic	ΔcobD/pMmCobD ¹⁻³⁸⁵	ptic				20	2.2	8
O 0.1-	← 50 nM Cby ← 20 nM Cby − 10 nM Cby	O 0 1 ·				50	2.3	4
	1 nM Cby 1 nM Cby	0.1	1 nM Cby	Δcol	bD/pSeCobD	1	2.2	3
	Time (h)	0	Time (h)			50	1.5	3

Figure S3. MmCobD and SeCobD cannot decarboxylate L-Ser-P - Representative ¹³C-NMR spectra of duplicate independent experiments. Spectra were processed with MestReNova (Mestrelab Research). Reaction mixtures containing sodium phosphate buffer (5 mM, pH 8.5 at 25°C), MgCl₂ (5 mM), ATP (40 mM), L-Ser (40 mM), and protein (0.68 μ M) were incubated for 1 h at 25°C prior to the addition of D₂O (17% v/v). Each panel is labeled with the substrate and or protein reaction mixture. Each peak is labeled with the chemical shift value (ppm) and a color-coded letter corresponding to the carbon atom it represents, based on the corresponding chemical shifts for the standards in the no-enzyme control reactions. (*A*) Reaction and chemical structures of substrates with each carbon atom labeled with a color-coded letter. (*B*) *O*-Phospho-L-serine standard (L-Ser-P; red). (*C*) Ethanolamine phosphate (EA-P; boxed purple). (*D*) Equimolar mixture of L-Ser-P and EA-P standards. (*E*) Reaction containing L-Ser-P and *Se*CobD. (*F*) Reaction containing L-Ser-P and *Mm*CobD.

Figure S4. MmCobD cannot use L-Ser as a substrate - Representative ¹³C-NMR spectra of duplicate independent experiments of *Mm*CobD kinase reaction. Spectra were processed with MestReNova (Mestrelab Research). Reaction mixtures containing sodium phosphate buffer (5 mM, pH 8.5 at 25°C), MgCl₂ (5 mM), ATP (40 mM), L-Ser (40 mM), and protein (0.68 μ M) were incubated for 1 h at 25°C prior to the addition of D₂O (17% v/v). Each panel is labeled with the substrate and or protein reaction mixture. Each peak is labeled with the chemical shift value (ppm) and a color-coded letter corresponding to the carbon atom it represents, based on the corresponding chemical shifts for the standards in the no-enzyme control reactions. (*A*) Reaction and chemical structures of substrates with each carbon atom labeled with a color-coded letter. (*B*) L-serine standard (L-Ser; green). (*C*) *O*-Phospho-L-serine standard (L-Ser-P; red). (*D*) Ethanolamine phosphate (EA-P; boxed purple). (*E*) ATP standard (blue). (*F*) Equimolar mixture of ATP, L-Ser, L-Ser-P and EA-P. (*G*) Reaction containing ATP, L-Ser, and *Mm*CobD.

Figure S5. Optimization of MmC*obD reaction conditions* - ATPase activity assay measured with ADP-GloTM Assay Kit (Promega). Values were compared to a standard curve for ATP luminescence *vs* conversion and converted into units of ATP produced (mM) per μ M of protein, with the standard error of the mean of triplicate reactions represented by the error bars. Unless otherwise indicated, reaction mixture contained HEPES buffer (50 mM, pH 8.5 at 25°C), MgCl₂ (1 mM), ATP (0.1 mM), L-Thr (0.1 mM), protein (100 nM), incubated at 25°C for 1 h. (*A*) *Mm*CobD activity as a function of pH. (*B*) *Mm*CobD activity as a function of added divalent metals (1 mM). (*D*) Enzymatic activity of truncations and *Mm*CobD in the presence of ATP (10 mM) and L-threonine (L-Thr, 50 mM) or (*E*) L-serine (L-Ser, 50 mM). *Se*CobD and *Se*PduX proteins were used as negative and positive controls, respectively. (*F*) *MmCobD* activity as a function of L-threonine (L-Thr) concentration (1-100 μ M). (*G*) *Mm*CobD activity as a function of ATP concentration (1 - 100 μ M), sodium pyrophosphate (PPi, 10 mM), adenosine 5'-[γ -thio]triphosphate (ADP- γ -S, 0.1 mM), sodium *ortho*-vanadate (Na₃VO₄, 1 mM), and sodium beryllium fluoride (BeF₂, 2 mM) in HEPES buffer (50 mM, pH 7.5 at 25°C). (*I*) *Mm*CobD and *Mm*CobD (*G*) and *Mm*CobD (*G*) and *Mm*CobD activity as a function of ATP concentration (1 - 100 μ M), sodium pyrophosphate (PPi, 10 mM), adenosine 5'-[γ -thio]triphosphate (ADP- γ -S, 0.1 mM), sodium *ortho*-vanadate (Na₃VO₄, 1 mM), and sodium beryllium fluoride (BeF₂, 2 mM) in HEPES buffer (50 mM, pH 7.5 at 25°C). (*I*) *Mm*CobD and *Mm*CobD¹⁻³⁸⁵ activity in the presence ADP- γ -S, (0.1 mM). *Se*EtuP acetate kinase was used as a positive control; protein concentrations (0.1 mM).

Figure S6. Gel permeation analysis for the determination of the oligomeric state of MmCobD *proteins* - Gel filtration analysis of *Mm*CobD and truncated variants. Samples were applied to a HiPrep 26/60 Sephacryl S-100 High-resolution gel filtration column using isocratic elution with sodium phosphate (50 mM, pH 7.4 at 4°C) containing NaCl (150 mM). Calibration was performed with Bio-Rad gel filtration standards supplemented with BSA and DNaseI with linear regression to generate the standard curve. *Mm*CobD and *Mm*CobD¹⁻³⁸⁵ correspond to the approximate molecular mass of a dimer and *Mm*CobD³⁸⁶⁻⁴⁹⁷ corresponds to the molecular mass of a monomer.

Figure S7. Purification of Mm*CobD proteins* - SDS-PAGE gel of proteins purified normoxically. Lane (*1*) *Mm*CobD, (*2*) *Mm*CobD¹⁻³⁸⁵, (*3*) *Mm*CobD³⁸⁶⁻⁴⁹⁷, (*4*) *Se*CobD. Molecular mass markers are shown on the left most lane. Red letters identify (a) high and (b) low molecular weight proteins analyzed by MALDI TOF (see Fig. S8).

Figure S8. MALDI TOF analysis of MmCobD proteins. Panels A and B show the mass spectra of bands labeled **a** and **b** in lane 1 of Fig. S7. Panels C and D show the coverage of the analysis, which identified these proteins as *Mm*CobD.

SUPPORTING TABLES

Table S1. Strains and plasmids list - S. enterica strains are derivatives of sv. Typhimurium strain LT2. Strains and plasmids were constructed during the course of this work unless stated otherwise.

Strains	Relevant genotype	Reference / Source					
Salmonella enterica							
JE7088	$\Delta metE2702 ara-9$	Laboratory collection					
Derivatives of JE7088							
JE21644	/ pBAD24 bla^+						
JE21557	/ pTEV5 bla ⁺						
JE12656	pduX516						
JE16777	<i>pduX516 cobD1371</i>						
JE2216	$cobD1302::Tn10d(cat^+)$	Laboratory collection					
JE21654	$cobD1302::Tn10d(cat^{+}) / pBAD24 bla^{+}$	5					
JE21653	$cobD1302::Tn10d(cat^+) / pTEV5 bla^+$						
JE6158	$cobD1302::Tn10d(cat^+) / pCOBD6 bla^+$	Laboratory collection					
JE21656	$cobD1302:::Tn10d(cat^+) / pMmCOBD7 bla^+$						
JE21781	$cobD1302::Tn10d(cat^+) / pMmCOBD9 bla^+$						
JE21657	$cobD1302::Tn10d(cat^+) / pMmCOBD13 bla^+$						
JE21646	$cobD1302::Tn10d(cat^+)$ / pMmCOBD17 bla^+						
JE21659	$cobD1302::Tn10d(cat^+)$ / pMmCOBD18 bla^+						
JE21782	$cobD1302::Tn10d(cat^+) / pMmCOBD19 bla^+$						
JE18765	$pduX516 / pMmCOBD7 \hat{b}la^+$						
JE21619	<i>pduX516 /</i> pMmCOBD9 <i>bla</i> ⁺						
JE18970	<i>pduX516</i> / pMmCOBD13 <i>bla</i> ⁺						
JE19204	<i>pduX516</i> / pMmCOBD17 <i>bla</i> ⁺						
JE21336	<i>pduX516</i> / pMmCOBD18 <i>bla</i> ⁺						
JE19205	<i>pduX516</i> / pMmCOBD19 <i>bla</i> ⁺						
JE16786	<i>pduX516 cobD1371 /</i> pBAD24 <i>bla</i> ⁺						
JE19200	<i>pduX516 cobD1371 /</i> pMmCOBD17 <i>bla</i> ⁺						
Escherichia coli							
C43 (\lambda DE3)	F^{-} ompT gal hsdS _B (rB ⁻ mB) [dcm] [Ion]	1					
DH5a	F' endAl hsdR17(rk ⁻ , mk ⁺) glnV44 thi-l recAl gyrA96 (Nx ^R)	2					
	relA1 U169 deoR (Φ 80d lacZ Δ M15 Δ (lacZYA-argF) phoA						
	supE44						
Plasmids							
pCOBD6	S. enterica $cobD^+$ in pT7-7 bla^+	Laboratory collection					
pMmCOBD7	<i>M. mazei cobD19</i> (encoding <i>Mm</i> CobD ¹⁻³⁸⁵) in pBAD24 bla^+	5					
pMmCOBD9	<i>M. mazei cobD19</i> (encoding <i>Mm</i> CobD ¹⁻³⁸⁵) in pTEV5 bla^+						
pMmCOBD13	<i>M. mazei cobD20</i> (encoding <i>Mm</i> CobD ³⁸⁶⁻⁴⁹⁷) in pBAD24 bla^+						
pMmCOBD17	<i>M. mazei cobD</i> ⁺ in pBAD24 bla^+						
pMmCOBD18	<i>M. mazei cobD</i> ⁺ in pTEV5 bla^+						
pMmCOBD19	<i>M. mazei cobD20 $cobD^{386-497}$ in pTEV5 bla^+</i>						
pPDU15	S. enterica $pduX^+$ in pBAD30 bla^+	Laboratory collection					
pPDU23	S. enterica $pduX^+$ in pTEV5 bla^+	Laboratory collection					
pBAD24	cloning/complementation vector bla ⁺	3					
pBAD30	cloning/complementation vector bla ⁺	3					
pTEV5	cloning/overexpression vector, N-terminal rTEV cleavable His ₆	4					
	tag bla^+						

Name	Sequence				
Deletion primers					
cobD_wan5'_b	CAGTTACTGGATTTTAGCGCAAACATTAATCCGCTGGGTATGGTGTAGGCTGGAGCTGCTTC				
cobD_wan3'_b	ACTACATCAATCAGCAGGGGCTATACCGGTAAGCACATTCATATGAATATCCTCCTTAG				
pduX_wan5'_b	ATGCGCGCACACTATTCGTACCTGAAAGGTGATAATGTGGTGTAGGCTGGAGCTGCTTC				
pduX_wan3'_b	GCCAGTGACCATCTTGAGTAAATGTTGTTTTGGCCAGTGCATATGAATATCCTCCTTAG				
Cloning primers					
pduX KpnI5'	TAGGGGTACCATGCGCGCACACTATTCGTA				
pduX Hind3'	TAGGAAGCTTTCACTGCAGTTTGACCCCG				
CobD-Nhe5'	TAGGGCTAGCATGGCGTTATTCAACAGCG				
CobD-SacI3'	TAGGGAGCTCTCAATCAGCAGGGGCTATACC				
MmCobD Nhe5'	TAGGGCTAGCATGTCAGAGCAAAGAAGTGTACCT				
MmCobD_Sma3'	TAGGCCCGGGTCATAAGATAGGCTCCATCACTTCTTTC				
MmCobD_short_Kpn5'	TAGGGGTACCATGTCAGAGCAAAGAAGTGTACCT				
MmCobD_short_Nhe5'	TAGGGCTAGCATGTCAGAGCAAAGAAGTGTACCT				
MmCobD_short_Hind3'	TAGGAAGCTTTTATTACCATTCGGTGATAACGTCC				
MmCobDzf_NheI5'	TAGGGCTAGCATGGGCAGAGAACAGGCAAA				
MmCobDzf_SacI3'	TAGGGAGCTCTCATAAGATAGGCTCCATCACTTC				
Sequencing primers					
nduX flank5'	GCGTAATGCGACATTTATCCA				
nduX flank3'	TGAGGCGATTCAGGGTATCAT				
cobD flank5'	CGACATTGGCCTCGGTTT				
cobD_flank3'	GAAACGCCCTGGCTTAAT				
coop_nank5					

Table S2. Primers used in this study - Restriction sites are indicated in boldface type.

REFERENCES

- [1] Miroux, B., and Walker, J. E. (1996) Over-production of proteins in *Escherichia coli*: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels, *J. Mol. Biol. 260*, 289-298.
- [2] Woodcock, D. M., Crowther, P. J., Doherty, J., Jefferson, S., De Cruz, E., Noyer-Weidner, M., Smith, S. S., Michael, M. Z., and Graham, M. W. (1989) Quantitative evaluation of *Escherichia coli* host strains for tolerance to cytosine methylation in plasmid and phage recombinants, *Nucl. Acids Res.* 17, 3469-3478.
- [3] Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter, *J. Bacteriol.* 177, 4121-4130.
- [4] Rocco, C. J., Dennison, K. L., Klenchin, V. A., Rayment, I., and Escalante-Semerena, J. C. (2008) Construction and use of new cloning vectors for the rapid isolation of recombinant proteins from *Escherichia coli*, *Plasmid 59*, 231-237.