Supplemental Material: Annu. Rev. Nutr. 2017. 37:293–320 https://doi.org/10.1146/annurev-nutr-071715-051004 Nature, Nurture, and Cancer Risks: Genetic and Nutritional Contributions to Cancer Theodoratou et al. Supplemental Table 1 General characteristics of the meta-analyses of prospective observational studies in breast cancer. Evidence class was decided on the basis of the following criteria: Convincing evidence (class I) required >1,000 cases, highly significant summary associations ($P < 10^{-6}$ by random effects), a 95% prediction interval not including the null, no evidence of small-study effects, no evidence of excess significance bias, and not large heterogeneity ($I^2 < 50\%$). Highly suggestive evidence (class II) required >1,000 cases, highly significant summary associations ($P < 10^{-6}$ by random effects), and the largest study to have a 95% CI that excluded 1. Suggestive evidence (class III) required only >1,000 cases and P < 0.001 by random effects. All other risk factors with nominally significant summary associations (P < 0.05) were coined as having weak evidence (class IV). Nonsignificant associations (NS) were those with P > 0.05. (RR: relative risk, OR: odds ratio, HR: hazard ratios, CI: confidence interval, SRRE: summary relative risk estimates, NA: not applicable). | Risk factor | Reference | Population | Outcome | Unit of comparison | Participants | Events | No. of studies | Type of metric | Meta-
analysis
model | RR (95% CI) | P value | Prediction interval | l ² (%) | Evidence
class | |---|----------------------|---|---|--|--------------|----------------------------------|---------------------|----------------|----------------------------|---|---|---------------------|--------------------|-----------------------------------| | Nutrient/diet | ary factor | | | | | | | | | | | | | | | Alcoholic
drinks ¹ | Jung S, 2015 | Female from
North
America,
Japan, Europe,
and Australia | Incidence of
ER+ and ER-
breast
cancers | ≥30 g/d of
alcohol
consumption
vs nondrinkers | 1,089,273 | ER+:
21,232;
ER-:
4,343 | ER+: 20;
ER-: 17 | RR | | ER+: 1.35
(1.23
1.48);
ER-: 1.28
(1.10
1.49) | ER+:
5.2 ×
10 ⁻¹⁰ ;
ER-:
0.001 | ER+: 1.07,
1.70 | ER+: 26;
ER-: 0 | ER+: II ² ;
ER-: IV | | Marine <i>n</i> -3 polyunsatura ted fatty acids | Zheng J-S,
2013 | Female | Incidence | Highest vs
lowest
category | 687,770 | 13,323 | 17 | RR | | 0.86 (0.78
0.94) | 0.002 | NA | 54 | IV | | Egg | Si R, 2014 | Female | Incidence of
pre- and
postmenopa
usal breast
cancer | >1/week (>7
g/day) vs
<1/week (<7
g/day) | 722,908 | 15,173 | 11 | RR | Random | 1.04 (1.00
1.08) | 0.05 | NA | 0 | IV | | Dairy | Dong J-Y,
2011 | Female | Incidence | Highest vs
lowest
category | 542,401 | 15,053 | 10 | RR | | 0.85 (0.76
0.95) | 0.004 | NA | 54.5 | IV | | Polyunsatura
ted fat | Turner LB,
2011 | Females | Incidence | Highest vs
lowest quartile
of dietary
intake | 1,051,623 | 20,405 | 13 | RR | Random | 1.09 (1.00
1.18) | 0.04 | NA | >50 | IV | | Processed
meat | Alexander D,
2011 | Females | Incidence | High vs low intake | NA | NA | 18 | SRRE | Random | 1.08 (1.01
1.16) | 0.03 | NA | >50 | IV | | Soy | Dong J-Y,
2011 | Female | Incidence | Highest vs
lowest
category | NA | 5,587 | 14 | RR | | 0.89 (0.79
0.99) | 0.04 | NA | 62.4 | IV | |--------------------------------------|-------------------|---|--------------------------------------|--|---------|--------|----|----|--------|---------------------|---------------------------|----|------|-----| | Isoflavone | Xie Q, 2013 | Females in
Asian
countries | Incidence | Highest vs
lowest
categories of
isoflavone
intake | 129,103 | NA | 7 | RR | | 0.78 (0.65
0.95) | 0.01 | NA | NA | IV | | Cruciferous
vegetables | Liu X, 2013 | USA females | Incidence | Highest vs
lowest
consumptions
level | 135,162 | 3,947 | 2 | RR | | 0.86 (0.72
0.99) | 0.05 | NA | 3 | IV | | Vegetables | Jung S, 2012 | Females | Incidence of
ER- breast
cancer | Highest vs
lowest
quintiles of
total
vegetables
consumption | 993,466 | 4,821 | 20 | RR | | 0.82 (0.74
0.90) | 8.1 ×
10 ⁻⁵ | NA | <50 | III | | Vegetables
and fruits
combined | Aune D,
2012 | Females | Incidence | Highest vs
lowest intake | 233,036 | 6,273 | 6 | RR | | 0.89 (0.80
0.99) | 0.03 | NA | 0 | IV | | Fruits | Aune D,
2012 | Females | Incidence | Highest vs
lowest intake | 785,668 | 16,763 | 10 | RR | | 0.92 (0.86
0.98) | 0.01 | NA | 9 | IV | | Retinol | Fulan H,
2011 | Females | Incidence | Highest vs
lowest intake
of total retinol | NA | NA | 8 | RR | | 0.91 (0.84
0.98) | 0.02 | NA | 27 | IV | | Vitamin A | Fulan H,
2011 | Females | Incidence | Highest vs
lowest total
intake | NA | NA | 5 | RR | | 0.89 (0.81
0.99) | 0.02 | NA | 0 | IV | | Glycemic
index | Choi Y, 2012 | Females from
North
America,
Europe, and
China | Incidence | Highest vs
lowest
category | NA | NA | 11 | RR | Random | 1.06 (1.02
1.11) | 0.007 | NA | 0 | IV | | α-carotene | Hu F, 2012 | Females | Incidence | Per 1,500
lg/day of
dietary intake | 262,358 | 7,298 | 4 | OR/RR | Random | 0.91 (0.87-
-0.96) | 0.0002 | NA | 1 | III | |--|----------------------|---|---|---|---------------------|--------|----|-------|--------|-----------------------|--------|----|-----|-----| | β-carotene | Hu F, 2012 | Females | Incidence | Highest vs
lowest level of
dietary intake | NA | NA | 5 | OR/RR | | 0.94 (0.89
0.97) | 0.005 | NA | 0 | IV | | Dietary fiber | Aune D,
2012 | Females from
Europe, North
America, and
Asia | Incidence | Highest vs
lowest level of
fiber intake | 999,271 | 26,523 | 16 | RR | | 0.93 (0.89
0.98) | 0.003 | NA | 0 | IV | | Biomarker | | | | | | | | | | | | | | | | n-3/n-6
PUFAs ratio
in serum
(plasma) | Yang B, 2014 | Female,
Europe, USA,
Asia | Incidence of
pre- and
postmenopa
usal breast
cancer | category | 274,135 | 8,331 | 11 | RR | | 0.90 (0.82
0.99) | 0.03 | NA | 11 | IV | | Total carotenoids | Eliassen AH,
2012 | Females | Incidence | Highest
quintile to
lowest quintile
of blood level | 3,941
(controls) | 3,041 | | RR | | 0.81 (0.68
0.96) | 0.02 | NA | <50 | IV | | β-carotene | Eliassen AH,
2012 | Females | Incidence | Top vs bottom quintile of blood levels | 3,953 | 3,053 | 8 | RR | | 0.83 (0.70
0.98) | 0.03 | NA | <50 | IV | | Lycopene | Eliassen AH,
2012 | Females | Incidence | Top vs bottom
quintile of
blood levels | 3,941 | 3,041 | 8 | RR | | 0.81 (0.68
0.96) | 0.02 | NA | <50 | IV | ¹ Current study was used instead of the bigger meta-analysis of 7 cohort studies on alcohol consumption and breast cancer risk by Bagnardi et al. 2015 (RR for heavy drinkers vs nondrinkers: 1.50; 95% CI: 1.19--1.89) due to the limited information on summary statistics and included studies in Bagnardi et al. 2015 ² Evidence was classified as highly suggestive (class II) due to the presence of excess significance bias ($P_{\text{excess significance bias}} = 4 \times 10^{-8}$, $P_{\text{small effect bias}} = 0.184$) Supplemental Table 2 General characteristics of the meta-analyses of prospective observational studies in lung cancer. Evidence class was decided on the basis of the following criteria: Convincing evidence (lass I) required >1,000 cases, highly significant summary associations ($P < 10^{-6}$ by random effects), a 95% prediction interval not including 1, and not large heterogeneity ($I^2 < 50\%$). Highly suggestive evidence (class II) required >1,000 cases, highly significant summary associations ($P < 10^{-6}$ by random effects), and the largest study to have a 95% CI that excluded 1. Suggestive evidence (class III) required only >1,000 cases and P < 0.001 by random effects. All other risk factors with nominally significant summary associations (P < 0.05) were coined as having weak evidence (class IV). Nonsignificant associations (NS) were those with P > 0.05. (RR: relative risk, OR: odds ratio, HR: hazard ratios, CI: confidence interval, SRRE: summary relative risk estimates, NA: not applicable). | Nutrient/Diet | Reference | Population | Outcome | Unit of comparison | Participants | Events | No. of studies | Type of metric | Meta-
analysis
model | RR (95% CI) | P value | Prediction interval | l ² (%) | Evidence class | |-----------------------|-----------------------|---|-----------|---|--------------|--------|----------------|----------------|----------------------------|---------------------|------------------------|---------------------|--------------------|----------------| | α-carotene | Gallicchio L,
2008 | Western
populations,
Singapore | Incidence | Highest vs
lowest
category of
intake | 299,057 | 4,894 | 8 | RR | Random | 0.89 (0.79
1.00) | 0.05 | NA | 15 | IV | | β-carotene | Yu N, 2015 | Populations
from North
America,
Europe, and
China | Incidence | Highest vs
lowest
category | NA | 5,395 | 10 | RR | Random | 0.87 (0.78
0.96) |
0.009 | NA | 7 | IV | | β-
cryptoxanthin | , | Western
populations,
Singapore | Incidence | Highest vs
lowest
category of
intake | 299,057 | 4,894 | 8 | RR | Random | 0.80 (0.72
0.89) | 4.4 × 10 ⁻⁵ | NA | 0 | III | | Lycopene | Gallicchio L,
2008 | Western
populations,
Singapore | Incidence | Highest vs
lowest
category of
intake | 340,894 | 5,032 | 9 | RR | Random | 0.86 (0.77
0.97) | 0.01 | NA | 20 | IV | | Lutein-
zeaxanthin | Gallicchio L,
2008 | Western
populations,
Singapore | Incidence | Highest vs
lowest
category of
intake | 169,334 | 3,945 | 5 | RR | Random | 0.89 (0.79
1.00) | 0.05 | NA | 0 | IV | | Carotenoids | Gallicchio L,
2008 | Western
populations,
Singapore | Incidence | Highest vs
lowest
category of
intake | 247,706 | 4,310 | 8 | RR | Random | 0.79 (0.71
0.87) | 7.1 × 10 ⁻⁶ | NA | 0 | III | | Vitamin A | Yu N, 2015 | Populations
from North
America,
Europe, and
China | Incidence | Highest vs
lowest
category | NA | 3,258 | 6 | RR | Random | 0.87 (0.76
0.98) | 0.03 | NA | 53 | IV | |-----------------------------------|--------------------|---|-----------|----------------------------------|---------|--------|----|----|--------|---------------------|----------------------|------------|----|----| | Soy food | Wu SH,
2013 | | Incidence | Highest vs
lowest intake | NA | NA | 4 | RR | Fixed | 0.85 (0.74
0.97) | 0.02 | NA | 8 | IV | | Vegetables | Vieira AR,
2016 | Populations
from Asia,
Europe, and
North
America | Incidence | Highest vs
lowest intake | NA | 19,095 | 25 | RR | Random | 0.92 (0.87
0.97) | 0.002 | NA | 0 | IV | | Soy/soy
isoflavones | Yang W-S,
2011 | Females
from
Singapore
and United
States, and
males and
females
from Japan | Incidence | Highest vs
lowest intake | 146,667 | 1,806 | 3 | RR | Fixed | 0.92 (0.85
0.98) | 0.02 | NA | 0 | IV | | Cruciferous
vegetables | Vieira AR,
2016 | Populations
from Asia,
Europe, and
North
America | Incidence | Dose
response per
50 g/day | NA | 5,783 | 9 | RR | Random | 0.89 (0.79
1.00) | 0.05 | NA | 50 | IV | | Total fruits
and
vegetables | Vieira AR,
2016 | Populations
from Asia,
Europe, and
North
America | Incidence | Highest vs
lowest intake | NA | 11,941 | 18 | RR | Random | 0.86 (0.78
0.94) | 0.002 | NA | 37 | IV | | Fruits | Vieira AR,
2016 | Populations
from Asia,
Europe, and
North
America | Incidence | Highest vs
lowest intake | NA | 15,599 | 29 | RR | | 0.82 (0.76
0.89) | 1 × 10 ⁻⁶ | 0.62, 1.07 | 32 | II | | Citrus fruits | Vieira AR, | Populations | Incidence | Highest vs | NA | 12,021 | 15 | RR | Random | 0.85 (0.78 | 0.0003 | NA | 30 | III | |---------------|------------|-------------|-----------|---------------|---------|--------|----|----|--------|------------|--------|----|----|-----| | | 2016 | from Asia, | | lowest intake | | | | | | 0.93) | | | | | | | | Europe, and | | | | | | | | | | | | | | | | North | | | | | | | | | | | | | | | | America | | | | | | | | | | | | | | Flavonoids | Tang N-P, | Western | Incidence | Highest vs | 235,816 | 3,247 | 8 | RR | Random | 0.73 (0.57 | 0.01 | NA | 69 | IV | | | 2009 | populations | | non/lowest | | | | | | 0.93) | | | | | | | | | | intake | | | | | | | | | | | Supplemental Table 3 General characteristics of the meta-analyses of prospective observational studies in prostate cancer. Evidence class was decided on the basis of the following criteria: Convincing evidence (class I) required >1,000 cases, highly significant summary associations ($P < 10^{-6}$ by random effects), a 95% prediction interval not including the null, and not large heterogeneity ($I^2 < 50\%$). Highly suggestive evidence (class II) required >1,000 cases, highly significant summary associations ($P < 10^{-6}$ by random effects), and the largest study to have a 95% CI that excluded 1. Suggestive evidence (class III) required only >1,000 cases and P < 0.001 by random effects. All other risk factors with nominally significant summary associations (P < 0.05) were coined as having weak evidence (class IV). Nonsignificant associations (NS) were those with P > 0.05. (RR: relative risk, OR: odds ratio, HR: hazard ratios, CI: confidence interval, SRRE: summary relative risk estimates, NA: not applicable). | Risk factor | Reference | Population | Outcome | Unit of comparison | Participants | Events | No. of studies | | Meta-
analysis
model | RR (95% CI) | P value | Prediction interval | l² (%) | Evidence class | |---|--------------------|---|---|---|--------------|--------|----------------|-------|----------------------------|---------------------|---------|---------------------|--------|----------------| | Nutrient/diet | ary factor | | | | | | | | | | | | | | | Alpha -
linolenic acid
(n-3 PUFA) | Fu Y-Q,
2014 | Men from
Western
countries | Incidence | Per 0.5 g/day | NA | NA | 5 | RR | Random | 0.99 (0.98
1.00) | 0.05 | NA | 0 | IV | | Total dairy | Aune D,
2015 | Men | Incidence | Highest vs lowest intake | 848,395 | 38,107 | 15 | RR | Random | 1.09 (1.02
1.17) | 0.01 | NA | 43 | IV | | Milk | Aune D,
2015 | Men | Incidence | High vs low intake | 566,146 | 11,392 | 15 | RR | Random | 1.11 (1.03
1.21) | 0.01 | NA | 21 | IV | | Whole milk | Aune D,
2015 | Men | Incidence | High vs low intake | 448,719 | 19,664 | 8 | RR | Random | 0.92 (0.85
0.99) | 0.03 | NA | 0 | IV | | Low-fat milk | Aune D,
2015 | Men | Incidence | High vs low intake | 432,943 | 19,430 | 6 | RR | Random | 1.14 (1.05
1.25) | 0.003 | NA | 51 | IV | | Cheese | Aune D,
2015 | Men | Incidence | High vs low intake | 887,759 | 22,950 | 11 | RR | Random | 1.07 (1.01
1.13) | 0.02 | NA | 0 | IV | | Dietary
Calcium | Aune D,
2015 | Men | Incidence | High vs low intake | 800,879 | 35,493 | 15 | RR | Random | 1.18 (1.08
1.30) | 0.0005 | NA | 53 | III | | Eggs | Keum N,
2015 | Men from
Europe,
North
America, and
Japan | Incidence
of fatal
prostate
cancer | Per 5 eggs
consumed/week | 95,980 | 609 | 4 | RR | Random | 1.47 (1.01
2.14) | 0.04 | NA | 40 | IV | | Selenium | Vinceti M,
2014 | Men | Incidence | Highest vs lowest category of intake and biochemical selenium level | >466,204 | 6,532 | 17 | OR/RR | Random | 0.79 (0.69
0.90) | 0.0005 | NA | 23 | III | | Biomarkers | | | | | | | | | | | | | | | |---|-------------------|----------------------------------|-----------|--|--------|-------|---|----|--------------|---------------------|------|----|----|----| | Stearic acid
(saturated
fatty acid) | Crowe FL,
2014 | Men from
Western
countries | Incidence | Fifth quantile vs
first quantile of
level in plasma or
serum
phospholipids,
whole blood, or
erythrocyte
membranes | 11,747 | 5,098 | 7 | OR | NOT
CLEAR | 0.88 (0.78 | 0.04 | NA | 10 | IV | | Eicosapentae
noic acid (n-3
PUFA) | | Men from
Western
countries | Incidence | | 11,745 | 5,098 | 7 | OR | NOT
CLEAR | 1.14 (1.01
1.29) | 0.04 | NA | 59 | IV | | Docosapenta
enoic acid (<i>n</i> -
3 PUFA) | Crowe FL,
2014 | Men from
Western
countries | Incidence | Fifth quantile vs
first quantile of
level in plasma or
serum
phospholipids,
whole blood, or
erythrocyte
membranes | 11,744 | 5,097 | 7 | OR | NOT
CLEAR | 1.16 (1.02
1.33) | 0.03 | NA | 80 | IV | | Linoleic acid
(n-6 PUFA) | Crowe FL,
2014 | Men from
Western
countries | Incidence | | 11,747 | 5,098 | 7 | OR | NOT
CLEAR | 0.87 (0.77
0.98) | 0.02 | NA | 0 | IV | | Folate | Tlo M, 2014 | Men | Incidence | High vs low blood concentration | 9,778 | 5,904 | 6 | OR | Random | 1.14 (1.02
1.28) | 0.02 | NA | 0 | IV | Supplemental Table 4 General characteristics of the meta-analyses of prospective observational studies in colorectal cancer. Evidence class was decided on the basis of the following criteria: Convincing evidence (class I) required >1,000 cases, highly significant summary associations ($P < 10^{-6}$ by random effects), a 95% prediction interval not including 1, no evidence of small-study effects, no evidence of excess significance bias, and no large heterogeneity ($I^2 < 50\%$). Highly suggestive evidence (class II) required >1,000 cases, highly significant summary associations ($P < 10^{-6}$ by random effects), and the largest study to have a 95% CI that excluded 1. Suggestive evidence (class III) required only >1,000 cases and P < 0.001 by random effects. All other risk factors with nominally significant summary associations (P < 0.05) were coined as having weak evidence (class IV). Nonsignificant associations (NS) were those with P < 0.05. (RR: relative risk, OR: odds ratio, HR: hazard ratios, CI: confidence interval, SRRE: summary relative risk estimates, NA: not applicable). | Risk factor | Reference | Population | Outcome | Unit of comparison | Participants | Events | No. of studies | Type of metric | Meta-
analysis
model | RR (95% CI) | P value | Prediction
interval | l ² (%) | Evidence
class | |---------------------------|-------------------------------|--|--|--|--------------|--------|----------------|----------------|----------------------------|---------------------
------------------------|------------------------|--------------------|-------------------| | Nutrient/dieta | ry factor | | | | | | | | | | | | | | | Multivitamins supplements | | Western
populations,
USA, Europe | Incidence of
CRC | Use vs no use | 1,031,046 | 9,925 | 16 | RR | Random | 0.92 (0.86
0.98) | 0.01 | NA | 0 | IV | | Vitamin A supplements | Heine-
Bröring RC,
2015 | Western
populations,
USA, Europe | Incidence of colon cancer | Use vs no use | 46,796 | 443 | 2 | RR | Random | 0.77 (0.62
0.94) | 0.01 | NA | 0 | IV | | Total vitamin
C | Park Y,
2010 | North
America, | Incidence
and
mortality of
colon cancer | Highest vs
lowest
category
(>600 vs <100
mg/day) | 556,510 | 4,495 | 10 | RR | Random | 0.86 (0.74
0.99) | 0.04 | NA | <50 | IV | | Total vitamin
E | Park Y,
2010 | North
America,
Europe | Incidence
and
mortality of
colon cancer | Highest vs
lowest
category | 556,510 | 4,495 | 10 | RR | Random | 0.80 (0.65
0.97) | 0.05 | NA | <50 | IV | | Calcium | Keum N,
2014 | USA, Europe,
Asia | Incidence of
colorectal
and colon
cancers | 300 mg daily increment of calcium intake | 1,415,597 | 12,305 | 15 | RR | Random | 0.92 (0.89
0.94) | 4.8 × 10 ⁻⁹ | 0.85, 1.01 | 47 | II | | Calcium
supplements | Heine-
Bröring RC,
2015 | Western
populations,
USA, Europe | Incidence of
CRC | Use vs no use | 1,185,310 | 10,188 | 8 | RR | Random | 0.86 (0.79
0.95) | 0.001 | NA | 64 | IV | | Folic acid
supplements | Heine-
Bröring RC,
2015 | Western
populations,
USA, Europe | Incidence of
CRC | Highest vs
lowest dietary
supplementati
on dose | | 4,057 | 3 | RR | Random | 0.88 (0.78
0.98) | 0.03 | | 6 | IV | |---------------------------|-------------------------------|---|---|---|-----------|--------|----|----|--------|---------------------|-----------------------|------------|-----|-----| | Total folate | Kim D-H,
2010 | North
America,
Europe | Incidence
and
mortality of
CRC | Highest vs
lowest
quantile | 725,134 | 5,720 | 13 | RR | Random | 0.85 (0.77
0.95) | 0.002 | NA | <50 | IV | | Heme iron | Qiao L,
2013 | North
America,
Europe,
Japan | Incidence of
CRC | Highest vs
lowest
category of
intake | 651,272 | 8,269 | 8 | RR | Random | 1.14 (1.04
1.25) | 0.005 | NA | 12 | IV | | Zink | Qiao L,
2013 | North
America,
Europe,
Japan | Incidence of
CRC | Highest vs
lowest
category of
intake | 350,507 | 5,676 | 6 | RR | Random | 0.83 (0.72
0.94) | 0.006 | NA | 35 | IV | | Magnesium | Ko HJ,
2014 | Europe,
Japan, USA | Incidence of
CRC | Highest vs
lowest
category of
dietary intake | 222,091 | 3,305 | 4 | RR | Fixed | 0.78 (0.66
0.92) | 0.003 | NA | 17 | IV | | Total fiber | Aune D,
2011 | Europe,
China, Japan,
Singapore,
USA | Incidence of
CRC | High vs low intake | 1,995,293 | 14,794 | 19 | RR | Random | 0.88 (0.82
0.94) | 0.0003 | NA | 0 | III | | Glycemic
index (GI) | Choi Y,
2012 | North
America,
Europe,
China | Incidence of
CRC | Highest vs
lowest
category | 1,110,891 | 12,573 | 9 | RR | Random | 1.08 (1.00
1.17) | 0.05 | NA | 29 | IV | | Alcohol ¹ | Fedirko V,
2011 | North
America,
Europe, Asia | Incidence of
CRC | Heavy
drinkers (≥50
g/day) vs
nondrinkers/o
ccasional
drinkers | 988,878 | 1,208 | 7 | RR | Random | 1.57 (1.38
1.80) | 4.2 × 10 ⁻ | 1.32, 1,87 | 0 | 2 | | Tea | Zhang X,
2010 | North
America,
Europe | Incidence of colon cancer | Highest intake
vs
nonconsumers | | 4,394 | 11 | RR | Random | 1.28 (1.02
1.61) | 0.03 | NA | NA | IV | |-------------------------------|-----------------------|---|--|--|-----------|--------|----|----|--------|---------------------|------------------------|------------|-----|--------------| | Fruit and vegetables combined | Aune D,
2011 | Japan,
Europe, USA,
Singapore | | Highest vs
lowest intake | 1,523,860 | 11,853 | 10 | RR | Random | 0.92 (0.86
0.99) | 0.02 | 0.85, 0.99 | 22 | IV | | Fruits | Aune D,
2011 | Japan,
Europe, USA | Incidence of
CRC | Highest vs
lowest intake | 1,558,147 | 14,876 | 14 | RR | Random | 0.90 (0.83
0.98) | 0.01 | 0.85, 0.96 | 42 | IV | | Vegetables | Aune D,
2011 | Japan,
Europe, USA,
Singapore | | Highest vs
lowest intake | 1,694,236 | 16,057 | 15 | RR | Random | 0.91 (0.86
0.96) | 0.0008 | 0.86, 0.96 | 0 | III | | Whole grains | Aune D,
2011 | Europe, USA | Incidence of CRC | High vs low intake | 642,060 | 5,477 | 4 | RR | Random | 0.79 (0.72
0.86) | 3.1 × 10 ⁻⁷ | 0.65, 0.96 | 0 | ³ | | Fish | Yu XF, 2014 | Europe, USA,
Asia,
Australia | Incidence of
CRC | Yes vs no
intake | 1,633,066 | 14,097 | 20 | RR | Random | 0.93 (0.87
0.99) | 0.03 | NA | 65 | IV | | Dairy
products | Aune D,
2012 | Europe, USA,
Asia | Incidence of
CRC | Highest vs
lowest dietary
intake | 1,170,942 | 11,579 | 12 | RR | Random | 0.81 (0.74
0.90) | 2.9 × 10 ⁻⁵ | NA | 42 | III | | Nonfermente
d milk | Ralston RA,
2014 | Europe, USA,
China | Incidence of
CRC and of
colon and
rectal
cancers | Highest vs
lowest
category | 892,569 | 7,735 | 14 | RR | Random | 0.85 (0.77
0.93) | 0.0008 | NA | 0 | III | | Milk | Aune D,
2012 | Europe, USA,
China | Incidence
and
mortality of
CRC | Per 200 g/day
intake | 566,035 | 4,510 | 9 | RR | Random | 0.91 (0.85
0.94) | 0.0003 | NA | 0 | III | | Red meat | Alexander
DD, 2011 | Europe, USA,
Canada,
Australia,
Asia | Incidence
and
mortality of
CRC | Highest vs
lowest intake | 1,892,868 | 16,560 | 25 | RR | Random | 1.12 (1.04
1.21) | 0.003 | NA | >50 | IV | | Processed
meat | Chan DSM,
2011 | Europe, USA,
Australia | Incidence
and
mortality of
CRC | Per 50 g/day | 1,303,149 | 10,863 | 9 | | | 1.18 (1.10
1.28) | 2.3 × 10 ⁻⁵ | NA | 12 | III | |--|-------------------|-----------------------------------|--|--|-----------|--|---------------------|----|--------|---|------------------------------|----|---------------------|-----| | Beef | Carr P,
2015 | Europe,
Japan | Incidence of
CRC and of
colon and
rectal
cancers | Highest versus
lowest level of
intake | | CRC:
4,545
Colon:
2,160 | CRC: 5;
Colon: 3 | RR | Random | Colorectal:
1.11 (1.01
1.22)
Colon: 1.24
(1.071.44) | CRC: 0.03
Colon:
0.005 | NA | CRC: 0
Colon: 11 | IV | | Lamb | Carr P,
2015 | Europe | Incidence of
CRC and of
colon and
rectal
cancers | Highest versus
lowest level of
intake | 532,028 | CRC:
1,329
Colon:
644
Rectal:
345 | CRC: 2 | RR | Random | CRC: 1.24
(1.081.44) | 0.003 | NA | CRC: 0 | IV | | Poultry | Carr P,
2015 | Europe, Asia,
North
America | Incidence of
CRC and of
colon and
rectal
cancers | Highest versus
lowest level of
intake | 1,422,299 | 81,211 | Rectal: 11 | RR | Random | Rectal: 0.89
(0.800.98) | Rectal:
0.02 | NA | Rectal: 0 | IV | | Biomarkers
Circulating
Vitamin D
(25(OH)D) | Lee JE,
2011 | USA, Japan,
Europe | Incidence of
colon cancer
and rectal
cancer | Top versus
bottom
quantiles of
circulating
25(OH)D
levels | NA | 1,822
colon
cancer
and 868
rectal
cancer
cases | 8 | OR | Random | 0.66 (0.54
0.81) | 6.8 × 10 ⁻⁵ | NA | NA | III | | Total n-3
PUFA - sum of
C22:6n-3,
C22:5n-3,
C20:5n-3
compositions
in human
biospecimens | Yang B,
2014 | Europe, USA,
Japan | Incidence of
colorectal
cancer | Highest vs
lowest levels
in serum,
plasma, whole
blood,
erythrocytes,
adipose tissue | 58,713 | 675 | 3 | RR | Random | 0.76 (0.59
0.97) | 0.03 | NA | 10 | IV | ¹Current study was used instead of the bigger meta-analysis of 14 cohort studies on alcohol consumption and colorectal cancer risk by Bagnardi et al. 2015 (RR for heavy drinkers vs non-drinkers: 1.41; 95% CI, 1.23--1.63) due to the limited information on summary statistics and included studies in Bagnardi et al. 2015 $^{^{2}}$ No evidence of small effect ($P_{\text{small effect bias}} = 0.802$) or excess significance bias ($P_{\text{excess significance bias}} = 0.254$) ³No evidence of small effect ($P_{\text{small effect bias}} = 0.947$) or excess significance bias ($P_{\text{excess significance bias}} = 0.11$) Supplemental Table 5 General characteristics of the meta-analyses of prospective observational studies in stomach cancer. Evidence class was decided on the basis of the following criteria: Convincing evidence (class I) required >1,000 cases, highly significant summary associations ($\underline{P} < 10^{-6}$ by random effects), a 95% prediction interval not including the null, and not large heterogeneity ($I^2 < 50\%$). Highly suggestive evidence (class II) required >1,000 cases, highly significant summary associations ($P < 10^{-6}$ by random-effects), and the largest study to have a 95% CI excluding the null value. Suggestive evidence (class III) required only >1,000 cases and P < 0.001 by random effects. All other risk factors with nominally significant summary
associations (P < 0.05) were coined as having weak evidence (class IV). Nonsignificant associations (NS) were those with P > 0.05. (RR: relative risk, OR: odds ratio, HR: hazard ratios, CI: confidence interval, SRRE: summary relative risk estimates, NA: not applicable). Nutrient/diet Reference Population Outcome Unit of Participants Events No. of Type of Meta-RR (95% CI) P value Prediction I² (%) Evidence ary intake studies metric interval class comparison analysis model Vitamin E Li P, 2014 USA, Europe Incidence Highest vs 557,765 1,198 RR Fixed 0.81 (0.66--0.04 NA 0 IV lowest intake 0.98)Vitamin C Li P, 2014 Europe, USA Incidence Highest vs 66,095 795 HR/RR Fixed 0.77 (0.61--0.03 NA IV lowest intake 0.97)Highest vs 274.250 2.271 12 RR 1.55 (1.17--0.002 NA 53 IV High-salt Asia, Europe Incidence/m Random Fang X. 2015 2.05) food ortality lowest intake Salt RR 1.11 (1.05-- 4.7×10^{-5} NA 26 Ш Fang X, Asia, Europe Incidence/m Highest vs 2,569,145 14,850 8 Random 2015 lowest intake 1.16) ortality Asia, Europe, Incidence/m 24 RR 0.03 64 Alcohol Highest vs 2,511,522 9,469 1.15 (1.01--NA IV Fang X, Random 2015 USA 1.31) ortality lowest intake 13 RR 1.21 (1.02--0.03 NA 31 IV Beer Fang X, Asia, Europe, Incidence/m Highest vs 1,197,197 2,482 Random 2015 USA ortality lowest intake 1.43) Asia, Europe, Incidence/m Highest vs 1,197,197 2,482 12 RR 1.22 (1.05--0.01 NA IV Liquor Fang X, Random USA 2015 ortality lowest intake 1.43) 30 Asia, Europe, Incidence/m RR 0.93 (0.89--0.003 NA IV Total fruits Fang X, Highest vs 2,811,612 7.632 Random 2015 USA ortality lowest intake 0.98) USA, Europe, Incidence/m 22 0.90 (0.83--0.01 1% IV Fruits Wang Q, High vs low 1,517,969 5,318 SRR Random NA Asia intake 0.98) 2014 ortality Citrus fruit Fang X, Asia, Europe, Incidence/m Highest vs 2,846,394 4,259 11 RR Random 0.90 (0.82--0.04 NA 41 IV 2015 USA ortality lowest intake 1.00) 0.67 (0.47-n IV White Fang X, Japan Incidence/m Highest vs 51,186 531 RR Random 0.03 NA vegetables 2015 lowest intake 0.95) ortality 55 Pickled 540,913 6.840 20 RR 1.18 (1.02--0.02 NA Fang X, Asia, Europe Incidence/m Highest vs Random vegetables 2015 ortality lowest intake 1.36) 722,446 RR 1.11 (1.01--0.03 NA IV Tomatoes Fang X, Asia, Europe, Incidence/m Highest vs 1,869 Random 2015 USA 1.22) ortality lowest intake | Nutrient/diet | Reference | Population | Outcome | Unit of | Participants | Events | No. of | Type of | Meta- | RR (95% CI) | P value | Prediction | <i>I</i> ² (%) | Evidence | |----------------------|-----------|---------------|-------------|---------------|--------------|--------|---------|---------|----------|-------------|---------|------------|---------------------------|----------| | ary intake | | | | comparison | | | studies | metric | analysis | | | interval | | class | | | | | | | | | | | model | | | | | | | Spinach | Fang X, | Asia, Europe, | Incidence/m | Highest vs | 722,446 | 1,869 | 5 | RR | Random | 1.21 (1.01 | 0.04 | NA | 0 | IV | | | 2015 | USA | ortality | lowest intake | | | | | | 1.46) | | | | | | Pickled food | Ren J-S, | Asia, USA, | Incidence/m | Picked | 224,879 | 3,692 | 10 | RR | Random | 1.32 (1.10 | 0.003 | NA | 70 | IV | | | 2012 | Europe | ortality | vegetables/fo | | | | | | 1.59) | | | | | | | | | | od users vs | | | | | | | | | | | | | | | | non-users or | | | | | | | | | | | | | | | | lowest | | | | | | | | | | | | | | | | category of | | | | | | | | | | | | | | | | use | | | | | | | | | | | | Salted fish | Fang X, | Asia, Europe, | Incidence/m | Highest vs | 291,071 | 2,811 | 11 | RR | Random | 1.25 (1.07 | 0.006 | NA | 0 | IV | | | 2015 | USA | ortality | lowest intake | | | | | | 1.47) | | | | | | Processed | Fang X, | Asia, Europe, | Incidence/ | Highest vs | 2,002,100 | 3,243 | 13 | RR | Random | 1.15 (1.03 | 0.01 | NA | 8 | IV | | meat | 2015 | USA | mortality | lowest intake | | | | | | 1.29) | | | | | | Ham, bacon, | Fang X, | Asia, Europe, | Incidence/m | Highest vs | 321,858 | 1,573 | 11 | RR | Random | 1.21 (1.01 | 0.04 | NA | 31 | IV | | sausage | 2015 | USA | ortality | lowest intake | | | | | | 1.46) | | | | | **Supplemental Table 6 General characteristics of meta-analyses of RCTs.** Evidence class was decided on the basis of the following criteria: Convincing evidence (class I) required >1,000 cases, highly significant summary associations ($P < 10^{-6}$ by random effects), a 95% prediction interval not including the null, and not large heterogeneity ($I^2 < 50\%$). Highly suggestive evidence (class II) required >1,000 cases, highly significant summary associations ($P < 10^{-6}$ by random effects), and the largest study to have a 95% CI that excluded 1. Suggestive evidence (class III) required only >1,000 cases and P < 0.001 by random effects. All other risk factors with nominally significant summary associations (P < 0.05) were coined as having weak evidence (class IV). Nonsignificant associations (NS) were those with P > 0.05. (RR: relative risk, OR: odds ratio, HR: hazard ratios, CI: confidence interval, SRRE: summary relative risk estimates, NA: not applicable). | Nutrients/food | Author | Date | Control population | Population | Participants
total | Events
total | Type
of
metric | Meta-
analysis
model | No. of studeis | Reported
RR (95%
CI) | Heterogeneity, I ² (%), P _{heterogeneity} | P value | Class | Notes | |----------------|------------------|------|--------------------|---|-----------------------|-----------------|----------------------|----------------------------|----------------|----------------------------|---|----------|-------|---| | BREAST CANCER | | | | | | | | | | | | | | | | LUNG CANCER | | | | | | | | | | | | | | | | β-carotene | Tanvetyanon
T | 2008 | | High-risk
populations
(smokers,
exposed to
asbestos) | 109,394 | 1,484 | OR | Random | 4 | 1.21
(1.09
1.32) | 32.5%, 0.22 | 0.000108 | III | Effect
stronger in
current
smokers (OR:
1.24, 95% CI:
1.101.39), no
effect in
former
smokers and
never smokers | | PROSTATE CANCE | R | | | | | | | • | | | | • | | | | Folic acid | Vollset S.E. | 2013 | Placebo | Patient with previous colorectal adenoma, people with or at high risk of the cardiovascular disease | 49,621 | 656 | RR | Random | 13 | 1.15
(0.94
1.41) | NA | | NS | | | Calcium
supplementations | Bristow S.M. | 2013 | Placebo | General
populations
or patients
with
osteoporosis
or colorectal
adenoma | 7,221 | 24 | HR | Random | 4 | 0.54
(0.30
0.96) | 0% | 0.04 | IV | | |-------------------------------|--------------------|------|---|---|-------|----|----|--------|---|------------------------|-----------|------|----|--| | Soy/isoflavones BOWEL CANCER | Diana van
Die M | 2013 | Placebo or
soy
protein
isolate
with
isoflavones
removed | Males with clinically identified risk (negative prostate biopsy) | 122 | 32 | RR | Fixed | 2 | 0.49
(0.26
0.95) | 42%, 0.19 | 0.03 | IV | | ^aNo meta-analyses on randomized clinical studies for corresponding cancer types were identified. STOMACH CANCER **Supplemental Table 7** General characteristics of meta-analyses for gene--environment interactions (RR: relative risk, OR: odds ratios, CI: confidence interval)^a | Nutrient
/food | Genetic variant | Gene
(or
near
gene) | Author,
date | Participants | Events | Type of metric | Meta-
analysis
model | No. of studies | Reported
RR (95%
CI) | P for inter | Heterog,
Ph | Prior
score
category
(based on
dietary
factors
and
genetic
variants
evidence) | Venice
Criteria
for
observe
d
associat
ion | Combined
score | |-------------------|-----------------|------------------------------|---------------------|--------------|--------|----------------|--|--------------------|--|-------------|--|--|--|-------------------| | BREAST C | ANCER | | | | | | | | | | | | | | | Alcohol | rs4880 | MnSO
D | Liu G,
2012 | 3,064 | 1,301 | OR | Non
drinkers
Fixed
Ever
drinkers
Random | 14 | Val/Ala+Al
a/ALA vs
Val/Val
Nondrinke
rs: 0.97
(0.80
1.18)
Ever
drinkers:
1.42 (0.89-
-2.26) | >0.05 | Nondrink
ers: 0.31
Ever
drinkers:
0.02 | Weak: 3 | ссс | No
evidence | | | rs17468277 | CASP8 | Nickels S,
2013 | 15,386 | 6,081 | OR | Fixed | 24 | <20 g/day
alcohol:
0.91 (0.84-
-0.98)
≥20 g/day
1.45 (1.14-
-1.85) | 0.000 | 0.30 | Weak: 3 | CBC | Weak
evidence | | | rs1045485 | CASP8 | Barrdahl
M, 2014 | 40,376 | 17,988 | OR | Random | 2
consorti
a | 1.14 (0.98-
-1.31) | 0.08 | 0.006 | Weak: 3 | CCC | No
evidence | | | rs2853826
(A10398G) | ND3 | Blein S,
2014 | 3,983
(controls) | 3306 | OR | | Breast
and
Prostate
Cancer
Cohort
Consorti
um (9
cohorts) | Breast
cancer risk
G10398 –
Drinkers
vs. A10398
-
Nondrinke
rs
1.16 (0.99-
- 1.36) | 0.98 | | Weak: 3 | C-C | No
evidence | |--------------|------------------------|-------|--------------------|---------------------|-------|----|-------
--|--|------|--|---------|-----|--------------------------------| | | rs698 | ADH1C | Mao Q,
2015 | 3,434 | 1610 | OR | | 3 | ADH1C ¹⁻¹ + ADH1C ¹⁻² in drinkers: 1.35 (1.031.76) ADH1C ¹⁻¹ + ADH1C ¹⁻² in nondrinker s: 1.16 (0.86 1.57) | NR | Drinkers P = 0.89 Nondrink ers P = 0.53 | Weak: 3 | C | Not
possible to
evaluate | | Caroten oids | rs2333227
(G463A) | MPO | Pabalan N,
2012 | 4,915 | 2,192 | OR | Fixed | 2 | A vs G For low carotenoid intake: 1.05 (0.921.20) For high carotenoid intake: 0.86 (0.750.99) | 0.88 | 0.14 | Weak: 3 | BBC | No
evidence | | PROSTATI | PROSTATE CANCER COLORECTAL CANCER | | | | | | | | | | | | | | |----------------|-----------------------------------|--------|--------------------|--------|-------|----|--------|--------------------|---|--|------|-----------------|-----|------------------| | COLOREC | TAL CANCER | | | | | | | | | | | | | | | Alcohol | rs1805087
(A2756G) | MTR | Ding W,
2013 | 3,934 | 1,398 | OR | Random | 4 | Heavy alcohol drinkers (≥50 g ethanol/d on ≥5 day/week) with the G allele vs. the wild AA genotype: 2.00 (1.283.09) | 0.002 | 0.38 | Weak: 3 | -BB | Weak
evidence | | | rs1042522
(Pro72Arg) | p53 | Liu Y, 2011 | 1,464 | 501 | OR | | 2 Asian
studies | Alcohol
consumers
vs.
nonconsu
mers
Arg/Arg:
0.67 (0.41-
-1.09)
Pro/Pro:
0.91 (0.52-
-1.57) | Arg/A
rg
0.11
Pro/P
ro
0.73 | | Weak: 3 | C | No
evidence | | Vegetabl
es | rs16892766 | 8q23.3 | Hutter
CM, 2012 | 16,739 | 7,016 | OR | Fixed | 9 GWAS | 1.88 (1.36-
-2.59) | 0.02 | 0.68 | Moderate
: 2 | СВВ | Weak
Evidence | | Crucifer | Present/null | GSTM1 | Tse G, | 11,144 | 3,556 | OR | | 6 | Double | NS | - | Weak: 3 | -CB | No | |----------|--------------|-------|------------|--------|-------|----|-------|------|--------------|--------|------|---------|-----|----------| | ous | | and | 2014 | | | | | | null 0.86 | | | | | evidence | | vegetabl | | GSTT1 | | | | | | | (0.70 | | | | | | | es | | | | | | | | | 1.06) | | | | | | | | | | | | | | | | Double | | | | | | | | | | | | | | | | non-null | | | | | | | | | | | | | | | | 1.11 (0.86- | | | | | | | | | | | | | | | | -1.43) | | | | | | | | Present/null | GSTM1 | Tse G, | 12,383 | 4,016 | OR | | 8 | Single null: | NS | - | Weak: 3 | -CB | No | | | | | 2014 | | | | | | 1.05 (0.92- | | | | | evidence | | | | | | | | | | | -1.19) | | | | | | | | | | | | | | | | Single non- | | | | | | | | | | | | | | | | null: 1.02 | | | | | | | | | | | | | | | | (0.92 | | | | | | | | | | | | | | | | 1.13) | | | | | | | | Present/null | GSTT1 | Tse G, | 11,144 | 3,556 | OR | | 6 | Single null: | < 0.05 | - | Weak: 3 | -CB | Weak | | | | | 2014 | | | | | | 0.78 (0.64- | | | | | evidence | | | | | | | | | | | -0.95) | | | | | | | | | | | | | | | | Single non- | | | | | | | | | | | | | | | | null: 1.02 | | | | | | | | | | | | | | | | (0.90, | | | | | | | | | | | | | | | | 1.13) | | | | | | | Processe | rs4143094 | 10p14 | Figueiredo | 18,404 | 9,287 | OR | Fixed | 10 | 1.17 (1.11- | 8.7E- | 0.78 | Weak: 3 | BBB | Moderate | | d meat | | | JC, 2014 | | | | | GWAS | -1.23) | 09 | | | | evidence | ^aNo meta-analyses on gene—diet interactions were identified for corresponding cancer types and foods and nutrients for which the evidence was classified as I, II, or III. Supplemental Table 8 Evaluation of genetic evidence for variants identified in gene-environment interaction literature search. Evidence class was decided on the basis of the HuGENet Venice criteria (9, 10): Only genetic effects with $P < 10^5$ were considered for evaluation. On the basis of a combination of three criteria (amount of evidence, degree of replication, and protection from bias) (each of which can be scored A, B, or C), the epidemiological evidence for an effect of the genotype is classified as strong, moderate, or weak. For amount of evidence, a grade of A, B, or C was assigned when the sample size for the rarer genotype in the meta-analyses was greater than 1,000, 100-1,000, or less than 100, respectively. For replication consistency, we used $I^2 < 25\%$ to assign grade A, 25--50% to assign grade B, and >50% or a P value for heterogeneity <0.10 to assign grade C. For protection from bias, a grade of A means that bias, if present, may change the magnitude but not the presence of an association; a grade of B means that there is no evidence of bias that would invalidate an association, but important information is missing; and a grade of C means that there is a strong possibility of bias that would render the finding of an association invalid. | Traits | Genetic
variant | Gene
(or
near
gene) | Author,
date | Discovery
sample
size | Replicati on sample size/no. of studies in meta- analysis | Type
of
metr
ic | EAF | Reported RR
(95% CI) | P | Heterog, P _h | Venice
criteri
a | Evidence class | |------------------|---|------------------------------|------------------|--|--|--------------------------|----------------------|--|--|---|------------------------|----------------| | Breast
cancer | rs4880,
Val16Ala | mnSOD | Qiu L-X,
2010 | 26,022
cases and
32,426
controls | NA, meta-
analysis of
32 studies | OR | Not
avail
able | Val/Ala vs.
Val/Val: OR =
1.022, 95% CI =
0.981-1.064;
Ala/Ala vs.
Val/Val: OR =
1.006, 95% CI =
0.934-1.083;
dominant model:
OR = 1.013, 95%
CI = 0.962-
1.066; and
recessive model:
OR = 0.985, 95%
CI = 0.931-1.042 | Val/Ala vs.
Val/Val: <i>P</i> = 0.2976;
Ala/Ala vs.
Val/Val: <i>P</i> = 0.8833;
dominant
model: <i>P</i> = 0.6345; and
recessive
model: <i>P</i> = 0.6113 | Val/Ala vs.
Val/Val: P_h = 0.103; Ala/Ala
vs. Val/Val: P_h = 0.004; dominant
model: P_h = 0.028; and
recessive model: P_h = 0.023 | - | NS | | | rs17468
277/rs1
045485
(D302H) | CASP8 | Lin W-Y,
2015 | 46,450
cases and
42,600
controls of
European
ancestry | 10,052
cases and
12,575
controls of
European
ancestry | OR | 0.11 | 0.94 (0.875
1.01) | 0.0947 | I ² = 79%, P _h = 0.0288 | - | NS | | | rs28538
26
(A10398
G) | ND3 | Blein S,
2014 | 13,511 cases with postmeno pausal breast cancer and matched controls | Meta, 5
studies | OR | Not
provi
ded | Results not provided | Results not provided | Results not provided | - | NS | |-------------------|--------------------------------|-------------------------|--------------------|--|---------------------|----|---------------------|--|---|---|-----|--------| | | rs698 | ADH1C | Wang L,
2012 | 6,159
cases and
5,732
controls of
European
ancestry | Meta, 12
studies | OR | Not
provi
ded | 1.01 (0.971.06) | 0.67 | P _h = 0.574 | - | NS | | | rs23332
27
(G463A) | MPO | Pabalan
N, 2012 | 2,975
cases and
3,427
controls | Meta, 3
studies | OR | 0.20-
0.26 | Per allele effect:
premenopausal:
0.88 (0.72
1.06);
postmenopausal
cancer: 1.01
(0.951.12) | Per allele
effect:
premenopa
usal: 0.19;
postmenop
ausal
cancer: 0.77 | Per allele effect:
premenopausal:
$I^2 = 5\%$, $P_h =$
0.31;
postmenopausal
cancer: $I^2 = 0\%$,
$P_h = 0.54$ | - | NS | | Colorectal cancer | rs18050
87
(A2756G | MTR | Zhao Y,
2013 | 13,465
patients
and
20,430
controls | Meta, 26
studies | OR | 0.06-
0.25 | 1.03 (0.961.09) | 0.25 | $P_{\rm h} = 0.008$ | - | NS | | | rs10425
22
(A2756G | P53 | Ma X,
2014 | 10,515
cases and
12,909
controls | Meta, 31
studies | OR | 0.312
8 | 1.00 (0.921.10) | 0.922 | I ² = 72%, P _h < 0.01 | - | NS | | | rs16892
766 | 8q23.3,
<i>EIF3H</i> | Li M,
2015 | 41,728
cases and
44,393
controls | Meta, 11
studies | OR | 0.1 | 1.22 (1.181.27) | 1.39 × 10 ⁻²⁴ | $I^2 = 4\%, P = 0.39$ | AAA | Strong | | Deletion | GSTM1 | Ma X,
2014 | 20,552
cases and
31,419
controls | Meta, 56
studies | OR | 0.5 | 1.1 (1.041.17) | 0.001 | <i>I</i> ² = 48%, <i>P</i> < 0.01 | - | NS | |---------------|-------|----------------------------|---|---------------------|----|-----|-----------------|------------------------|---|---|----| | Deletion | GSTT1 | Qin X-P
et al.,
2013 |
15,373
colorectal
cancer
cases and
21,238
controls | Meta, 46
studies | OR | NA | 1.21 (1.101.33) | 9.5 × 10 ⁻⁵ | <i>I</i> ² = 67.4%, <i>P</i> < 0.001 | - | NS | | rs41430
94 | 10p14 | Figueired
o JC,
2014 | 9,287
cases and
9,117
controls | Meta, 10
studies | OR | NA | NA | 0.26 | NA | - | NS | NS: non significant, where significance is defined as $P < 10^{-5}$; OR: odds ratios; P_h : P value for Cochran's Q statistic test; EAF: effect allele frequency; NA: not available; -: not applicable ^{*}rs17468277 and rs1045485 variants are in linkage disequilibrium and have r2 = 1 and D' = 1 in European populations. Both variants are often used interchangeably in genetic association studies and meta-analyses.