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Supplementary Figures 

 

 

Figure S1: Deep learning-based extended depth-of-field (DOF) reconstruction of flowing Giardia cysts. 

(Top) The raw hologram captured by the image sensor is separated into individual color channels and 

reconstructed at the height, approximately corresponding to the center of the channel. This initial 

reconstruction is used as an input for a deep neural network trained to reconstruct holograms 

irrespective of their object heights in a single step, automatically implementing the function of both 

auto-focusing and phase recovery; thereby generating an extended depth-of-field image of the scene by 

simultaneously reconstructing and bringing into focus all the particles. (Bottom) Individual 

reconstructions of the same raw hologram using autofocusing on each particle. Particles reconstruct at 

different heights spanning the height of the flow channel (0–800 µm); this comparison between the top 

and bottom rows clearly shows that the whole volume can be coalesced into a single plane using a deep 

neural network based extended DOF reconstruction (top right image), enabling the reconstruction of 

dense water samples without being bottlenecked with the local computational power that is available.  

 



 

Figure S2: Segmentation algorithm utilized by our imaging flow cytometer for automated plankton 

detection. The spatial gradient of the full field-of-view background-subtracted hologram is calculated to 

detect the rapidly oscillating holographic diffraction pattern of the plankton present in the image. The 

gradient is thresholded to create a binary image, and morphological closing is performed to obtain a 

single mask signature from each object. The center coordinates of the masks are calculated and used to 

segment the full field-of-view hologram into sub-holograms containing a single organism/object. 

  



 

 

Figure S3: Imaging performance of our color holographic imaging flow cytometer. A 1951 Air Force test 

chart was placed at seven different distances (z) from the CMOS sensor plane corresponding to the 

height range of the microfluidic channel (i.e., z=0 corresponds to the bottom of the water sample in the 

channel). The smallest resolved element on the chart up to ~550 µm height is group 8 element 3, 

corresponding to a linewidth of 1.55 µm. Above this height, the coherence of the light reduces the 

achievable resolution steadily with z distance, with the top of the channel resolving a linewidth of 1.95 

µm corresponding to group 8 element 1.  

  



 

Figure S4: Architecture of the convolutional neural network (CNN) used for holographic image 

reconstruction. The input matrix is 1024 × 1024 pixels each, for RGB intensity (×3) and RGB phase 

channels (×3), i.e., altogether forming 6 channels. The network output is the phase-recovered and twin-

image eliminated RGB intensity and RGB phase of the flowing object.  

 



Component Single Unit (USD) High Volume (USD) 

Pump 700 ~420 

Image Sensor 676 ~115 

Illumination Circuit ~300 ~110 

Optical Filters 400+375 <100 

Flow Channel ~15 <10 

Total ~2466 <755 

 

Table S1: Cost estimate (in USD) for the components of our imaging flow cytometer prototype.   

 


