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S1. Electron-polariton scattering off plasmonic metasurfaces:  

A classical electrodynamic treatment 

a. Overview 

The goal of this write-up is to present an analytical approximation of the radiation emitted 

from an electron passing through plasmonic fields supported by a periodic metasurface structure. 

Such an expression would be useful not only in predicting the output radiation properties in closed-

form, but also in guiding the optimal metasurface design, based on the desired output spectrum. 

 

Figure S1: An electron scattering off the electromagnetic fields of a plasmonic metasurface 

emits photons at different frequencies and angles. The field with which the electron interacts 

includes induced localized plasmons as well as any incident, reflected, and scattered radiation. In 

the scenario considered here, the change in energy-momentum experienced by the electron is 

negligible. The output photon is detected at observation angles (θ, ϕ). The electron is assumed to 

travel in the +z direction, parallel to the periodicity of the metasurface. 

In what follows, we consider the interaction of a charged particle with initial kinetic energy 

  2
0 c1 m  and z-directed velocity c

00 zzv  , where c is the speed of light in free space, m the 

particle rest mass and 
2

00 11 z  the initial Lorentz factor. The particle interacts with the 

field near a plasmonic metasurface that is periodic along the z direction, with period L. This 

interaction, which is assumed to take place in a linear, isotropic and time-invariant medium, is 

illustrated in Figure S1.  
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b. Continuous-wave fields of a metasurface-enhanced plasmon 

We begin by considering the response of a metasurface to an incident continuous-wave 

(CW) laser. The electromagnetic fields supported by a periodic grating structure, assuming 

excitation by a CW electromagnetic beam of angular frequency ω0, can be written as 

          

          tzkzxBtzxB

tzkzxEtzxE

zyxzyx

zyxzyx

0z000,,0CW,,,

0z000,,0CW,,,

iiexp,,Re,,,

iiexp,,Re,,,








,    (S1.1) 

where i00 sinkkz  , k0 = ω0/u is the wavevector magnitude, u is the speed of light in the medium, 

and we have assumed that the input beam is incident in the plane containing the dimension of 

periodicity (here, the z dimension), at an angle θi to the normal of the surface. In accordance with 

the Bloch-Floquet theorem, Ex0, Ey0, Ez0, Bx0, By0, Bz0 are periodic functions such that  

 
       

       00,,00,,

00,,00,,

,,,,

,,,,





LzxBzxB

LzxEzxE

zyxzyx

zyxzyx




, (S1.2) 

where L is the period of the metasurface. By applying a Fourier series decomposition to the 

fields in (S1.2), we obtain  
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,(S1.3) 
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where 
22

0x znn kkk  , 0zLzn knkk  , isin00 kkz  , LkL π2 , xr = x – x0, where x0 is an 

arbitrary reference position. Due to the boundary conditions of the physical problem the only term 

traveling in the -x direction is the incident field. Note that kxn can be either real or imaginary (if 

imaginary, the requirement kxn < 0 must be met so that fields decay in +x direction, assuming the 

electron travels above the surface), whereas kx0, kL, kz0 and kzn are always real. Typically for 

metasurfaces that are extremely subwavelengths, as we consider in this work, all the kxn have an 

imaginary component and represent a decaying near-field. Applying the Maxwell equations to Eq. 

(S1.3), we find that the complex coefficients are related to one another by 
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 (S1.4) 

As Eq. (S1.4) shows, the coefficients in the expressions for Ex, Ey, Bx, By can be directly 

determined from the coefficients in the expressions for Ez, Bz. Hence, it is possible to construct the 

solution of the entire field above the periodic structure from just the 𝑧 components of the fields. 

More specifically, the solution can be constructed from only  010 ,, zxEz ,  020 ,, zxEz , 

 010 ,, zxBz ,  010 ,, zxEz , where 𝑥1,2 are arbitrary x positions above the grating, and we may 

restrict the domain to Lz 0  due to the functions’ periodicity in z. These points of data can be 

obtained from numerical field solvers (e.g., COMSOL). Using the Fourier series relations, we then 

determine the coefficients czn, cz01 and cz02 as 
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       
L
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L

xkc
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0101 iexp,,d
1

i-exp   (S1.5.1) 

and 
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, (S1.5.2) 

where x1r = x1 – x0, x2r = x2 – x0, and x12 = x1 – x2. Equivalent expressions for dzn, dz01 and dz02 may 

be obtained by replacing czn, cz01, cz02, Ez0 with dzn, dz01, dz02, Bz0 respectively in Eqs. (S1.5.1) and 

(S1.5.2). Ideally, 𝑥1 should be chosen close to the nanostructures where the plasmon fields are 

strong, and 𝑥2 should be chosen a distance away that is at least on the order of the wavelength of 

the incident free-space radiation, so it captures mostly the incident (and reflected) fields and only 

a negligible contribution from the plasmons. In this way, the fields supported by a periodic 

nanostructure may be obtained in a semi-analytical form – Eqs. (S1.3) and (S1.4) – with the help 

of field solver software to determine coefficients through Eqs. (S1.5.1) and (S1.5.2). Note that 

although there are in principle an infinite number of coefficients, the fields are dominated only by 

a few coefficients located at small values of |n| in most realistic scenarios. Eqs. (S1.3) and (S1.4) 

will be useful in determining a semi-analytical estimate for the radiation spectrum, as is our goal 

in this section. They can also be used to speed up numerical evaluation of electrodynamics in 

particle-tracking solvers by reducing the size of the input field from two-dimensional or three-

dimensional look-up tables – one for each component of the E and B fields – to just the few 

dominant coefficients in the Ez0 and Bz0 Fourier series expansion. 
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c. Pulsed fields of a metasurface-enhanced plasmon 

Next we consider the response of a metasurface to an incident pulsed laser. A pulsed 

plasmon results when the incident field – captured by the terms in Eq. (S1.3) that contain 

coefficients with subscript “02” in the previous case – is a pulse instead of a CW plane wave. 

Whereas the Ex-component of the CW incident field was given in Section b by  

   tzkxkcE rx 0z0x002xCWin,, iii-expRe  , (S1.6) 

we consider here a pulsed version of the form 
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u

x
tzkxkcE r

rx  , (S1.7) 

where T0 is related to the (intensity) full-width-at-half-maximum pulse duration TFWHM by the 

relation 0FWHM 2ln2 TT  . Note that Eq. (1.7) is a valid approximation of an electromagnetic pulse 

when T0 >> 2π/ω0. Choosing too small a pulse duration results in significant DC (i.e. static) 

components and thus an unrealistic model for a propagating pulse. Comparing Eqs. (S1.6) and 

(S1.7), we see that we can obtain the overall electromagnetic field corresponding to the input pulse 

described by Eq. (S1.7) via the equations 
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, (S1.8) 

where 
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2
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
 .                 (S1.9) 
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under the condition 2π/L >> k0 – which implies that the length L of the fundamental metasurface 

period is much smaller than the central wavelength of the incident pulse – we can evaluate Eqs. 

(S1.8) and (S1.9) to obtain the following analytical description of the overall electromagnetic pulse: 
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The variables associated with the pulse envelopes are given by 
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The variables associated with the carriers are given by 
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The c and d coefficients in the summation term of Eq. (S1.10) are related by  
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The conditions under which Eqs. (S1.10)-(S1.13) provide a good analytical approximation for 

the pulsed plasmon are described by the inequality 

 0

0

2
uT

k
L 


. (S1.14) 

In obtaining Eqs. (S1.10)-(S1.13), we have also assumed that the effects of material dispersion 

are negligible, implying that the c and d coefficients in the integrands of Eq. (S1.8) do not change 

substantially over the bandwidth of the pulse spectrum. We discuss in section S2 the influence of 

the dispersion on the output radiation. Exactly accounting for the dispersion (i.e. refractive index 

variation with frequency) involves multiplying each line of the CW response (Eq. (S1.3)) with the 
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spectral distribution G(ω) and integrating of the result over ω. Note in this case that each of the c 

and d coefficients in the integrand are also a function of ω. 

Note that the first inequality in Eq. (S1.14) implies that all terms in Eq. (S1.10) describe 

evanescent plasmonic modes except for the reflected and incoming fields (which are respectively 

the second-last and last terms in the Re{} function of each line in Eq. (S1.10)). Eq. (S1.14) applies 

to a broad range of practical problems, including our scenarios of interest where many-cycle pulses 

of central free space wavelength ~340-4000 nm are incident on metasurface structures of 

fundamental period ~30 nm. 

 

d. Electrodynamics in the pulsed fields of metasurface-enhanced plasmons 

In this subsection, we solve for the motion of electrons interfacing the field near a 

metasurface. The Newton-Lorentz equation of motion is given by 

  BvE
p

 q
dt

d
,  (S1.15) 

where p is the momentum of the particle, q its charge and v its velocity. E and B are the pulsed 

electromagnetic fields obtained in Section S1c. We operate in the regime where the particle moves 

mostly parallel to the surface t  (i.e., vx,y/u << 1 and 211 z  ), which applies in most 

realistic cases of interest involving quasi-to-highly relativistic particles. Only extremely high 

intensities can cause a quasi-to-highly relativistic particle to deviate significantly from the (mostly) 

parallel motion, however such intensities are usually irrelevant to our problem anyway, due to 

damage threshold restrictions of the metasurface material. Under such (mostly) parallel motion, 

we find that the velocity and position of the charged particle may be approximated by the following 

equations 
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where the functions gn = gn(x,z), g01 = g01(x,z), and g02 = g02(x,z) are as defined in Eq. (S3.6). “c.c.” 

refers to the complex conjugate of the expression it follows (recall that the coefficients e.g., czn, 

dzn, are in general complex numbers, and that kzn can be real or imaginary for different values of 

n). We have taken the liberty to ignore the exact value of the particle’s initial position in z, since 

it has negligible effect on the radiation spectrum, as long as the interaction spans more than a few 

metasurface periods.  

Note that under the condition 211 z  , which we have assumed, the momenta in the 

respective Cartesian directions may be approximated as  xxx mvmvp 0  , 
yyy mvmvp 0   

and     0

2

000 zzzzzz vvuvvmmvp   .  
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e Spectral intensity of emitted radiation 

In this subsection, we solve for the radiation emission from of electrons interacting with 

the nanograting. We calculate the Liénard-Wiechert potentials, including the generalization to a 

medium where the speed of light is u instead of c, obtaining the energy distribution (specifically, 

energy radiated per unit solid angle per unit frequency) as 
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where ε and μ are respectively the constant permittivity and permeability of the medium (so u = 

(εμ)-1/2), n = (sinθcosϕ, sinθsinϕ, cosθ) is the unit vector in the direction of observation, as defined 

in Fig. 1, and the components of U are given by 
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where   is the frequency of observation. Carrying out the integral and ignoring higher-order 

terms, we obtain after some tedious algebra  
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 (S1.20.3) 

The last term in (S1.20.3) corresponds to the Cherenkov radiation contribution of the charged 

particle moving through the medium. This term gives a negligible contribution in case the particle 

is slower than u (e.g., when in free space, u=c), as is expected from the Cherenkov effect. The 

functions    , nG G   are defined as 
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Equations (S1.18) and (S1.20.1)-(S1.20.4) provide an analytical estimate (semi-analytical if 

we obtain the cz and dz coefficients from the results of a numerical field solver) of the radiation 

intensity spectrum of a charged particle modulated by the fields of a plasmonic metasurface 

structure. We can see that the frequency peaks from the second-order scattering are located at 
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Note that depending on the value of n, the expression in Eq. (S1.21) can be positive or negative. 

Having a negative frequency is not a problem since the radiated field is real. The complex 

conjugate of each time harmonic exponential is also a constituent of the field, flipping the sign of 

the frequency. Its spectrum is thus conjugate symmetric and contains frequency peaks at both 

npk,  and npk,  , for each value of n. Nevertheless, negative frequencies still have an 

intriguing physical meaning. That the process can be understood as stimulated emission of the 

plasmon accompanying the (high frequency) photon emission. In contrast, the positive frequency 

means that the process can be understood as (stimulated) absorption of the plasmon accompanying 

the (high frequency) photon emission. This intriguing physics is analogous to the physics of the 

anomalous Doppler effect as explained by Ginzburg and Frank in [S1-S3]. 

In practice, for Eqs. (S1.20.1)-(S1.20.4), we only need to take into consideration one of each 

of these pairs of frequency peaks – the chosen one of each pair being given by Eq. (S1.21) – by 

definition of the single-sided intensity spectrum.  

Equation (S1.21) also tells us that for nanostructures of relatively small period and electrons 

of relatively high speed such that kLvz0 >> ω0, we should expect the single-sided spectrum to 

contain pairs of frequency peaks which are closely spaced in absolute frequency (separated by 
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2ω0/(1 – vz0nz/u)). Each of these pairs corresponds to peaks at n and at -n (n being any integer 

except 0). 

Our choice of a Gaussian profile for our input pulse in Eq. (S1.7) has led to a Gaussian shape 

for the spectral peaks in Eq. (S1.20.4). A different choice of input spectral profile only affects the 

shape of each radiative peak, without affecting key features like the peak frequency and spectral 

intensity of each peak.  

 

f. The case of a continuous-wave laser 

In the above, we have considered incident pulses that are finite in time, yet extended in 

space such that the interaction with the electron is always limited by the temporal extent of the 

pulses. In this subsection, we show that our analytical approach can also describe the opposite 

scenario. Here, the incident beams are finite in space, yet extended in time such that the interaction 

with the electron is always limited by the spatial extent of the beams. Comparing these two 

scenarios, we find that usually the only crucial parameter depicting the interaction result is the 

length (in time or space) of the interaction. Note that it can be substantially different in practice 

(e.g., the pulse case enables longer interactions for pulses moving close to the electron velocity, as 

we show in Figure 3 of the main text).  

We consider the case of a (spatial) Gaussian beam exciting the metasurface. Therefore, the 

considered field is the Fourier decomposed Ex field at rxx  (Eq. S1.3) multiplied by a Gaussian 

envelope 



16 
 

         

























 





2

0

x002xx001x

0
,

xx00
2

²
expi-expiexpiexp,,

Z

z
xkcxkcznkxkczxE rr

n

n
n

Lrnnx  , 

            (S1.22) 

where Z0 is related to the (intensity) full-width-at-half-maximum pulse duration ZFWHM by the 

relation 0FWHM 2ln2 TZ  . The other components rewrites similarly. 

Operating again in the regime where vx,y/u << 1 and 211 z   t , metasurface we find 

that the velocity (through Newton-Lorentz equation of motion, see section d) are similar to 

equations (S1.16), replacing 
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and 0n , 00  n , xnxn kk '  and znzn kk ' . 

Calculating the Liénard-Wiechert potential following the procedure in section e, we obtain 

the single-sided intensity spectrum as 
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where the components of U are given by 
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We can see that the frequency peaks from the second-order scattering are located at  
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similar to Eq. (S1.21) for the pulsed version. The peak intensity (related to magnitude of the 

components U) is now scaled directly by the interaction length (controlled by Z0) and no longer by 

matching the electron velocity with the pulse propagation embodied by the term  uvz0isin1   

(see discussion on Figure 3 in the main text). 

 

S2. Comparison with ab initio calculations 

This section presents comparisons between our analytical results (from Section S1) and our 

ab initio simulations. Altogether, we find a very good agreement. 

Figure S2 shows that the analytical results agree well with the ab initio computation performed 

by the Classical ElectroDynamics and Radiation Integrated Computation (CEDRIC). The program 

solves the exact trajectories of the electrons with the Newon-Lorentz equation, based on the field 

computed by COMSOL at one frequency (we suppose first a dispersionless case to match the 

approximation in Eq. (S1.10)). The output spectrum radiated is computed by evaluating Eq. 

(S1.18). A slight discrepancy appears for high incident angle of the laser pulse (  85i  in Figure 

S2) because the higher order terms are neglected during the integration in Eq. (S1.19). 
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Figure S2: Comparison of the output spectrum between (dispersionless) ab initio calculations 

(solid black lines) and our analytical formulation (dashed red lines) for different incident 

angles of the laser pulse (𝛉𝐢). The laser wavelength is 370 nm with pulse duration of 10 fs and 

electron kinetic energy of 7.5 MeV.  The metasurface is composed of three silver blocks with 

height of 40nm and widths 30, 7 and 25 nm at distances 10, 11 and 7 nm from each other, with a 

periodicity of 90 nm. The intensity is expressed in number of photons per second per steradian per 

1% bandwidth. 
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In the main text, we consider a Gaussian pulse of TFWHM = 10 fs (i.e. 60 T  fs). Considering 

much shorter pulse durations will break the approximation in Eq. (S1.7) that is valid when 

1/2 00  T fs, and will then require a more complex analytical solution. Our numerical 

approach still work by solving for the metasurface frequency response to each frequency in the 

spectrum, then summing the different frequency components pondered with field amplitude 

)(0 GE  (Eq. (S1.9)) to generate the final output. When the structure reacts very differently to 

different frequencies (i.e., the structure’s dispersion), we expect additional corrections. To quantify 

this correction, we compare in Figure S3 the dispersionless approximation (Eq. (S1.7)) with the 

ab initio computation considering the optical response of the silver metasurface at different 

frequencies. It shows that for the silver metasurface considered, the approximation holds with an 

error of maximum 1%. In fact, that approximation is legitimate when the dispersion of the material 

is relatively constant in the frequency region of interest. This is the case for silver around 370 nm, 

as it can be seen in Figure 4c in the main text. Note that for graphene nanoribbon array, the 

dispersion is extremely strong since the geometry alters the dispersion, creating narrow spectral 

features (due to the plasmonic nanoribbon mode). Considering a short pulse of a duration of 10 fs 

with the theory in this case would lead to an error of 2 orders of magnitude in the output emission 

spectrum, compared to the model including the dispersion (not shown here). This is why we 

consider a CW Gaussian beam on the graphene metasurface in Figures 1 and 4 in the main text. 
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Figure S3: Comparison of the output spectrum between ab initio calculations (solid black 

lines) and our dispersionless analytical formulation (dotted red lines) for an incident angle 

of the laser pulse 𝜽𝒊 = 𝟓𝟎°. The laser wavelength is 370 nm with pulse duration of 10 fs and 

electron kinetic energy of 5 MeV. The structure is the metasurface of Figure 1 in the main text. 

 

S3. Electron beam spatial extent 

In this section, we show that the solution based on the single electron can be used to predict 

the solution considering an electron beam of multiple electrons and a finite extent. We consider an 

elliptical beam of 100 µA current with focal plane widths of 3 nm in the x-direction and 3 µm in 

the y-direction. The beam is centered 1.5 nm away from the top of the metasurface, composed of 

silver blocks of 8.2 nm of 30 nm pitch, and illuminated with a 10 fs laser pulse at 60° incidence. 

In Figure S4, the radiation spectrum obtained with this setup is compared with the radiation emitted 
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from a single-electron shot 1 nm away from the same metasurface. In the two spectra, the peak 

frequencies and bandwidths are equal; the only discrepancy lies in the peak intensity, but this 

difference is well below an order of magnitude (maximum 13% in Figure S4). This difference is 

solely due to the range of electron distances from the grating (varying from 0 nm to 3 nm). Indeed, 

the space charge (inter-electron repulsion) is negligible for this range of parameters (being 

predicted to cause a beam divergence of 12105.2   rad after 1 mm of propagation according to 

[S4]). Interestingly, the error on the intensity is stronger for high orders (i.e. order 4 here). This 

behavior can be explained by the stronger field decay lengths of the high orders, as illustrated in 

Figure 5 of the main text.  

We obtain a better match between the ab initio and the analytical calculations when considering 

5-test-electron trajectories uniformly spaced apart. We suppose an elliptical beam of 100 µA 

current with focal plane widths of 5 nm in the x-direction and 3 µm in the y-direction. The beam 

is centered 3 nm away from the top of the metasurface (same as in Figure 6 in the main text), and 

illuminated by a 10 fs laser pulse at 50° incidence. The ab initio calculations are performed 

considering 200 electrons of 7.5 MeV energy and are represented in black solid lines in Figure S3. 

In order to obtain an analytical solution, we compute the spectrum generated by 5-test-electrons at 

various distances from the metasurface, ranging from 1 nm to 5 nm. The final spectrum is a 

weighted average of the obtained spectra, in order to take into account the elliptical shape of the 

beam in the y-direction. The solutions are plotted in red dashed lines in Figure S5, showing 

excellent agreement with the rigorous ab initio calculations. The parameters considered (for the 

metasurface and electron beam) are the same as Figure 5 in the main text. 
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Figure S4: Electron beam (solid black) and single electron (red dashed) calculations lead to 

the same peak frequency and bandwidth, and a maximum difference of 10% in the predicted 

intensity, well within an order of magnitude. The elliptical electron beam has focal plane widths 

of 3 nm in the x-direction and 3 µm in the y-direction, is centered 1.5 nm from the metasurface (x-

direction) and is composed of electrons of 5 MeV. The single electron at 7.5 MeV is shot 1 nm 

away from the metasurface. The metasurface is a periodic silver grating of 8.2 nm blocks arranged 

in a 30 nm period. The 10 fs optical pulse of wavelength 370 nm strikes the metasurface with an 

incidence angle of 60°. Intensity in units of photons/s/sr/1%BW. 
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Figure S5: Excellent agreement between ab initio (black solid lines) and analytical 

predictions (red dashed lines). The elliptic electron beam has focal plane widths of 5 nm in the 

x-direction and 3 µm in the y-direction, is centered 3 nm from the metasurface (x-direction) and is 

composed of electrons of 7.5 MeV. The analytical formulation performs the weighted average of 

5 spectra obtained considering independently 5-test-electrons at distance ranging from 1 nm to 5 

nm from the metasurface. 
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S4. Electron beam angle dependence 

In Figure 3 in the main text, we show the strong tunability of the peak brilliance and bandwidth 

with the angle of incidence of the photon beam. The key reason is that the electron-photon 

interaction is longer in time for a larger incidence angle. It is therefore also longer in space. From 

Eq. (S1.7), the spatial extent of the field on the metasurface is a Gaussian of spatial full-width-at-

half-maximum (FWHM) (supposing 0rx  and tvz z0 ): 

𝑍FWHM = √2
𝑣𝑧0𝑇FWHM

1−𝛽 sin 𝜃𝑖
                (S4.1) 

 

Figure S6: Effect of an electron traveling at an angle to the plane of the metasurface. The 

peak maximum brilliance for positive and negative orders are represented in (a) and (b), 

respectively, for an electron parallel to the metasurface (solid line) and with a deviation of 0.01° 

to the metasurface (dashed lines). The colors represent the orders: order 0 (green), order 1 (blue), 

order 2 (red) and order 3 (black). Electron energy is 7.5 MeV and the metasurface considered is 

the same as Figure 3 in the main text. The hatched area represents the region where the difference 

on the intensity resulting from the two different electron trajectories is more than 50%. 
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This dependence on the angle means that, for example with  70i , electrons of 7.5 MeV 

and TFWHM = 10 fs the FWHM spatial extent of the Gaussian beam on the metasurface is 

ZFWHM ≈ 68 µm. Therefore, if the electron is not correctly aligned, the electron-photon interaction 

will not be as efficient due to the exponential decay of the near field. For example, for a 0.01° 

deviation, after 68 µm in the z direction, it will present a deviation in the x direction of 12x  

nm, where the field intensity has decreased by a factor of 3. The impact of the deviation explains 

Figure S6, in which the maximum brilliance is reduced to 8105.4   Photons/s/sr/1%BW (instead 

10106   Photons/s/sr/1%BW) and occurs at a smaller angle  68i  for the first order. In this case 

we synchronized the peak maximum of the pulse with the electron such that they meet 1 nm above 

the metasurface. Note that the simulations do not take into account the radiation generated by the 

metasurface due to the electron direct excitation (e.g., effects like Smith-Purcell radiation and 

bremsstrahlung). 

 

S5. Laser fluence 

This section studies the intensity limits on the incident laser due to the damage threshold of the 

structure. The brilliance of the source is a quadratic function of the amplitude of the field 

(proportional to 
2

0

2
Eczn

, see Eqs. 3 and 4 in the main text). Therefore, in order to increase the 

intensity of the output radiation, one has to increase either the field enhancement (by engineering 

the metasurface), or the laser intensity (without damaging the metasurface). Here, we compute the 

fluence of the laser and we compare it to the fluence threshold that would damage the metasurface, 

based on developments in [30]. 
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The fluence of our time-pulse Gaussian beam (Eq. S1.7) with field amplitude E0 is 

𝐹𝑙 = ∫
𝑐𝜀0

2
|𝐸0|2𝑒−𝑡2/𝑇0

2
𝑑𝑡 =

𝑐𝜀0

2
|𝐸0|2√𝜋𝑇0 =

1

4
√

𝜋𝜀0

𝜇0 ln 2  
|𝐸0|2𝑇FWHM

∞

−∞
,       (S5.1) 

In this article, we consider TFWHM = 10 fs and E0 = 1 GV/m, leading to a fluence of 4.1lF  mJ cm-

². 

An estimation of the fluence threshold for structural damage is determined from the fluence 

required to reach the melting temperature of the silver metasurface, using [30] 

𝐹breakdown = 𝑚𝑐𝑝
𝑇melt−𝑇0

𝐶abs
,     (S5.2) 

with 𝑚 the mass of the silver metasurface, cp the specific heat of the silver, Cabs the absorption 

cross-section, and Tmelt and T0 the melting temperature of the metal and the room temperature, 

respectively. 

For example, for silver, 233.0pc  Jg-1K-1, Tmelt = 1234 K and density 05.10  g cm-³. One 

period of the silver metasurface in Figure 2 has a cross-section surface of 11106.2   cm-². 

Supposing a transversal extent of 1 cm, the metal mass is 101073.2 m  g. At normal incidence, 

the cross section is 𝐶abs = 90 ∙ 10−7 cm². Therefore, at room temperature, the fluence damage 

threshold of the silver metasurface is 𝐹breakdown = 6.6 mJ cm-², which is above the laser fluence 

we considered. 
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S6. Asymmetry of the spectrum enabled by a blazed grating 

Another way to design the output spectrum is the use of asymmetric metasurface building 

blocks. For example, in Figure S7, we show a simple periodic metasurface with trapezoidal 

elements. These structures will create an asymmetry between the negative and the positive orders 

of the near-field, resulting in an asymmetry in the pairs of peaks in the final spectrum. Note that 

 0s  at normal incidence gives a symmetry between negative and positive spatial orders, but 

there is still an asymmetry in the peak intensities, since the electron direction of motion breaks the 

symmetry.  

 

Figure S7: Tuning the relative intensity between positive (solid lines) and negative (dashed 

lines) orders. (a) The peak intensities for different slopes of the silver blocks ( 0s rad is a 

rectangular block). The period is 30 nm, height is 40 nm, the pulse incidence angle is 𝜃𝑖 = 0° and 

the electron energy is 7.5 MeV. As examples, two complete spectra are represented for a blaze 

strength (b) 6.0s  rad with a dominant negative order, and (c) 6.0s  with a dominant 

positive order. 
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S7. DC fields  

This section considers electron scattering off a DC metasurfaces, instead of the optical field 

considered above. Comparing the electron scattering by DC with the plasmonic near-fields in 

structures of a similar geometry shows both advantages and disadvantages. The advantage of 

biasing metallic structures, rather than employing an external laser excitation, is that it could 

reduce the fabrication complexity, especially for avoiding challenges of synchronizing and 

aligning a laser pulse with the trajectory and arrival times of electrons. However, the disadvantage 

is that DC fields will reduce the richness of the output spectrum, and limit the possibilities to tune 

the output radiation by altering the laser frequency. 

Figure S8 shows a comparison between DC fields, with a voltage of 2.5 V (breakdown voltage 

of 20 nm graphene nanoribbons [S5]) and infrared fields of amplitude 0.1 GV m-1 (so the maximum 

field amplitude along graphene is 3 GV m-1, below graphene breakdown threshold [31, 32]). Figure 

S9 shows the same comparison between the silver metasurface illuminated by an optical laser, and 

the same metasurface biased with the maximum breakdown voltage of 5 V, extrapolating the data 

in [S5] for a sub-10 nm gap in vacuum. In both Figures, the DC fields are computed with COMSOL, 

supposing a finite size of the metasurface (9.6 µm). This compares to the metasurface excited by 

a Gaussian beam forming a Gaussian spot with ZFWHM = 9.6 µm on the metasurface and supposing 

an angle of incidence of 45°. 
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Figure S8: Comparison between a DC grating (left) and an infrared metasurface (right) 

realized using the same 20 nm wide (30 nm periodicity) graphene nanoribbon array. (a,b) 

Plotting the x-component of the electric field of the DC and infrared cases respectively, on a unit 

cell of (a) two and (b) one nanoribbon(s). (a) A positive voltage of 2.5 V (-2.5 V) is applied to the 

left (right) graphene nanoribbon in each unit cell, which creates an effective periodicity of 60 nm. 

(b) A 2 µm wavelength Gaussian beam with a field amplitude of 0.1 GV m-1 and a 45° angle of 

incidence excites primarily the second order mode of a graphene nanoribbons, which creates an 

effective periodicity of 15 nm (30 nm for the first order mode). (c,d) The corresponding X-ray 

spectra for the DC field from a metasurface of 9.6 µm (c) and for the infrared field from Gaussian 

spot of FWMH ZFWHM = 9.6 µm on the metasurface (d). The energy of the electron is 7.5 MeV in 

both cases. In all cases, the the length of the graphene nanoribbon within each period is 20 nm. 

A complete comparison of the DC and the optical Compton effects in metasurfaces. The 

resulting spectra (Figure S9) differ in the following ways: 

 The 0th order does no longer appear with DC fields. The 0th order that corresponds to the 

incident plane wave does not contribute to the spectrum, since there is no external 

excitation by a plane wave. 
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 High orders do not appear in pairs anymore (± orders) in the DC field excitation.  In contrast, 

the standing wave of the photonic fields can be seen as a sum of backward and forward 

propagating waves, giving rise to two scattering processes, and therefore two peaks. DC 

fields are static and therefore the two processes combine into a single peak. 

 We find different peak profiles, caused by the different excitation methods. In the DC field 

excitation, the finite size of the metasurface generates sinc-like peaks. In the Gaussian laser 

pulse excitation, the spectrum has Gaussian peaks (see Section S1). 

 The emission frequency is lower for DC fields, when supposing a mono-periodic structure 

(Figure S8). This arises from the negative and positive poles, doubling the effective period. 

Since the period is directly related to the emission frequency (see Eq. 1 in the main text), 

the output frequencies from DC mono-periodic metasurfaces are lower by a factor of two. 

Other metasurface designs, with a periodic base composed of more than one element, 

generally enable the poles to alternate faster, thus generating high harmonic emission in 

both the DC and optical excitation (with reduced brilliance of the high emission orders). 

The main disadvantage of DC fields would be the diminished versatility of the design. 

Tuning the voltage remains the only dynamic parameter that can be controlled for a fixed 

metasurface in the DC case. Indeed, varying the voltage (as with the amplitude of the laser 

excitation) varies the brilliance of the source. In contrast, using an incident laser pulse allows 

one to directly control various aspects of the output radiation (such as brilliance, bandwidth 

and frequency) via the properties of the incident laser pulse such as its incidence angle (Figures 

2 and 3 in the main text), the wavelength (Figure 4 in the main text) and the pulse duration. 

Another advantage of photonic structures over DC structures is the ability of the former to 

support higher order mode excitations, which can be engineered to further increase the X-ray 
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frequencies emitted without the need of smaller metasurface features. An example with second 

order plasmon mode in graphene nanoribbons is plotted in Figure S7b. In the graphene case, 

moreover, it can be shown that by changing either the wavelength of the laser source, or the 

doping, can decide whether the first (~ 20 keV) or second (~ 40 keV) order is dominant, further 

enhancing the versatility of the optically driven X-ray source. 

 

Figure S9: Comparison between DC grating (left) and optical metasurface (right) on a 40 nm 

thick (90 nm periodicity) silver metasurface. (a,b) Plotting the x-component of the electric field 

of the DC and optical cases respectively, on a unit cell of (a) two and (b) one period of the 

metasurface. An alternating positive and negative voltage of magnitude 5 V is applied as depicted 

by the signs, which creates and effective periodicity of 180 nm. (b) Plotting the x-component of 

the field enhancement when a 370 nm wavelength Gaussian beam with a field amplitude of 1 

GV/m and a 45° angle of incidence excites the plasmons polaritons on top of the metasurface. (c-

d) The corresponding X-ray spectra for the DC field from a metasurface of 9.6 µm (c) and for the 

optical field from Gaussian spot of ZFWHM = 9.6 µm.  The energy of the electron is 7.5 MeV in 

both cases. 
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