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S1. Electron-polariton scattering off plasmonic metasurfaces:

A classical electrodynamic treatment

a. Overview

The goal of this write-up is to present an analytical approximation of the radiation emitted
from an electron passing through plasmonic fields supported by a periodic metasurface structure.
Such an expression would be useful not only in predicting the output radiation properties in closed-

form, but also in guiding the optimal metasurface design, based on the desired output spectrum.

Figure S1: An electron scattering off the electromagnetic fields of a plasmonic metasurface
emits photons at different frequencies and angles. The field with which the electron interacts
includes induced localized plasmons as well as any incident, reflected, and scattered radiation. In
the scenario considered here, the change in energy-momentum experienced by the electron is
negligible. The output photon is detected at observation angles (0, ¢). The electron is assumed to
travel in the +z direction, parallel to the periodicity of the metasurface.

In what follows, we consider the interaction of a charged particle with initial kinetic energy

(7o —1mc? and z-directed velocity v,, = 3,,c, where c is the speed of light in free space, m the

particle rest mass and y, El/ N ,8202 the initial Lorentz factor. The particle interacts with the

field near a plasmonic metasurface that is periodic along the z direction, with period L. This
interaction, which is assumed to take place in a linear, isotropic and time-invariant medium, is

illustrated in Figure S1.



b. Continuous-wave fields of a metasurface-enhanced plasmon

We begin by considering the response of a metasurface to an incident continuous-wave
(CW) laser. The electromagnetic fields supported by a periodic grating structure, assuming

excitation by a CW electromagnetic beam of angular frequency wo, can be written as

Epyanow(X 2.t @)= Re{E{nyyz}o(x, 2,0, )exp(ik gz —imyt)] SL)
B{x,y,z},CW (X’ Z,t, @y ) = Re{B{x.y,z}O (X’ Z, wo)exp(ikzoz - iwot)},

where k,, =k,siné., ko= wolu is the wavevector magnitude, u is the speed of light in the medium,

and we have assumed that the input beam is incident in the plane containing the dimension of
periodicity (here, the z dimension), at an angle 6; to the normal of the surface. In accordance with

the Bloch-Floquet theorem, Exo, Eyo, Ezo, Bxo, Byo, Bzo are periodic functions such that

Epyapo (X 2,@) = Eqgy oo (X, 2+ L) (S1.2)
B{vavz}o (X’ Z, 6()0)2 B{x,y,z}o (X’ z+L, a)o)’

where L is the period of the metasurface. By applying a Fourier series decomposition to the

fields in (S1.2), we obtain

E{X,Z}O (X’ Z' a)O ) = Zc{x,z}n exp[ (kxn Xr + nk Z)]+ C{x,z}Ol exp(ikxoxr )+ C{x,z}02 exp(- ikxOXr )

n=—w0,
n=0

ByO (X’ Z, a)O )U = rijjcyn eXp[ (kxn Xr + nk Z)]+ CyOl exp(ikxo Xr )+ c:y02 exp(_ ikxO Xr)
neo

(S1.3)
B{x z}0 X Z 600 Z {x,z}n eXp I(xnxr + nk Z)] d{x,z}Ol exp(ikxoxr )+ d{><,z}02 exp(- ikxOXr)

n

(X, 2,0,)= Zdynexp (KX, + 1k 2)]+d o, exp(ik,oX, )+ d,yg, €Xp(-iK,oX, )

n;tO
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where k, =+/k,” —k,,*, k,, =nk_+k,, k,=k,sin6,, k. =21/L, X = X — X0, where Xo is an

arbitrary reference position. Due to the boundary conditions of the physical problem the only term
traveling in the -x direction is the incident field. Note that kx, can be either real or imaginary (if
imaginary, the requirement kxn» < 0 must be met so that fields decay in +x direction, assuming the
electron travels above the surface), whereas kxo, KL, kzo and kzn are always real. Typically for
metasurfaces that are extremely subwavelengths, as we consider in this work, all the kx, have an
imaginary component and represent a decaying near-field. Applying the Maxwell equations to Eq.

(S1.3), we find that the complex coefficients are related to one another by

k
Cn = _iczn’ Cyor = Cim tan 9i1 Cyoz = Cin2 tan ei'

Xn kxn
Ko
Cyn = _k_czm Cyor = —C,1 5€CH, €y02 = Cooz secé,
kxn (S1.4)
dy, = _k_zndznv dyy ==, tané, d,,, =d,y, tand,
Ko
dyn = k_dzn7 dyOl = dzOlsecei’ dy02 = _dzoz sec@i.

As Eq. (S1.4) shows, the coefficients in the expressions for Ex, Ey, Bx, By can be directly
determined from the coefficients in the expressions for E;, B;. Hence, it is possible to construct the
solution of the entire field above the periodic structure from just the z components of the fields.

More specifically, the solution can be constructed from only E, (x,z,@,), E,o(X,z ),
B,o(X.,2,@,), E,y(X,z,,), where x, , are arbitrary x positions above the grating, and we may

restrict the domainto 0<z <L due to the functions’ periodicity in z. These points of data can be

obtained from numerical field solvers (e.g., COMSOL). Using the Fourier series relations, we then

determine the coefficients Cz, Cz01 and Cz2 as



c,, = exp(-ik, X, )%IOLdzEZO(xl, Z,, )exp(—ink z) (S1.5.1)
and

1 eL
|:0201j| _ 1 |:eXp(' ikxOXZr) - eXp(_ ikxoxlr )j| EJ‘O dZEZO(Xi’ Z, a)O) (8152)
2isin(k X, )| —exp(ik,oX, ) expl(ik,ox, ) %.[OLdzEzo(xz, Z,,)

C202

where Xir = X1 — Xo, X2r = X2 — Xo, and X12 = X1 — Xo. Equivalent expressions for dzn, dzo1 and dzo2 may
be obtained by replacing Czn, Cz01, Cz02, Ez0 With dzn, dz01, dz02, Bzo respectively in Egs. (S1.5.1) and
(S1.5.2). Ideally, x; should be chosen close to the nanostructures where the plasmon fields are
strong, and x, should be chosen a distance away that is at least on the order of the wavelength of
the incident free-space radiation, so it captures mostly the incident (and reflected) fields and only
a negligible contribution from the plasmons. In this way, the fields supported by a periodic
nanostructure may be obtained in a semi-analytical form — Egs. (S1.3) and (S1.4) — with the help
of field solver software to determine coefficients through Egs. (S1.5.1) and (S1.5.2). Note that
although there are in principle an infinite number of coefficients, the fields are dominated only by
a few coefficients located at small values of |n| in most realistic scenarios. Egs. (S1.3) and (S1.4)
will be useful in determining a semi-analytical estimate for the radiation spectrum, as is our goal
in this section. They can also be used to speed up numerical evaluation of electrodynamics in
particle-tracking solvers by reducing the size of the input field from two-dimensional or three-
dimensional look-up tables — one for each component of the E and B fields — to just the few

dominant coefficients in the E,o and B, Fourier series expansion.



c. Pulsed fields of a metasurface-enhanced plasmon

Next we consider the response of a metasurface to an incident pulsed laser. A pulsed
plasmon results when the incident field — captured by the terms in Eq. (S1.3) that contain
coefficients with subscript “02” in the previous case — is a pulse instead of a CW plane wave.

Whereas the Ex-component of the CW incident field was given in Section b by
E><,in,CW = Re{cxoz eXp(- ikxOXr + ikzOZ - ia)ot)}’ (816)

we consider here a pulsed version of the form

u

2
E. = Re{cXO2 exp(—ik ox +ik,,z - ia)ot)exp{— (— cosd  +sing © —tj /(ZToz)}}, (S1.7)
’ u

where To is related to the (intensity) full-width-at-half-maximum pulse duration Trwnm by the
relation Ty = 2\/WT0 . Note that Eq. (1.7) is a valid approximation of an electromagnetic pulse
when To >> 2m/wo. Choosing too small a pulse duration results in significant DC (i.e. static)
components and thus an unrealistic model for a propagating pulse. Comparing Egs. (S1.6) and
(S1.7), we see that we can obtain the overall electromagnetic field corresponding to the input pulse
described by Eq. (S1.7) via the equations

E.. .(x2)= ) Erovnow(X2t,0)G(0)de
e L Eesnen : (S1.8)
B

{x,y,z}(x’ Z) = J‘w B{x,y,z},CW(X’ Z’t’ a))G(a))da)

—00

where

exp[— (0= a7y’ } . (S1.9)



under the condition 2z/L >> ko — which implies that the length L of the fundamental metasurface
period is much smaller than the central wavelength of the incident pulse — we can evaluate Egs.

(S1.8) and (S1.9) to obtain the following analytical description of the overall electromagnetic pulse:

N=00

E{x,z}(x’ Z’t): Re Zc{x,z}n I gn fn + C{x,z}Olgm fOl + C{x,z}OngZ f02

n=—w0,
n=0

n=o00

By (X’ Z,t)U = Re chnlgn fn +Cy01901 f01 +Cy02902 f02

n=—0,
n=0

, (S1.10)

B{x,z}(x’ Z’t)u = Re Zd{x,z}n I gn fn + d{x,z}Olgm fOl + d{x,z}OZgOZ f02

n=—w0,
n=0

Ey(X, Z,t): Re Zdyn'gn fo + 061901 for + dy029os fo

n=-—0,
n=0

The variables associated with the pulse envelopes are given by

B 2
Uy = €XP —(X“cosei +sing —t] /(ZTOZ)}
u u
X z ?
Uoy = EXP —£_rc056?i +-—sing, —tj /(ZTOZ)}

u u

T, z . ? 2
=——exp| —| —sing —t 27, "
gn T0n| pl: (U i j /( On ):|

2,
T, = T2+ xr(35|n 249i 1)
2mu?/L

(S1.11)




The variables associated with the carriers are given by

fo, = explik o X, +ik,oZ —imgt)
fo, = exp(— ik X, +ik,oz —iayt)
f =exp(ik,,'x, +ik, 'z —iay,,'t)

Wy, = Wy + 00,

u

5a)n :—2ﬁ|:a)0(38inz€i_l)+sin0i:|/(2-ron-2)

2mu/L

ok i w,(3sin? 6, 1)
2u 27nu/L

K =k +2%sing
u

The c and d coefficients in the summation term of Eq. (S1.10) are related by

+sin0i}

k ,
1 zn ' 1 On '
Cin = K .Czn ' Cyn __k " n
xn xn
k. ' @,
1 zn ' ' on '
dxn - k .dzn ' dyn - k u zn
xn xn

(S1.12)

(S1.13)

The conditions under which Egs. (S1.10)-(S1.13) provide a good analytical approximation for

the pulsed plasmon are described by the inequality

L<<2—7T<< ut,.
0

(S1.14)

In obtaining Egs. (S1.10)-(S1.13), we have also assumed that the effects of material dispersion

are negligible, implying that the ¢ and d coefficients in the integrands of Eq. (S1.8) do not change

substantially over the bandwidth of the pulse spectrum. We discuss in section S2 the influence of

the dispersion on the output radiation. Exactly accounting for the dispersion (i.e. refractive index

variation with frequency) involves multiplying each line of the CW response (Eg. (S1.3)) with the



spectral distribution G(w) and integrating of the result over w. Note in this case that each of the ¢

and d coefficients in the integrand are also a function of w.

Note that the first inequality in Eq. (S1.14) implies that all terms in Eq. (S1.10) describe
evanescent plasmonic modes except for the reflected and incoming fields (which are respectively
the second-last and last terms in the Re{} function of each line in Eq. (S1.10)). Eq. (S1.14) applies
to a broad range of practical problems, including our scenarios of interest where many-cycle pulses
of central free space wavelength ~340-4000 nm are incident on metasurface structures of

fundamental period ~30 nm.

d. Electrodynamics in the pulsed fields of metasurface-enhanced plasmons

In this subsection, we solve for the motion of electrons interfacing the field near a

metasurface. The Newton-Lorentz equation of motion is given by

(Z—Ft):q(E+V>< B), (S1.15)

where p is the momentum of the particle, g its charge and v its velocity. E and B are the pulsed

electromagnetic fields obtained in Section S1c. We operate in the regime where the particle moves

mostly parallel to the surface Vvt (i.e., vxy/u << 1 and 7/;]/1/1—,822 ), which applies in most

realistic cases of interest involving quasi-to-highly relativistic particles. Only extremely high
intensities can cause a quasi-to-highly relativistic particle to deviate significantly from the (mostly)
parallel motion, however such intensities are usually irrelevant to our problem anyway, due to
damage threshold restrictions of the metasurface material. Under such (mostly) parallel motion,
we find that the velocity and position of the charged particle may be approximated by the following

equations



iqg | K, -V, U
2m70 N=—0, kxn (k V CoOn

zn "z0
n=0

vV, =

X

.) Czn gn (VZOt’ t)exp[i(kxn ' Xr + {kzn IVzO - wOn I}t)]

, fang —(v,, /u)sec, [

V. o C,01901 (Voo t)xp(ik, ) . (S1.16.1)

oo Vot )expl- o, Nexplihgy, %ﬂ}

+C.C.

g | &S oy, [u—v,k,, ' u , ,
Yy ® 2my, an k0 (/kzn vzo0 @y, )dmg ot expbn % + o'V~ i B

. (v,, /u)tan 6, —sec,
K,oV20 — @

[d,01901 (V,0t, t)explik,oX, ) . (S1.16.2)

_dzozgoz(vzot't)EXp('ikxox )]eXp[( 20Y20 a)o)t]}

+C.C.

iq - 1 W , ,
-V, =- _ t,t k k - t
Vz VzO Zm}/OB n;o, kznlvzo _ a)on. Czngn(VzO )exp[l( Xn Xr +{ zn VzO a)On } )]
0

1 .
+m[C201901(Vz0t1t)eXp(lkonr) ,  (51.16.3)

+C,02902 (Vzot' t)eXp(' ikxOXr )]EXp[i(kzovzo — Wy )t]}

+C.C.

e Koy 'u? Y - -
) § e e g e, + 0 )
n=0

zn "z0
tan 6, — (v,, / u)secé,
+ 2
(kzOVZO - a)o)

[C.01901 (V,ot, t) explik,oX, )  (S1.17.1)

—C02902 (Vzotv t)eXp(' iK,oX, )]eXp[i(kzono - a)o)t]}

+C.C.

10



9 < Won '/U _Vzokzn'/u .
= - d, t,t)e k k t
’ 2m7/0 n;o, k>(n I(kzn IVZO — Wy I)Z O (VZO ) Xp[ ( X + { V — @y } )]
n=#0

s (v,,/u)tan @, —secé,

d vV, t,t)explik, X, 17.
(kzono_a)o)z [ zolgm( 20 ) p( 0 ) , (S1.17.2)
- dzozgoz (Vzotvt)eXp(' ikxo Xy )]eXp[i(kzono — Wy )t]}
+C.C.
z _Vzot == 2m]/0 nz V — @, )2 Czngn(vzot1t)exp[i(kxn'Xr + {kznlvzo - wOnl}t)]
1 .
S t,t KoX, 17.
o [€201901 (vt t)explik,ox,) . (S117.3)
ettt VoL ool -0,
+ C.C.

where the functions gn = gn(X,2), go1 = go1(X,2), and go2 = go2(x,z) are as defined in Eq. (S3.6). “c.c.”
refers to the complex conjugate of the expression it follows (recall that the coefficients e.g., Czn,
dzn, are in general complex numbers, and that kz, can be real or imaginary for different values of
n). We have taken the liberty to ignore the exact value of the particle’s initial position in z, since
it has negligible effect on the radiation spectrum, as long as the interaction spans more than a few

metasurface periods.

Note that under the condition ;/;]/,ll—ﬂf , which we have assumed, the momenta in the

respective Cartesian directions may be approximated as p, = ymv, = y,mv,, p,=ymv, =ymv,

and p, =ymv, = 70m[vz + (7/0\/20 /U)2 (Vz —Vy )]

11



e Spectral intensity of emitted radiation

In this subsection, we solve for the radiation emission from of electrons interacting with
the nanograting. We calculate the Liénard-Wiechert potentials, including the generalization to a
medium where the speed of light is u instead of c, obtaining the energy distribution (specifically,
energy radiated per unit solid angle per unit frequency) as

d?l
da)dQ 167r

(S1.18)

where ¢ and u are respectively the constant permittivity and permeability of the medium (so u =
(e) ™), n = (sinfcosg, sindsing, cosh) is the unit vector in the direction of observation, as defined
in Fig. 1, and the components of U are given by

u=[ Vi gioft-niis) (S1.19)
ey

where @ is the frequency of observation. Carrying out the integral and ignoring higher-order

terms, we obtain after some tedious algebra

N

U 'ay7/2 5 o Yo 2 e 0Bk, %, 16,(0)
),

" m]/OU(l—Sinevzo/U) n=—0, (kanVzO

= ~ @on , (§1.20.1)
tand. —(v,, /u)seco, . i
0 IORECA ol , )6 o) e o, o ]
ZOVZO — @y

U 072 nzof w"“/u VioKiy /ud cexplik,,'x, )G, (o)

12

Y myu(l-sindyv,, /u) | = Kyn'Vyo —
you( 0/U) i Kin'( o) " (51.20.2)
V., /u)tan 8. —secé.
+( 20 k) i '[dzOleXp(Ikxox )G ( ) 202 exp( 'kxox )G ( )]}
20Y20 — @y

12



~ iq+/7/2
my,u(1-singv,,/u)

n=ow " 112 ' _ '
. Z |:C;”+ VZO(a)/u) [Cznnx kzn Van)On /U _d n a)On /U Vzﬂkzn /U —Cc.n 1 j:|

U, =

z

2 1 1 1 mn'y 1 n' 'z 2
Yo I(zn Voo = @y, kxn kxn Yo

n=-o0,
n=0

. v— -exp(ik,, ‘X, )G, (@)

zn

v u
+ [{CZ—"; + Vo (@/U) {czmnX [tan 0 - Y10 goc 0, } +d,,N, {Vﬂ tan 6, —secé, } —C,oN, iz}]
u

Yo KV — @ u 0

exp(ik,oX, )G, (@)

K,oV0 — @y

v u
+[CZ°2 _ V(@) {czoznX [tan 0, —Vﬂsec@i}dmny [Vﬂtan 0 —sec&i}rczoznZ LZH
u 7

2
Yo K,oVy0 — @, u 0

. kzOVzo - a)O exp(-ikxoxr )67 (a)):|}

+Esinc{a)[1-vﬂnzjl}
u u 2

The last term in (S1.20.3) corresponds to the Cherenkov radiation contribution of the charged

(S1.20.3)

particle moving through the medium. This term gives a negligible contribution in case the particle

is slower than u (e.g., when in free space, u=c), as is expected from the Cherenkov effect. The

functions G, (@),G, (@) are defined as

2
v T 12
G, (0)=T, 'exp| —| {k,.'V,; — @y, '} + @1—%n v
n((f)) on p! [{ n V20 a)On} a){ u Z}J 2(1sin6’iV20/U)2]

G, (0)=Tyexp —({kzovzo —wy |+ w{1—VZ° n}J 20 To ] . (S1.20.4)

u —sinfv,,/u)’

i . Vv X_c0sé
Fi| 1k - 1--2 r
on} 7t ol oft - [ 0m )

13



Equations (S1.18) and (S1.20.1)-(S1.20.4) provide an analytical estimate (semi-analytical if

we obtain the c; and d, coefficients from the results of a numerical field solver) of the radiation
intensity spectrum of a charged particle modulated by the fields of a plasmonic metasurface

structure. We can see that the frequency peaks from the second-order scattering are located at

'—k, 'v
a)pk,n = W . (8121)
1--2n,
u

Note that depending on the value of n, the expression in Eg. (S1.21) can be positive or negative.
Having a negative frequency is not a problem since the radiated field is real. The complex
conjugate of each time harmonic exponential is also a constituent of the field, flipping the sign of
the frequency. Its spectrum is thus conjugate symmetric and contains frequency peaks at both
for each value of n. Nevertheless, negative frequencies still have an

o=, ,and o=-w,,,

intriguing physical meaning. That the process can be understood as stimulated emission of the
plasmon accompanying the (high frequency) photon emission. In contrast, the positive frequency
means that the process can be understood as (stimulated) absorption of the plasmon accompanying
the (high frequency) photon emission. This intriguing physics is analogous to the physics of the

anomalous Doppler effect as explained by Ginzburg and Frank in [S1-S3].

In practice, for Egs. (S1.20.1)-(S1.20.4), we only need to take into consideration one of each
of these pairs of frequency peaks — the chosen one of each pair being given by Eq. (S1.21) — by

definition of the single-sided intensity spectrum.

Equation (S1.21) also tells us that for nanostructures of relatively small period and electrons
of relatively high speed such that kiv.o >> wo, we should expect the single-sided spectrum to

contain pairs of frequency peaks which are closely spaced in absolute frequency (separated by

14



2mo/(1 — vonz/u)). Each of these pairs corresponds to peaks at n and at -n (n being any integer

except 0).

Our choice of a Gaussian profile for our input pulse in Eq. (S1.7) has led to a Gaussian shape
for the spectral peaks in Eq. (S1.20.4). A different choice of input spectral profile only affects the
shape of each radiative peak, without affecting key features like the peak frequency and spectral

intensity of each peak.

f. The case of a continuous-wave laser

In the above, we have considered incident pulses that are finite in time, yet extended in
space such that the interaction with the electron is always limited by the temporal extent of the
pulses. In this subsection, we show that our analytical approach can also describe the opposite
scenario. Here, the incident beams are finite in space, yet extended in time such that the interaction
with the electron is always limited by the spatial extent of the beams. Comparing these two
scenarios, we find that usually the only crucial parameter depicting the interaction result is the
length (in time or space) of the interaction. Note that it can be substantially different in practice
(e.g., the pulse case enables longer interactions for pulses moving close to the electron velocity, as

we show in Figure 3 of the main text).

We consider the case of a (spatial) Gaussian beam exciting the metasurface. Therefore, the
considered field is the Fourier decomposed Ex field at x = X, (Eq. S1.3) multiplied by a Gaussian

envelope

15



. . Z2
E.(x2m,) Zcxn expli(k, X, + Nk, z)]+c o, expl(ik,gX, )+ C,,, exp(-ik 4, )i exp| — 57|
0

n¢0

(S1.22)

where Zg is related to the (intensity) full-width-at-half-maximum pulse duration Zrwnm by the

relation Z ., = 2vIn2T,. The other components rewrites similarly.

Operating again in the regime where vxy/u << 1 and y ;]/,ll—ﬂf Vt, metasurface we find

that the velocity (through Newton-Lorentz equation of motion, see section d) are similar to
equations (S1.16), replacing

On =90 =Y = \/_ieXp[_ 22/(2202)], (S1.23)

z0

and dw, =0, o,, =o,, k,,'=k,, and k,,'=

xn

Calculating the Lienard-Wiechert potential following the procedure in section e, we obtain

the single-sided intensity spectrum as

d?l
da)dQ 167z

(S1.24)

where the components of U are given by

1 n=o00 _ 2
U, = VT2 IS8 K a0 e, x, )6, (o)
m70UVZO N=-o0, k (kznvzo a)On)

o . (S1.25.1)

tand — (v ,/u)seco. . i
+ Ik ( 0 ) : [Czol exp(lkxoxr)_CZOZ EXp('lkonr)]Go(w)}
ZOVZO —

16



BNTZ ) Gy Yk ’“)dmexpokm X, )G, (o)

y
m70UV N=-o0 (kzn VzO

n=0

Ill
M:

U
1 (S1.25.2)

v, /u)tan g, —secéo, . i
+ ( 20 ” ) i ! [d 201 exp(lkxoxr )_ dzOZ exp(_ II(xOXr )]Go(w)}
20V20 — Wy

- 192 \/_exp[ Z,% /2]

UZ
My,Uv,,
N=c0 Vi u o 1 2 1 _ 1
z CL;-F 20 (0)/ ) Cznnx kzn Van)On /u _dznny Won /U Vzokzn /u _Cznnziz
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v A
Gn(a))exp{—({kmvzo Wy }+ a){l—ﬂnz}j > 0 2]. (S1.25.4)
u VzO

We can see that the frequency peaks from the second-order scattering are located at
k
Do ~XanVuo (S1.26)

1—Vﬂn
u

z
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similar to Eqg. (S1.21) for the pulsed version. The peak intensity (related to magnitude of the
components U) is now scaled directly by the interaction length (controlled by Zo) and no longer by

matching the electron velocity with the pulse propagation embodied by the term (1—sinév,,/u)

(see discussion on Figure 3 in the main text).

S2. Comparison with ab initio calculations

This section presents comparisons between our analytical results (from Section S1) and our

ab initio simulations. Altogether, we find a very good agreement.

Figure S2 shows that the analytical results agree well with the ab initio computation performed
by the Classical ElectroDynamics and Radiation Integrated Computation (CEDRIC). The program
solves the exact trajectories of the electrons with the Newon-Lorentz equation, based on the field
computed by COMSOL at one frequency (we suppose first a dispersionless case to match the
approximation in Eq. (S1.10)). The output spectrum radiated is computed by evaluating Eq.

(S1.18). A slight discrepancy appears for high incident angle of the laser pulse (8, =85° in Figure

S2) because the higher order terms are neglected during the integration in Eq. (S1.19).
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Figure S2: Comparison of the output spectrum between (dispersionless) ab initio calculations
(solid black lines) and our analytical formulation (dashed red lines) for different incident
angles of the laser pulse (8;). The laser wavelength is 370 nm with pulse duration of 10 fs and
electron kinetic energy of 7.5 MeV. The metasurface is composed of three silver blocks with
height of 40nm and widths 30, 7 and 25 nm at distances 10, 11 and 7 nm from each other, with a
periodicity of 90 nm. The intensity is expressed in number of photons per second per steradian per

1% bandwidth.
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In the main text, we consider a Gaussian pulse of Trwxm = 10 fs (i.e. T, =6 fs). Considering

much shorter pulse durations will break the approximation in Eq. (S1.7) that is valid when

T, >> 27/ w, =1fs, and will then require a more complex analytical solution. Our numerical

approach still work by solving for the metasurface frequency response to each frequency in the
spectrum, then summing the different frequency components pondered with field amplitude

E,G(w) (Eq. (S1.9)) to generate the final output. When the structure reacts very differently to

different frequencies (i.e., the structure’s dispersion), we expect additional corrections. To quantify
this correction, we compare in Figure S3 the dispersionless approximation (Eq. (S1.7)) with the
ab initio computation considering the optical response of the silver metasurface at different
frequencies. It shows that for the silver metasurface considered, the approximation holds with an
error of maximum 1%. In fact, that approximation is legitimate when the dispersion of the material
is relatively constant in the frequency region of interest. This is the case for silver around 370 nm,
as it can be seen in Figure 4c in the main text. Note that for graphene nanoribbon array, the
dispersion is extremely strong since the geometry alters the dispersion, creating narrow spectral
features (due to the plasmonic nanoribbon mode). Considering a short pulse of a duration of 10 fs
with the theory in this case would lead to an error of 2 orders of magnitude in the output emission
spectrum, compared to the model including the dispersion (not shown here). This is why we

consider a CW Gaussian beam on the graphene metasurface in Figures 1 and 4 in the main text.
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Figure S3: Comparison of the output spectrum between ab initio calculations (solid black
lines) and our dispersionless analytical formulation (dotted red lines) for an incident angle
of the laser pulse 8; = 50°. The laser wavelength is 370 nm with pulse duration of 10 fs and
electron kinetic energy of 5 MeV. The structure is the metasurface of Figure 1 in the main text.

S3. Electron beam spatial extent

In this section, we show that the solution based on the single electron can be used to predict
the solution considering an electron beam of multiple electrons and a finite extent. We consider an
elliptical beam of 100 pA current with focal plane widths of 3 nm in the x-direction and 3 um in
the y-direction. The beam is centered 1.5 nm away from the top of the metasurface, composed of
silver blocks of 8.2 nm of 30 nm pitch, and illuminated with a 10 fs laser pulse at 60° incidence.

In Figure S4, the radiation spectrum obtained with this setup is compared with the radiation emitted
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from a single-electron shot 1 nm away from the same metasurface. In the two spectra, the peak
frequencies and bandwidths are equal; the only discrepancy lies in the peak intensity, but this
difference is well below an order of magnitude (maximum 13% in Figure S4). This difference is
solely due to the range of electron distances from the grating (varying from 0 nm to 3 nm). Indeed,

the space charge (inter-electron repulsion) is negligible for this range of parameters (being

predicted to cause a beam divergence of 2.5-107" rad after 1 mm of propagation according to
[S4]). Interestingly, the error on the intensity is stronger for high orders (i.e. order 4 here). This
behavior can be explained by the stronger field decay lengths of the high orders, as illustrated in

Figure 5 of the main text.

We obtain a better match between the ab initio and the analytical calculations when considering
5-test-electron trajectories uniformly spaced apart. We suppose an elliptical beam of 100 pA
current with focal plane widths of 5 nm in the x-direction and 3 pum in the y-direction. The beam
is centered 3 nm away from the top of the metasurface (same as in Figure 6 in the main text), and
illuminated by a 10 fs laser pulse at 50° incidence. The ab initio calculations are performed
considering 200 electrons of 7.5 MeV energy and are represented in black solid lines in Figure S3.
In order to obtain an analytical solution, we compute the spectrum generated by 5-test-electrons at
various distances from the metasurface, ranging from 1 nm to 5 nm. The final spectrum is a
weighted average of the obtained spectra, in order to take into account the elliptical shape of the
beam in the y-direction. The solutions are plotted in red dashed lines in Figure S5, showing
excellent agreement with the rigorous ab initio calculations. The parameters considered (for the

metasurface and electron beam) are the same as Figure 5 in the main text.
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Figure S4: Electron beam (solid black) and single electron (red dashed) calculations lead to
the same peak frequency and bandwidth, and a maximum difference of 10% in the predicted
intensity, well within an order of magnitude. The elliptical electron beam has focal plane widths
of 3 nm in the x-direction and 3 um in the y-direction, is centered 1.5 nm from the metasurface (x-
direction) and is composed of electrons of 5 MeV. The single electron at 7.5 MeV is shot 1 nm
away from the metasurface. The metasurface is a periodic silver grating of 8.2 nm blocks arranged
in a 30 nm period. The 10 fs optical pulse of wavelength 370 nm strikes the metasurface with an
incidence angle of 60°. Intensity in units of photons/s/sr/1%BW.
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Figure S5: Excellent agreement between ab initio (black solid lines) and analytical
predictions (red dashed lines). The elliptic electron beam has focal plane widths of 5 nm in the
x-direction and 3 pm in the y-direction, is centered 3 nm from the metasurface (x-direction) and is
composed of electrons of 7.5 MeV. The analytical formulation performs the weighted average of
5 spectra obtained considering independently 5-test-electrons at distance ranging from 1 nm to 5

nm from the metasurface.
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S4. Electron beam angle dependence

In Figure 3 in the main text, we show the strong tunability of the peak brilliance and bandwidth
with the angle of incidence of the photon beam. The key reason is that the electron-photon
interaction is longer in time for a larger incidence angle. It is therefore also longer in space. From
Eq. (S1.7), the spatial extent of the field on the metasurface is a Gaussian of spatial full-width-at-

half-maximum (FWHM) (supposing x, =0 and z =v,t):

VzoTFWHM
Z =V2—— S4.1
FWHM 1—f sin 6, ( )
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Figure S6: Effect of an electron traveling at an angle to the plane of the metasurface. The
peak maximum brilliance for positive and negative orders are represented in (a) and (b),
respectively, for an electron parallel to the metasurface (solid line) and with a deviation of 0.01°
to the metasurface (dashed lines). The colors represent the orders: order O (green), order 1 (blue),
order 2 (red) and order 3 (black). Electron energy is 7.5 MeV and the metasurface considered is
the same as Figure 3 in the main text. The hatched area represents the region where the difference
on the intensity resulting from the two different electron trajectories is more than 50%.
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This dependence on the angle means that, for example with 6, =70°, electrons of 7.5 MeV

and Trwnm = 10 fs the FWHM spatial extent of the Gaussian beam on the metasurface is
Zrwhm =~ 68 um. Therefore, if the electron is not correctly aligned, the electron-photon interaction
will not be as efficient due to the exponential decay of the near field. For example, for a 0.01°
deviation, after 68 um in the z direction, it will present a deviation in the x direction of Ax =12
nm, where the field intensity has decreased by a factor of 3. The impact of the deviation explains
Figure S6, in which the maximum brilliance is reduced to 4.5-10° Photons/s/sr/1%BW (instead
6-10" Photons/s/sr/1%BW) and occurs at a smaller angle 8, = 68° for the first order. In this case
we synchronized the peak maximum of the pulse with the electron such that they meet 1 nm above
the metasurface. Note that the simulations do not take into account the radiation generated by the
metasurface due to the electron direct excitation (e.g., effects like Smith-Purcell radiation and

bremsstrahlung).

S5. Laser fluence

This section studies the intensity limits on the incident laser due to the damage threshold of the

structure. The brilliance of the source is a quadratic function of the amplitude of the field
(proportional to |cm|2|E0|2, see Egs. 3 and 4 in the main text). Therefore, in order to increase the

intensity of the output radiation, one has to increase either the field enhancement (by engineering
the metasurface), or the laser intensity (without damaging the metasurface). Here, we compute the
fluence of the laser and we compare it to the fluence threshold that would damage the metasurface,

based on developments in [30].
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The fluence of our time-pulse Gaussian beam (Eq. S1.7) with field amplitude Eo is

%) _+2 /72 1
Fl = f_ooczﬂlEolze t°/Tg dt = %lEolz'\/ETo = Z /ﬂ:’l‘:loz |E0|2TFWHM’ (851)

In this article, we consider Trwnim= 10 fsand Eo =1 GV/m, leading to a fluence of F, =1.4 mJ cm’

2

An estimation of the fluence threshold for structural damage is determined from the fluence

required to reach the melting temperature of the silver metasurface, using [30]

— Tmelt—To
Fpreakdown = MCp Cans (S5.2)

with m the mass of the silver metasurface, c, the specific heat of the silver, Cans the absorption
cross-section, and Tmeit and To the melting temperature of the metal and the room temperature,

respectively.

For example, for silver, ¢, =0.233 Jg KL, Tmeit = 1234 K and density p =10.05 g cm™. One

em2,

period of the silver metasurface in Figure 2 has a cross-section surface of 2.6-10
Supposing a transversal extent of 1 cm, the metal mass is m = 2.73-10™"° g. At normal incidence,
the cross section is C,,s = 90 - 1077 cm2. Therefore, at room temperature, the fluence damage

threshold of the silver metasurface is Fyreakdown = 6.6 mJ cm2, which is above the laser fluence

we considered.
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S6. Asymmetry of the spectrum enabled by a blazed grating

Another way to design the output spectrum is the use of asymmetric metasurface building
blocks. For example, in Figure S7, we show a simple periodic metasurface with trapezoidal
elements. These structures will create an asymmetry between the negative and the positive orders
of the near-field, resulting in an asymmetry in the pairs of peaks in the final spectrum. Note that

6, = 0° at normal incidence gives a symmetry between negative and positive spatial orders, but

there is still an asymmetry in the peak intensities, since the electron direction of motion breaks the

symmetry.
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Figure S7: Tuning the relative intensity between positive (solid lines) and negative (dashed
lines) orders. (a) The peak intensities for different slopes of the silver blocks (6, =0rad is a

rectangular block). The period is 30 nm, height is 40 nm, the pulse incidence angle is 8; = 0° and
the electron energy is 7.5 MeV. As examples, two complete spectra are represented for a blaze
strength (b) 6, =—-0.6 rad with a dominant negative order, and (c) &, =0.6 with a dominant

positive order.

28



S7. DC fields

This section considers electron scattering off a DC metasurfaces, instead of the optical field
considered above. Comparing the electron scattering by DC with the plasmonic near-fields in
structures of a similar geometry shows both advantages and disadvantages. The advantage of
biasing metallic structures, rather than employing an external laser excitation, is that it could
reduce the fabrication complexity, especially for avoiding challenges of synchronizing and
aligning a laser pulse with the trajectory and arrival times of electrons. However, the disadvantage
is that DC fields will reduce the richness of the output spectrum, and limit the possibilities to tune

the output radiation by altering the laser frequency.

Figure S8 shows a comparison between DC fields, with a voltage of 2.5 V (breakdown voltage
of 20 nm graphene nanoribbons [S5]) and infrared fields of amplitude 0.1 GV m™ (so the maximum
field amplitude along graphene is 3 GV m, below graphene breakdown threshold [31, 32]). Figure
S9 shows the same comparison between the silver metasurface illuminated by an optical laser, and
the same metasurface biased with the maximum breakdown voltage of 5 V, extrapolating the data
in [S5] for a sub-10 nm gap in vacuum. In both Figures, the DC fields are computed with COMSOL,
supposing a finite size of the metasurface (9.6 um). This compares to the metasurface excited by
a Gaussian beam forming a Gaussian spot with Zrwhm = 9.6 pm on the metasurface and supposing

an angle of incidence of 45°.
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(a) DC field (b) Infrared field
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Figure S8: Comparison between a DC grating (left) and an infrared metasurface (right)
realized using the same 20 nm wide (30 nm periodicity) graphene nanoribbon array. (a,b)
Plotting the x-component of the electric field of the DC and infrared cases respectively, on a unit
cell of (a) two and (b) one nanoribbon(s). (a) A positive voltage of 2.5 V (-2.5 V) is applied to the
left (right) graphene nanoribbon in each unit cell, which creates an effective periodicity of 60 nm.
(b) A 2 um wavelength Gaussian beam with a field amplitude of 0.1 GV m™ and a 45° angle of
incidence excites primarily the second order mode of a graphene nanoribbons, which creates an
effective periodicity of 15 nm (30 nm for the first order mode). (c,d) The corresponding X-ray
spectra for the DC field from a metasurface of 9.6 um (c) and for the infrared field from Gaussian
spot of FWMH Zrwhm = 9.6 um on the metasurface (d). The energy of the electron is 7.5 MeV in
both cases. In all cases, the the length of the graphene nanoribbon within each period is 20 nm.
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Intensity (photons s™' sr™! per 1% BW)

T

A complete comparison of the DC and the optical Compton effects in metasurfaces. The

resulting spectra (Figure S9) differ in the following ways:

e The 0" order does no longer appear with DC fields. The 0" order that corresponds to the
incident plane wave does not contribute to the spectrum, since there is no external
excitation by a plane wave.
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High orders do not appear in pairs anymore (+ orders) in the DC field excitation. In contrast,
the standing wave of the photonic fields can be seen as a sum of backward and forward
propagating waves, giving rise to two scattering processes, and therefore two peaks. DC
fields are static and therefore the two processes combine into a single peak.

We find different peak profiles, caused by the different excitation methods. In the DC field
excitation, the finite size of the metasurface generates sinc-like peaks. In the Gaussian laser
pulse excitation, the spectrum has Gaussian peaks (see Section S1).

The emission frequency is lower for DC fields, when supposing a mono-periodic structure
(Figure S8). This arises from the negative and positive poles, doubling the effective period.
Since the period is directly related to the emission frequency (see Eg. 1 in the main text),
the output frequencies from DC mono-periodic metasurfaces are lower by a factor of two.
Other metasurface designs, with a periodic base composed of more than one element,
generally enable the poles to alternate faster, thus generating high harmonic emission in

both the DC and optical excitation (with reduced brilliance of the high emission orders).

The main disadvantage of DC fields would be the diminished versatility of the design.

Tuning the voltage remains the only dynamic parameter that can be controlled for a fixed

metasurface in the DC case. Indeed, varying the voltage (as with the amplitude of the laser

excitation) varies the brilliance of the source. In contrast, using an incident laser pulse allows
one to directly control various aspects of the output radiation (such as brilliance, bandwidth

and frequency) via the properties of the incident laser pulse such as its incidence angle (Figures

2 and 3 in the main text), the wavelength (Figure 4 in the main text) and the pulse duration.

Another advantage of photonic structures over DC structures is the ability of the former to

support higher order mode excitations, which can be engineered to further increase the X-ray
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frequencies emitted without the need of smaller metasurface features. An example with second
order plasmon mode in graphene nanoribbons is plotted in Figure S7b. In the graphene case,
moreover, it can be shown that by changing either the wavelength of the laser source, or the
doping, can decide whether the first (~ 20 keV) or second (~ 40 keV) order is dominant, further

enhancing the versatility of the optically driven X-ray source.
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Figure S9: Comparison between DC grating (left) and optical metasurface (right) on a 40 nm
thick (90 nm periodicity) silver metasurface. (a,b) Plotting the x-component of the electric field
of the DC and optical cases respectively, on a unit cell of (a) two and (b) one period of the
metasurface. An alternating positive and negative voltage of magnitude 5 V is applied as depicted
by the signs, which creates and effective periodicity of 180 nm. (b) Plotting the x-component of
the field enhancement when a 370 nm wavelength Gaussian beam with a field amplitude of 1
GV/m and a 45° angle of incidence excites the plasmons polaritons on top of the metasurface. (c-
d) The corresponding X-ray spectra for the DC field from a metasurface of 9.6 um (c) and for the
optical field from Gaussian spot of Zrwhm = 9.6 um. The energy of the electron is 7.5 MeV in
both cases.
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