BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Hemoglobin A1c and Hearing Impairment: longitudinal analysis using a large occupational health check-up data of Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023220
Article Type:	Research
Date Submitted by the Author:	29-Mar-2018
Complete List of Authors:	Nagahama, Satsue; Toho University Graduate School of Medicine, Department of Environmental and Occupational Health; All Japan Labor Welfare Foundation, Division of Occupational Health and Promotion Kashino, Ikuko; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Hu, Huanhuan; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Nanri, Akiko; Fukuoka Women's University, Department of Food and Health Sciences International College of Arts and Sciences Kurotani, Kayo; National Institutes of Biomedical Innovation, Health and Nutrition, National Institute of Health and Nutrition, Department of Nutritional Epidemiology and Shokuiku Kuwahara, Keisuke; Teikyo University, Graduate School of Public Health; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Dan, Masashi; All Japan Labor Welfare Foundation, Michikawa, Takehiro; National Institute for Environmental Studies, Environmental Epidemiology Section, Center for Environmental Health Sciences Akter, Shamima; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Mizoue, Tetsuya; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Murakami, Yoshitaka ; Toho University Graduate School of Medicine, Department of Medical statistics Nishiwaki, Yuji; Toho University Graduate School of Medicine, Department of Environmental and Occupational Health
Keywords:	EPIDEMIOLOGY, Diabetes & endocrinology < INTERNAL MEDICINE, OCCUPATIONAL & INDUSTRIAL MEDICINE, Audiology < OTOLARYNGOLOGY

SCHOLARONE[™] Manuscripts

BMJ Open

1	Hemoglobin A1c and Hearing Impairment: longitudinal analysis using a large
2	occupational health check-up data of Japan
3	
4	Satsue Nagahama 1 2 3*, Ikuko Kashino 3, Huanhuan Hu 3, Akiko Nanri 4, Kayo
5	Kurotani 5, Keisuke Kuwahara 6 3, Masashi Dan 2, Takehiro Michikawa 7, Shamima
6	Akter 3, Tetsuya Mizoue 3, Yoshitaka Murakami 8, Yuji Nishiwaki 1
7	
8	1 Toho University Graduate School of Medicine, Department of Environmental and
9	Occupational Health, 5-21-16, Omorinishi, Otaku, Tokyo, 143-8540, Japan. Phone
10	+81-3-3762-4151(2403), Fax +81-3-5493-5416
11	E-mail: <u>satsue-n@umin.ac.jp</u>
12	;
13	2 All Japan Labor Welfare Foundation, Division of Occupational Health and Promotion,
14	6-16-11, Hatanodai, Shinagawa, Tokyo, 142-0064, Japan;
15	3 National Center for Global Health and Medicine, Department of Epidemiology and
16	Prevention, Center for Clinical Sciences, 1-21-1, Toyama, Shinjuku, Tokyo, Japan;
17	4 Fukuoka Women's University, Department of Food and Health Sciences International
18	College of Arts and Sciences, 1-1-1, Kasumigaoka, Higashiku, Fukuoka, Japan;
	1

		BMJ Open
	19	5 National Institutes of Biomedical Innovation, Health and Nutrition, National Institute
2	20	of Health and Nutrition, Department of Nutritional Epidemiology and Shokuiku, 1-23-1,
2	21	Toyama, Shinjuku, Tokyo, Japan;
	22	6 Teikyo University, Graduate School of Public Health, 2-11-1, Kaga, Itabashi, Tokyo,
2	23	Japan;
1	24	7 Centre for Health and Environmental Risk Research, National Institute for
1	25	Environmental Studies, Environmental Epidemiology Section, 16-2, Onogawa,
1	26	Tsukubashi, Ibaraki, Japan;
1	27	8 Toho University Graduate School of Medicine, Department of Medical statistics,
:	28	5-21-16, Omorinishi, Otaku, Tokyo, Japan;
:	29	*Correspondence to S. Nagahama.
:	30	
:	31	Word count 3,091
	32	Tables 2
:	33	Figures 2
		2
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3 of 38

BMJ Open

34	Objectives The aim of this study was to determine whether hemoglobin A1c (HbA1c)
35	level is associated with the incidence of hearing impairment accounting for smoking
36	status and diabetic condition at baseline.
37	Methods Participants were 131,689 men and 71,286 women aged 30-65 years and free
38	of hearing impairment at baseline (2008) who attended annual health check-ups from
39	2008 to 2015. We defined low frequency hearing impairment at a hearing threshold >30
40	dB at 1 kHz and high frequency at >40 dB at 4 kHz in the better ear in pure-tone
41	audiometric tests. HbA1c was categorized into 7 categories. The association between
42	HbA1c and hearing impairment was assessed using the Cox proportional hazards
43	model.
44	Results On 5 years' mean follow-up, high HbA1c was associated with high frequency
45	hearing impairment. In non-smokers, HbA1c \geq 8.0% was associated with high frequency
46	hearing impairment, with a multivariable hazard ratio (95% confidence interval)
47	compared with HbA1c 5.0-5.4% of 1.46 (1.10-1.94) in men and 2.15 (1.13-4.10) in
48	women. There was no significant association between HbA1c and hearing impairment
49	in smokers. A J-shaped association between HbA1c and high frequency hearing
50	impairment was observed for participants with diabetes at baseline. HbA1c was not
51	associated with low frequency hearing impairment among any participants.
	3

52	Conclusions HbA1c \ge 8.0% of non-smokers and \ge 7.3% of participants with diabetes
53	was associated with high frequency hearing impairment. These findings indicate that
54	appropriate glycemic control may prevent diabetic-related hearing impairment.
55	
56	Strengths and limitations of this study
57	• This study included a large number of participants, accounting for gender and smoking
58	status.
59	• To determine whether HbA1c was associated with hearing impairment among
60	participants with diabetes at baseline.
61	• Information on ototoxic drug use, ear surgery, and ear infection was was not obtained.
62	
63	
	4
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

64	BACKGROUND
65	Patients with hearing impairment experience a range of complications, including
66	impaired quality of life, dementia, depression, loneliness, poor self-esteem and
67	functional disability (1-4). These complications have made this condition a social and
68	economic problem worldwide. More than 5% of the world population has hearing
69	impairment, and this is expected to increase with the aging of the population (5).
70	Although this bleak picture points to the importance of identifying preventable risk
71	factors for hearing impairment, such studies are in fact scarce.
72	Emerging evidence suggests that diabetes mellitus may be a risk factor for hearing
73	impairment. Meta-analyses of 13 cross-sectional studies showed that subjects with
74	diabetes had a 2-fold-increased risk of developing hearing impairment (odds ratio 2.15,
75	95%CI 1.72-2.68) (6). Diabetic hearing impairment is hypothesized to be due to
76	microvascular complications (7, 8). Diabetic hearing impairment may thus be prevented
77	by appropriate glycemic control, which has been shown to be effective for other
78	microvascular complications of diabetes, such as retinopathy, nephropathy and
79	neuropathy (9-12). Three studies have reported the association between hearing
80	impairment and hemoglobin A1c (HbA1c), an indicator for glycemic control (13-15).
81	One of these reported a positive dose-relationship between HbA1c and hearing
	-

	BMJ Open
82	impairment as defined using a pure-tone average threshold of mainly low frequencies
83	(15), while the other two reported that HbA1c was positively associated with high
84	frequency hearing impairment (13, 14). Nevertheless, no study has yet reported the
85	precise shape of the dose-relationship between HbA1c and high frequency hearing
86	impairment. Furthermore, no study has yet investigated whether HbA1c is associated
87	with hearing impairment among those with diabetes.
88	In Japan, a pure-tone audiometric test is mandatory in annual occupational health
89	check-ups (16). The large sample size this affords has enabled us to investigate the
90	dose-response relationship between HbA1c and hearing impairment, while accounting
91	for well-known risk factors of hearing impairment such as gender and smoking (17, 18).
92	The present study had two aims. The first aim was to investigate the association
93	between HbA1c and the incidence of hearing impairment using a large dataset from
94	annual occupational health check-ups in Japan, accounting for gender and smoking
95	status. The second aim was to determine whether HbA1c was associated with hearing
96	impairment among participants with diabetes.
97	
98	METHODS
99	Study population
	6
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 38

BMJ Open

1	
2	
2	
2	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
50 77	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
-1-J // 6	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	

100	The present study was conducted using data from annual health check-ups of Japanese
101	workers. The All Japan Labor Welfare Foundation, a health service provider with
102	centers in Tokyo, Aomori, Nagano, Yamagata, Ibaraki, Gunma and Nagoya provided the
103	data from April 2008 through Dec 2015, allowing a maximum of 7 years of follow-up.
104	In Japan, annual health check-ups are mandatory for all employees and include a
105	hearing test under the Industrial Safety and Health Act. Nearly all employees attend a
106	health check-up every year. Participants were mainly Japanese employees but also
107	included a small number of their dependents, employers and foreign workers.
108	A total of 312,512 participants aged 30-65 years underwent a hearing test and HbA1c
109	test at baseline (between Apr 2008 and Mar 2009). Of these, we excluded participants
110	with hearing impairment at baseline (n=51,489). Given that diabetic patients with
111	complications may receive more intensive treatments, which may bias the association
112	between HbA1c and hearing impairment, we excluded participants with cardiovascular
113	disease and stroke (n=913). We further excluded participants who did not attend any
114	subsequent health examinations or hearing tests (n=48,618). After further exclusion of
115	8,517 participants with missing information on covariates (5,011 for smoking status,
116	5,152 for alcohol consumption, 1,815 for physical activity data, 5 for body mass index
117	(BMI), 9 for hypertension and 9 for dyslipidemia data; some participants had missing

118	data for more than one parameter), leaving 202,975 participants (131,689 men and
119	71,286 women) for analysis.
120	Ethics
121	We obtained written informed consent from each participant who attended the heath
122	check-up after April 2013. Before March 2013, we disclosed the purpose of our study
123	by posters and the participants had the opportunity to refuse the use of their data for the
124	study. This procedure conforms to the Japanese Ethical Guidelines for Medical and
125	Health Research Involving Human Subjects, where the obtaining consent may be
126	simplified for observational studies using existing data. The research protocol including
127	consent procedure was approved by the Ethics Committee of the Faculty of Medicine,
128	Toho University (No. 25017 and No.A16130) and the Ethics Committee of the National
129	Center for Global Health and Medicine (No. NCGM-G-001254-02).
130	Ascertainment of hearing impairment
131	Trained staff performed pure-tone air-conduction audiometry using an audiometer
132	(AA-57, RION Inc., Tokyo, Japan). Low frequency hearing impairment was defined as
133	failure to hear a pure-tone signal of 30dB at 1 kHz in the better ear, and high frequency
134	hearing impairment as failure to hear a pure-tone signal of 40dB at 4 kHz in the better
135	ear. These thresholds are recommended for use in annual health check-ups by Ministry
	8

Page 9 of 38

BMJ Open

1		
2		
4		
5 6 7	136	of Heal
8 9	137	the day
10 11 12	138	Data co
13 14 15	139	We use
16 17 18	140	and We
19 20 21	141	system
21 22 23	142	activity
24 25 26	143	smoker
27 28 29	144	<i>go</i> , 1 to
30 31 32	145	about 1
33 34 35	146	self-rep
36 37 38	147	history
39 40 41	148	manage
42 43	149	other. H
45 46	150	mass in
47 48 49	151	height i
50 51 52	152	Blood p
53 54 55	153	sphygm
56 57		
58		
59		
60		

136	of Health, Labor and Welfare in Japan (16). Onset of hearing impairment was defined as
137	the day of the health check-up on which hearing impairment was first detected.
138	Data collection and measurements at baseline (between Apr 2008 and Mar 2009)
139	We used a self-administered questionnaire developed by the Ministry of Health, Labor
140	and Welfare for a specific health examination, namely the national health checkup
141	system focused on metabolic syndrome (19), to assess medical history, regular physical
142	activity (walking time <60 min/day or ≥60 min/day), smoking status (non-smoker, daily
143	smoker ≤ 20 cigarettes/day or >20 cigarettes/day), alcohol consumption (non-drinker, <1
144	go, 1 to <2 go or ≥ 2 go/day; one go of sake, a traditional Japanese beverage, is equal to
145	about 180 mL of 10-14% ethanol and contains about 23 g of ethanol) (20), and
146	self-reported diabetes (treatments with anti-diabetic medication or a self-reported
147	history of diabetes: yes or no). Job type was categorized as professional job,
148	management, office job, sales, service, telegraph, manufacturing, transportation and
149	other. Height was measured to the nearest 0.1 cm and weight to the nearest 0.1 kg. Body
150	mass index (BMI) was calculated as the weight in kilograms divided by the square of
151	height in metres and categorized into 4 groups (<18.5, 18.5-22.9, 23-29.9, ≥30kg/m ²).
152	Blood pressure was measured in the sitting position using an automated
153	sphygmomanometer (HEM-907, Omron, Kyoto, Japan). Participants with high blood
	9

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
17
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
20
2/
38
39
40
41
42
43
44
45
46
-U 17
4/ 40
48
49
50
51
52
53
54
55
56
50
5/
58
59
60

154	pressure (\geq 130 mmHg systolic or \geq 85 mmHg diastolic) received a second measurement
155	and the average was used for the analysis. Hypertension was defined by $\geq 140 \text{ mmHg}$
156	systolic, \geq 90 mmHg diastolic or the use of medication for hypertension. A venous blood
157	sample was collected and stored in a cooler at 4 °C for transportation to an external
158	laboratory (SRL, Tokyo, Japan). Triglyceride level was measured using an enzymatic
159	colorimetric test and high-density lipoprotein cholesterol (HDL-C) was determined
160	using a direct method. Dyslipidemia was defined by triglyceride \geq 150 mg/dL (1.7
161	mmol/L) in men and women, HDL-C <40 mg/dL (1.04 mmol/L) in men and <50 mg/dL
162	(1.3 mmol/L) in women or use of medication for dyslipidemia. HbA1c was measured by
163	latex agglutination turbidimetry and converted to the National Glycohemoglobin
164	Standardization Program equivalent value (%) using the formula below, according to the
165	Japan Diabetes Society statement (21) :
166	HbA1c (%) = $1.02 \times HbA1c$ (Japan Diabetes Society) (%) + 0.25%
167	Diabetes was defined as FPG \geq 126mg/dL, HbA1c \geq 6.5%, or self-reported diabetes.
168	Statistical analysis
169	Participants were divided into 7 groups according to their HbA1c level at baseline
170	[<5.0% (31mmol/mol), 5.0-5.4% (31-36mmol/mol), 5.5-5.9% (37-41mmol/mol),
171	6.0-6.4% (42-46mmol/mol), 6.5-6.9% (48-52mmol/mol), 7.0-7.9% (53-63mmol/mol),

Page 11 of 38

BMJ Open

1	
2	
3	
4	
5	
6	
/	
8	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30 21	
37	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
47	
48	
49	
50 51	
ן כ גי	
52	
54	
55	
56	
57	
58	
59	
60	

172	\geq 8.0% (64 mmol/mol)]. The HbA1c group specific baseline characteristics of
173	participants were described as means (SD) for continuous variables and percentages for
174	categorical variables. Person-years was calculated from baseline to the onset of hearing
175	impairment, or the date of the last health check-up through Dec 2015 (whichever
176	occurred first). Crude incident rates of hearing impairment were shown in events per
177	1000 person-years. Survival analyses were performed using Cox regression to estimate
178	the hazard ratio (HR) with 95% confidence interval (CI) for the incidence of hearing
179	impairment across HbA1c categories, with 5.0-5.4% (31-36mmol/mol) as the reference
180	value. The analyses were stratified by sex because the interaction between hearing
181	impairments and sex was significant (p for interaction <0.001). Age-adjusted model
182	(model 1) and multiple-adjusted model (model 2), which included alcohol consumption,
183	physical activity, BMI, hypertension, dyslipidemia, self-reported diabetes and smoking
184	status were used for the analysis. Although smoking status itself was related to hearing
185	impairment in this study, the association between HbA1c and hearing impairment
186	differed according to smoking status (p for interaction <0.001). We therefore
187	additionally performed analyses according to combined HbA1c (7 groups) and smoking
188	status (non-smoker and current smoker), by considering HbA1c 5.0-5.4%
189	(31-36mmol/mol) and non-smoker as the reference category. We did not analyze

190	women's smokers because of the small number of cases. To assess whether control of
191	HbA1c would reduce the incidence of hearing impairment in those with diabetes, we
192	elucidated the shape of the relationship between HbA1c and high frequency hearing
193	impairment among those with diabetes. We fitted restricted cubic splines models with
194	seven knots placed at the 1th, 5th, 25th, 50th, 75th, 95th, and 99th centiles as reference
195	values of HbA1c 6.6% (25th) (22). The HRs were adjusted for alcohol consumption,
196	physical activity, BMI, hypertension, dyslipidemia and smoking status. As a sensitivity
197	analysis, we further adjusted for job type in the main analyses (model 2) among
198	participants with this information (n=126,823). We tested the proportional hazards
199	assumption using Schoenfeld residuals. We found no significant deviations for any
200	covariate. P value of two-tailed test <0.05 was considered statistically significant. Trend
201	association was assessed by assigning ordinal numbers (0–6) to the HbA1c categories.
202	We calculated the p for the quadratic trend because it was a better fit for the data than
203	the simple linear model. All statistical analyses were performed using Stata version 12.1
204	(StataCorp, College Station, Texas, USA).
205	
206	RESULTS

BMJ Open

207	Baseline characteristics by category of HbA1c are shown in Table 1. The mean age of
208	participants was 45 years for men and 47 years for women. Participants who had higher
209	HbA1c tended to be non-drinkers and to have higher BMI, hypertension, and
210	dyslipidemia in both men and women. Male participants with higher HbA1c tended to
211	be smokers consuming > 20 cigarettes per day.
212	In men, 4,621 developed high frequency hearing impairment with 661,937 person-years
213	(mean duration of follow-up was 5.0 years) and 1,311 developed low frequency hearing
214	impairment with 670,153 person-years (5.1 years). In women, 582 developed high
215	frequency hearing impairment with 345,312 person-years (4.8 years) and 1,207
216	developed low frequency hearing impairment with 344,057 person-years (4.8 years).
217	Table 2 shows the association between HbA1c and the incidence of hearing impairment.
218	In the multivariable-adjusted model, HbA1c showed a quadratic trend with the
219	incidence of high frequency hearing impairment in men (p for quadratic=0.007), and a
220	statistically marginal association in women (p for quadratic=0.08). HbA1c was not
221	associated with low frequency hearing impairment. Figure 1 shows the association
222	between HbA1c and high frequency hearing impairment with accounting for smoking
223	status [the interaction between HbA1c and smoking status (p for interaction <0.001)].
224	Compared to non-smokers with HbA1c 5.0-5.4% (31-36mmol/mol), non-smokers with
	19
	10

3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
35
26
20
37
38
39
40
41
42
43
44
 Λ5
4J 46
40
47
48
49
50
51
52
53
57
54 57
55
56
57
58
59
60

225	HbA1c \geq 8.0% (64 mmol/mol) showed an association with hearing impairment [HR
226	(95%CI) of 1.46 (1.11-1.92) in men and 2.36 (1.34-4.15) in women]. Although smokers
227	had higher HRs of hearing impairment than non-smokers, HbA1c level was not
228	associated with hearing impairment among smokers. Additional adjustments for job
229	type did not affect the results (Appendix 1).
230	Figure 2 shows the spline regression model of high frequency hearing impairment at
231	various HbA1c levels against a reference HbA1c level of 6.6% in participants with
232	diabetes at baseline (n=10,154). The relationship between HbA1c and the incidence of
233	hearing impairment was J-shaped, with the significant increase of HR for HbA1c \geq 7.2%.
234	
234 235	DISCUSSION
234 235 236	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high
234 235 236 237	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64
234 235 236 237 238	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64 mmol/mol) were associated with high frequency hearing impairment among
234 235 236 237 238 239	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64 mmol/mol) were associated with high frequency hearing impairment among non-smokers. A J-shaped association between HbA1c and high frequency hearing
234 235 236 237 238 239 240	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64 mmol/mol) were associated with high frequency hearing impairment among non-smokers. A J-shaped association between HbA1c and high frequency hearing impairment was observed among participants with diabetes at baseline. Our findings
234 235 236 237 238 239 240 241	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64 mmol/mol) were associated with high frequency hearing impairment among non-smokers. A J-shaped association between HbA1c and high frequency hearing impairment was observed among participants with diabetes at baseline. Our findings indicate that appropriate glycemic control may prevent the incidence of diabetic hearing

Page 15 of 38

60

BMJ Open

1		
2		
3		
4		
5		
6	243	Our finding of a quadratic trend between HbA1c and hearing impairment is supported
7		
8		
9	244	by the results of two longitudinal studies. (13, 15) One of these reported an odds ratio
10		
11	945	(0.5% CI) of high frequency bearing impairment per 1.0% increases in HbA1a of 1.52
12	240	(95% CI) of high frequency hearing impairment per 1.0% increase in FIOATC of 1.52
13		
14	246	(1.03 to 2.23) albeit no statistical association between the three categories of HbA1c
15	240	
16		
17	247	and high frequency hearing impairment (13). The second reported that HbA1c was
18		
19		
20	248	positively associated with average hearing threshold, mainly among low frequencies
21		
22		
23	249	(15). The present study provides novel evidence that an HbA1c of 8.0% (64 mmol/mol)
24		
25	050	
26	250	or above is associated with increased risk of high frequency hearing impairment in
27		
28	951	non smokers Our findings are consistent with the work of Cruicksbanks et al. who
29	201	non-smokers. Our findings are consistent with the work of Crutekshanks et al., who
30		
31	252	reported that poor glycemic control, defined by a glycosylated hemoglobin level, was
32		
33		
34	253	associated with hearing impairment (23).
35		
36		
37	254	Additionally, we found that the J-shaped association between HbA1c and hearing
38		
39		
40	255	impairment remained even among participants with diabetes at baseline. This result
41		
42	256	suggests that proper algorithmic control may prevent diabetic related bearing impairment
43	200	suggests that proper grycenne control may prevent thabene-related hearing impairment
44		
45	257	even in those with diabetes. Previous studies have also reported a L-shaped association
46	-01	
47		
48	258	between HbA1c and diabetics complications, and noted that hypoglycemia might
49		
50		
51	259	increase diabetic complications (24-26). More research is needed to determine a suitable
52		
53		
54		
55		
56		
57		15
58		
59		

260	HbA1c level for glycemic targeting to prevent hearing impairment in diabetic
261	management.
262	We found that high frequency hearing impairment has a quadratic trend with HbA1c
263	among non-smokers but not smokers. Previous studies have reported an adverse effect
264	of smoking cigarettes on hearing impairment (23, 27, 28). It is plausible that the effect
265	of smoking cigarettes may be stronger than HbA1c and might mask the effect of HbA1c.
266	Further research is needed to confirm the joint effect of smoking and HbA1c on hearing
267	impairment.
268	The pathophysiology underlying high-HbA1c-associated hearing impairment is unclear,
269	which allows for speculation. One possible explanation is that hyperglycemia-related
270	microvascular complications lead to thickening of the cochlea and vestibulopathy, and
271	result in hearing impairment (7, 8, 29-33). Diabetic-related hearing impairment has been
272	mainly observed at high frequencies, suggesting that high frequency-specific areas of
273	the cochlea may be more fragile to ischemic changes due to microvascular
274	complications (34-38). This mechanism is supported by the J-shaped association
275	between HbA1c and hearing impairment observed in the present study, since previous
276	studies also reported a J-shaped-association between HbA1c and diabetic vascular
277	complications (39, 40). Further studies to confirm this idea are required.
	16

Page 17 of 38

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

278	This study has several strengths. The large dataset allowed us to investigate the
279	association between HbA1c and hearing impairment with comprehensive adjustment for
280	covariates, and additionally, among participants with diabetes at baseline. Audiometry
281	to confirm hearing impairment was conducted by trained staff. Several limitations of the
282	study also need to be considered. First, information on noise exposure was not available
283	and thus noise information was not considered in the analyses. However, a previous
284	study reported that the relationship between diabetes and hearing impairment was
285	independent of this variable (37). Moreover, in the present study, HbA1c level was
286	associated with hearing impairment even after accounting for job type in a sensitivity
287	analysis. Second, information on ototoxic drug use, ear surgery, and ear infection was
288	not collected, and we were therefore unable to exclude cases of hearing impairment due
289	to these factors. Third, blood pressure was measured once, followed by a second
290	measurement if the first systolic blood pressure \geq 130 mmHg systolic or diastolic blood
291	pressure \geq 85 mmHg. All participants didn't have the same evaluation of blood pressure.
292	This may lead to misclassification of hypertension. Fourth, we did not account for
293	gender or smoking status in the association between HbA1c and hearing impairment for
294	participants with diabetes because of the small sample size. Fifth, the hearing test was
295	only conducted at 1 kHz and 4 kHz. Hearing impairment at other frequencies could not
	17

296	therefore be identified. Sixth, we cannot exclude the possibility of residual confounding
297	and confounding by unmeasured variables. Finally, the study participants were mainly
298	workers, and thus caution is required when generalizing our findings.
299	CONCLUSION
300	We found the quadratic trend between HbA1c and the incidence of high frequency
301	hearing impairment in non-smokers. The trend between HbA1c and hearing impairment
302	remained even among those with diabetes. These findings indicate that diabetic-related
303	hearing impairment may be prevented with appropriate glycemic control. These
304	findings warrant confirmation in interventional studies.
305	Abbreviations
306	HbA1c: hemoglobin A1c; BMI: body mass index; HR: hazard ratio; CI: confidence
307	interval
308	Acknowledgements
309	The authors would like to thank Dr Nobuo Yanagisawa and Dr Takeshi Kawaguchi for
310	coordinating the study.
311	Contributors
312	SN, TaM and IK designed study and drafted the manuscript. SN, HHH, KaK, AN and
313	KeK performed the data analysis. MD collected and interpreted the data. All authors
	18
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

314	participated in interpretation of the findings, revised the paper critically for important
315	intellectual content and approved the final version to be published. YN and YM
316	provided administrative, technical and material support. SN and YN are guarantors.
317	Funding
318	This research was funded by All Japan Labor Welfare Foundation Research Fellowship.
319	Competing interests
320	None declared. SN is occupational physicians in the participating company.
321	Ethics approval
322	The research protocol was approved by the Ethics Committee of the Faculty of
323	Medicine, Toho University and the Ethics Committee of the National Center for Global
324	Health and Medicine.
325	Patient and public involvement
326	No patient were involved in setting the research question or the outcome measures,
327	planning for the design of the study. Detail has been removed from this case
328	description/these case descriptions to ensure anonymity. Patient consent was not
329	required for the study.
330	Data sharing statement
331	No additional data are available.
	19

to peet eview only

ge 21 of 38	BMJ Open
333	References
334	1. Lin FR, Metter EJ, O'Brien RJ, Resnick SM, Zonderman AB, Ferrucci L. Hearing
335	loss and incident dementia. Arch Neurol. 2011;68(2):214-20.
336	2. Li CM, Zhang X, Hoffman HJ, Cotch MF, Themann CL, Wilson MR. Hearing
337	impairment associated with depression in US adults, National Health and Nutrition
338	Examination Survey 2005-2010. JAMA Otolaryngol Head Neck Surg.
339	2014;140(4):293-302.
340	3. Herbst KG, Humphrey C. Hearing impairment and mental state in the elderly living
341	at home. Br Med J. 1980;281(6245):903-5.
342	4. Wilson BS, Tucci DL, Merson MH, O'Donoghue GM. Global hearing health care:
343	new findings and perspectives. Lancet. 2017;390(10111):2503-15.
344	5. WHO [Internet]. Deafness and hearing loss.
345	http://www.who.int/mediacentre/factsheets/fs300/en. Accessed 11 Jan 2018.
346	6. Horikawa C, Kodama S, Tanaka S, Fujihara K, Hirasawa R, Yachi Y, et al. Diabetes
347	and risk of hearing impairment in adults: a meta-analysis. J Clin Endocrinol Metab.
348	2013;98(1):51-8.

349	7. Fukushima H, Cureoglu S, Schachern PA, Paparella MM, Harada T, Oktay MF.
350	Effects of type 2 diabetes mellitus on cochlear structure in humans. Arch Otolaryngol
351	Head Neck Surg. 2006;132(9):934-8.
352	8. Oron Y, Elgart K, Marom T, Roth Y. Cardiovascular risk factors as causes for hearing
353	impairment. Audiol Neurootol. 2014;19(4):256-60.
354	9. Klein R, Klein BE, Moss SE. Relation of glycemic control to diabetic microvascular
355	complications in diabetes mellitus. Ann Intern Med. 1996;124(1 Pt 2):90-6.
356	10. Danne T, Weber B, Dinesen B, Mortensen HB. Threshold of HbA1c for the effect of
357	hyperglycemia on the risk of diabetic microangiopathy. Diabetes Care. 1996;19(2):183.
358	11. Li W, Katzmarzyk PT, Horswell R, Wang Y, Johnson J, Hu G. HbA1c and all-cause
359	mortality risk among patients with type 2 diabetes. Int J Cardiol. 2016;202:490-6.
360	12. 5. Glycemic Targets. Diabetes Care. 2016;39 Suppl 1:S39-46.
361	13. Michikawa T, Mizutari K, Saito H, Takebayashi T, Nishiwaki Y. Glycosylated
362	hemoglobin level is associated with hearing impairment in older Japanese: the
363	Kurabuchi Study. J Am Geriatr Soc. 2014;62(7):1231-7.
364	14. Kang SH, Jung DJ, Cho KH, Park JW, Lee KY, Do JY. Association Between HbA1c
365	Level and Hearing Impairment in a Nondiabetic Adult Population. Metabolic Syndrome
366	and Related Disorders. 2016;14(2):129-34.
	22

BMJ Open

367	15. Kim MB, Zhang Y, Chang Y, Ryu S, Choi Y, Kwon MJ, et al. Diabetes mellitus and
368	the incidence of hearing loss: a cohort study. Int J Epidemiol. 2016.
369	16. Japan Industrial Safety and Health Association (English Page): Ordinance on
370	Industrial Safety and Health, Article 44 Periodical Medical Examination, (iii).
371	http://www.japaneselawtranslation.go.jp/law/detail_main?re=01&ia=03&vm=02&id=1
372	984. Accessed 11 Jan 2018.
373	17. Rigters SC, Metselaar M, Wieringa MH, Baatenburg de Jong RJ, Hofman A,
374	Goedegebure A. Contributing Determinants to Hearing Loss in Elderly Men and
375	Women: Results from the Population-Based Rotterdam Study. Audiol Neurootol.
376	2016;21 Suppl 1:10-5.
377	18. Helzner EP, Cauley JA, Pratt SR, Wisniewski SR, Zmuda JM, Talbott EO, et al.
378	Race and sex differences in age-related hearing loss: the Health, Aging and Body
379	Composition Study. J Am Geriatr Soc. 2005;53(12):2119-27.
380	19. Ministry of Health, Labour and Welfare (English Page): Specific Health Checkups
381	and Specific Health Guidance. http://www.mhlw.go.jp/english/wp/wp-hw3/dl/2-007.pdf.
382	Accessed 11 Jan 2018.
383	20. Ministry of Health, Labour and Welfare (Japanese Page): Health guidance
384	Questionnaire.
	23

385	http://www.mhlw.go.jp/seisakunitsuite/bunya/kenkou_iryou/kenkou/seikatsu/dl/hoken-p
386	rogram2_02.pdf. Accessed 11 Jan 2018.
387	21. Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanafusa T, Ito H, et al. International
388	clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society
389	to National Glycohemoglobin Standardization Program values. J Diabetes Investig.
390	2012;3(1):39-40.
391	22. Harrell F. Regression Modeling Strategies: With Applications to Linear Models,
392	Logistic and Ordinal Regression, and Survival Analysis: Springer International
393	Publishing; 2015.
394	23. Cruickshanks KJ, Nondahl DM, Dalton DS, Fischer ME, Klein BE, Klein R, et al.
395	Smoking, central adiposity, and poor glycemic control increase risk of hearing
396	impairment. J Am Geriatr Soc. 2015;63(5):918-24.
397	24. Carson AP, Fox CS, McGuire DK, Levitan EB, Laclaustra M, Mann DM, et al. Low
398	hemoglobin A1c and risk of all-cause mortality among US adults without diabetes. Circ
399	Cardiovasc Qual Outcomes. 2010;3(6):661-7.
400	25. Goto A, Noda M, Matsushita Y, Goto M, Kato M, Isogawa A, et al. Hemoglobin a1c
401	levels and the risk of cardiovascular disease in people without known diabetes: a
402	population-based cohort study in Japan. Medicine (Baltimore). 2015;94(17):e785.
	24

Page 25 of 38

BMJ Open

403	26. Snell-Bergeon JK, Wadwa RP. Hypoglycemia, diabetes, and cardiovascular disease.
404	Diabetes Technol Ther. 2012;14 Suppl 1:S51-8.
405	27. Barone JA, Peters JM, Garabrant DH, Bernstein L, Krebsbach R. Smoking as a risk
406	factor in noise-induced hearing loss. J Occup Med. 1987;29(9):741-5.
407	28. Nomura K, Nakao M, Morimoto T. Effect of smoking on hearing loss: quality
408	assessment and meta-analysis. Prev Med. 2005;40(2):138-44.
409	29. Lisowska G, Namyslowski G, Morawski K, Strojek K. Cochlear dysfunction and
410	diabetic microangiopathy. Scand Audiol Suppl. 2001(52):199-203.
411	30. Akinpelu OV, Ibrahim F, Waissbluth S, Daniel SJ. Histopathologic changes in the
412	cochlea associated with diabetes mellitusa review. Otol Neurotol. 2014;35(5):764-74.
413	31. Krogsboll LT, Jorgensen KJ, Gronhoj Larsen C, Gotzsche PC. General health checks
414	in adults for reducing morbidity and mortality from disease: Cochrane systematic
415	review and meta-analysis. BMJ (Clinical research ed.). 2012;345:e7191.
416	32. Kazmierczak H, Doroszewska G. Metabolic disorders in vertigo, tinnitus, and
417	hearing loss. Int Tinnitus J. 2001;7(1):54-8.
418	33. Nash SD, Cruickshanks KJ, Klein R, Klein BE, Nieto FJ, Huang GH, et al. The
419	prevalence of hearing impairment and associated risk factors: the Beaver Dam
420	Offspring Study. Arch Otolaryngol Head Neck Surg. 2011;137(5):432-9.
	05
	20

421	34. Uchida Y, Sugiura S, Ando F, Nakashima T, Shimokata H. Diabetes reduces auditory
422	sensitivity in middle-aged listeners more than in elderly listeners: a population- based
423	study of age-related hearing loss. Med Sci Monit. 2010;16(7):Ph63-8.
424	35. Konrad-Martin D, Reavis KM, Austin D, Reed N, Gordon J, McDermott D, et al.
425	Hearing Impairment in Relation to Severity of Diabetes in a Veteran Cohort. Ear Hear.
426	2015;36(4):381-94.
427	36. Bainbridge KE, Hoffman HJ, Cowie CC. Risk factors for hearing impairment
428	among U.S. adults with diabetes: National Health and Nutrition Examination Survey
429	1999-2004. Diabetes Care. 2011;34(7):1540-5.
430	37. Bainbridge KE, Hoffman HJ, Cowie CC. Diabetes and hearing impairment in the
431	United States: audiometric evidence from the National Health and Nutrition
432	Examination Survey, 1999 to 2004. Ann Intern Med. 2008;149(1):1-10.
433	38. Kim JS, Lee H. Inner ear dysfunction due to vertebrobasilar ischemic stroke. Semin
434	Neurol. 2009;29(5):534-40.
435	39. Huang ES, Liu JY, Moffet HH, John PM, Karter AJ. Glycemic control,
436	complications, and death in older diabetic patients: the diabetes and aging study.
437	Diabetes Care. 2011;34(6):1329-36.

BMJ Open

2		
4		
5	490	40. Ostenen CL Sundstern L Sunnhlad D. Lahm L. Nilseen DM. Jahanssen C
6 7	438	40. Osigien CJ, Sundström J, Svennorad B, Lonin L, Misson PM, Johansson G.
8		
9	439	Associations of HbA1c and educational level with risk of cardiovascular events in
10		
11	440	32,871 drug-treated patients with Type 2 diabetes: a cohort study in primary care.
12		
14	441	Diabet Med. $2013 \cdot 30(5) \cdot e170_{-}7$
15	441	Diabet Med. 2013,50(5):0170-7.
16		
17	442	
19		
20		
21		
22		
24		
25		
26		
27		
29		
30		
31		
33		
34		
35		
36 37		
38		
39		
40		
41 42		
43		
44		
45 46		
40 47		
48		
49		
50 51		
52		
53		
54		
55 56		
57		27
58		27
59		For neer review only - http://hmionen.hmi.com/site/about/guidelines.yhtml
00		is peer review only inter/isingopen.only.com/site/about/guidelines.kittill

			Н	bA _{1c} (%) (1	nmol/mol)			
	Overall	<5.0 (<31)	5.0-5.4 (31-36)	5.5-5.9 (37-41)	6.06.4 (42-46)	6.5-6.9 (48-52)	7.0-7.9 (53-63)	≥8 (≥64)
Men						· · ·		
n	131,689	10,701	53,839	50,957	8,995	2,488	2,224	2,485
Age (years)*	44.6 (9.1)	40.9 (8.2)	42.6 (8.6)	45.7 (9.0)	49.6 (8.6)	51.7 (7.9)	51.6 (7.8)	49.2 (8.2)
Walking time, ≥60 min/day (%)	16	16	17	17	15	15	16	13
Non-smoker	45.15	44	44	46	47	50	46	40
Daily consuming ≤20 cigarettes/day	37.04	39	39	36	34	31	32	35
Daily consuming >20 cigarettes/day	17.8	17	17	18	19	19	22	25
consumption (%) Non-drinker	26	19	24	29	31	30	33	36
Drinker <1	35	32	35	36	34	34	30	32
Drinker 1 to <2	26	30	27	25	25	25	26	22
Drinker ≥ 2	12	19	13	10	10	11	11	10
Self-reported diabetes (%) [‡]	2.3	0.07	0.10	0.4	4.6	22.4	41.1	37.3
BMI (kg/m2)*	23.8 (3.5)	22.6	23.2 (3.1)	24.0 (3.5)	25.4	26.0 (4.2)	26.3	26.4 (4.5)
Hypertension (%) [§] Dyslipidemia (%) ['] Women	28 39	21 29	22 33	29 41	44 54	57 59	57 60	53 65
n	71,286	5,880	28,277	29,741	5,286	890	618	594
Age (years)*	47.1	41.5	44.6	49.0	52.6	53.9	53.9	52.0
Walking time, ≥ 60	(9.0)	(7.6)	(8.6)	(8.6)	(7.6)	(7.2)	(7.2)	(7.6)
min/day (%) Smoking status (%)	12	11	11	12	15	12	15	11
Non-smoker	80	71	77	83	86	86	83	77
≤20 cigarettes/day	19	26	21	16	13	13	16	22
>20 cigarettes/day Alcohol	1.4	2.5	1.5	1.2	1.2	1.1	1.5	1.9
consumption (%)	(0)	4.5	57	65	70	74	72	70
Drinker <1	00 21	45	50 24	00 20	70	74	/3	/8
go/day^{\dagger} Drinker 1 to <2	51	30	34 7.9	29	20	22	22	19
go/day^{\dagger} Drinker >2	0.8	14.4	/.8	5.0	3.8	3.9	3.7	2.7
go/day [†] Self-reported	1./	5.3	1.9	1.0	0.5	0.6	0.5	0.7
diabetes (%) [‡]	1.2	0.05	0.03	0.1	2.5	1/.4	38.2	4/.5
BMI (kg/m2)*	22.3 (3.6)	(21.2)	21.6 (3.2)	22.5 (3.7)	23.9 (4.3)	25.5 (4.7)	26.4 (4.8)	26.6 (4.6)
Hypertension (%) ⁸ Dyslipidemia (%) ¹	19 22	11 13	14 16	21 24	34 39	52 54	59 61	53 59

Table 1 Baseline characteristics of study participants according to HbA_{1c} (n=202,975).

Longitudinal survey of 202,950 examinees in All Japan Labor Welfare Foundation, Japan, 2008.

* Mean (SD)

One go contains ~ 23 g of ethanol.

[‡]Self-reported diagnosis of diabetes or receiving medication.

⁸ Systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90 mmHg or receiving medication.

¹ Triglyceride level \geq 150mg/dL (1.7mmol/L), high-density lipoprotein cholesterol level <40 mg/dL (1.04 mmol/L) in men and <50 mg/dL (1.3 mml/L) in women or receiving medication.

					HbA_{1c} (%) (mmc	ol/mol)			_
		<5.0 (<31)	5.0-5.4 (31-36)	5.5-5.9 (37-41)	6.06.4 (42-46)	6.5-6.9 (48-52)	7.0-7.9 (53-63)	≥8 (≥64)	P for quadratic
Low	frequency								
Men	Person-year	54,055	275,953	261,290	44,807	11,798	10,637	11,613	
	No. cases	84	447	548	122	45	26	39	
	Model 1	1.15 (0.91 to 1.45)	1.00	0.98 (0.86 to 1.11)	0.94 (0.77 to 1.15)	1.11 (0.81 to 1.51)	0.73 (0.49 to 1.08)	1.22 (0.88 to 1.70)	0.15
	Model 2	1.11 (0.88 to 1.40)	1.00	1.00 (0.88 to 1.14)	0.98 (0.79 to 1.20)	1.16 (0.84 to 1.60)	0.75 (0.49 to 1.15)	1.26 (0.88 to 1.80)	0.27
Women	Person-year	28,447	137,761	143,295	25,083	4,136	2,760	2,576	
	No. cases	65	415	553	133	18	14	9	
	Model 1	1.04 (0.80 to 1.35)	1.00	0.90 (0.79 to 1.03)	0.94 (0.77 to 1.14)	0.71 (0.44 to 1.14)	0.86 (0.51 to 1.48)	0.68 (0.35 to 1.31)	0.79
	Model 2	1.04 (0.80 to 1.35)	1.00	0.91 (0.80 to 1.03)	0.93 (0.76 to 1.14)	0.67 (0.41 to 1.10)	0.77 (0.43 to 1.38)	0.57 (0.28 to 1.19)	0.51
High	frequency								
Men	Person-year	53,617	273,025	257,812	44,093	11,621	10,345	11,424	
	No. cases	280	1,610	1,941	416	116	128	130	
	Model 1	1.05 (0.92 to 1.19)	1.00	0.98 (0.91 to 1.04)	0.91 (0.82 to 1.02)	0.82 (0.67 to 0.99)	1.05 (0.88 to 1.26)	1.15 (0.96 to 1.38)	0.003
	Model 2	1.03 (0.90 to 1.17)	1.00	0.99 (0.92 to 1.06)	0.93 (0.83 to 1.03)	0.84 (0.69 to 1.02)	1.08 (0.89 to 1.32)	1.18 (0.97 to 1.43)	0.007
Women	Person-year	28,520	138,232	143,882	25,246	4,124	2,753	2,555	
	No. cases	23	169	277	67	18	13	15	
	Model 1	1.02 (0.66 to 1.58)	1.00	1.00 (0.83 to 1.22)	0.97 (0.73 to 1.29)	1.43 (0.88 to 2.34)	1.62 (0.92 to 2.86)	2.41 (1.42 to 4.10)	0.03
	Model 2	1.03 (0.66 to 1.60)	1.00	0.97 (0.80 to 1.17)	0.86 (0.64 to 1.16)	1.17 (0.70 to 1.95)	1.24 (0.67 to 2.29)	1.78 (0.95 to 3.34)	0.08

Model 1: Adjusted for age.

Model 2: Adjusted for age, walking time, smoking status, alcohol consumption, self-reported diabetes, BMI, hypertension and hyperlipidemia.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 444 Fig1. The association between HbA1c and hearing impairment of high frequency stratified by smoking status.
- 445 Footnote; Results obtained by multivariable Cox regression. The reference value was 5.0-5.4% of HbA1c in
- 446 non-smoker. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 23-29.9, or
- $447 \ge 30.0 \text{ kg/m2}$), alcohol consumption (non-drinker, drinker consuming <1, 1 to <2, or ≥ 2 go of Japanese sake
- 448 contains approximately 23g of ethanol), walking time (<60, or ≥60 min/day), self-reported diabetes, hypertension
- 449 (systolic blood pressure \geq 140mmHg, diastolic blood pressure \geq 90 mmHg or receiving medication), and
- 450 hyperlipidemia (triglyceride level ≥150mg/dL, high-density lipoprotein cholesterol level <40 mg/dL or receiving
- 451 medication).

BMJ Open

Fig 2. Adjusted hazard ratio of high frequency hearing impairment among participants with diabetes at baseline (n=10,154).

Footnote; Results obtained by multivariable Cox regression with restricted cubic splines with seven knots (p1, p5, p25, p50, p75, p95 and p99). The reference value was 6.6% (p25) of HbA1c. The continuous line presents hazard ratios and the dashed line presents 95% confidence intervals. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 23-29.9, or \geq 30.0 kg/m2), smoking status (non-smoker, smoker consuming \leq 20, the status of the status or > 20 cigarettes per day), alcohol consumption (non-drinker, drinker consuming <1, 1 to <2, or \geq 2 go of Japanese sake contains approximately 23g of ethanol), walking time (<60, or ≥60 min/day), hypertension (systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90 mmHg or receiving medication), and hyperlipidemia (triglyceride level ≥150mg/dL, high-density lipoprotein cholesterol level <40 mg/dL in men and <50 mg/dL in women or receiving medication).

Fig1. The association between HbA1c and hearing impairment of high frequency stratified by smoking status.

Footnote; Results obtained by multivariable Cox regression. The reference value was 5.0-5.4% of HbA1c in non-smoker. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 23-29.9, or ≥ 30.0 kg/m2), alcohol consumption (non-drinker, drinker consuming <1, 1 to < 2, or ≥ 2 go of Japanese sake contains approximately 23g of ethanol), walking time (<60, or ≥60 min/day), self-reported diabetes, hypertension (systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90 mmHg or receiving medication), and hyperlipidemia (triglyceride level ≥150mg/dL, high-density lipoprotein cholesterol

level <40 mg/dL or receiving medication). 270x265mm (96 x 96 DPI)

Fig 2. Adjusted hazard ratio of high frequency hearing impairment among participants with diabetes at baseline (n=10,154).

Footnote; Results obtained by multivariable Cox regression with restricted cubic splines with seven knots (p1, p5, p25, p50, p75, p95 and p99). The reference value was 6.6% (p25) of HbA1c. The continuous line presents hazard ratios and the dashed line presents 95% confidence intervals. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 23-29.9, or ≥ 30.0 kg/m2), smoking status (non-smoker, smoker consuming ≤ 20, or > 20 cigarettes per day), alcohol consumption (non-drinker, drinker consuming <1, 1 to < 2, or ≥ 2 go of Japanese sake contains approximately 23g of ethanol), walking time (<60, or ≥60 min/day), hypertension (systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90 mmHg or receiving medication), and hyperlipidemia (triglyceride level ≥150mg/dL, high-density lipoprotein cholesterol level <40 mg/dL in men and <50 mg/dL in women or receiving medication).

222x162mm (96 x 96 DPI)

		HbA _{1c} (%) (mmol/mol)							
		<5.0 (<31)	5.0-5.4 (31-36)	5.5-5.9 (37-41)	6.06.4 (42-46)	6.5-6.9 (48-52)	7.0-7.9 (53-63)	≥8 (≥64)	P for quadrat
Men	Person-year	44,265	227,740	215,647	36,368	9,184	8,148	8,888	
	No.cases	229	1,345	1,535	329	91	99	100	
	non-smoker	0.94 (0.73 to 1.20)	1.00	0.93 (0.82 to 1.05)	0.89 (0.73 to 1.07)	0.68 (0.48 to 0.96)	1.10 (0.80 to 1.53)	1.37 (1.00 to 1.88)	0.01
	smoker	1.06 (0.89 to 1.26)	1.00	0.95 (0.86 to 1.05)	0.91 (0.77 to 1.07)	1.00 (0.76 to 1.31)	1.10 (0.84 to 1.44)	1.04 (0.79 to 1.37)	0.23
Women	Person-year	22,749	110,979	114,327	19,601	3,143	2,062	1,813	
	No.cases	19	140	214	48	15	11	13	
	non-smoker	1.11 (0.65 to 1.91)	1.00	0.92 (0.72 to 1.18)	0.88 (0.61 to 1.26)	1.28 (0.69 to 2.35)	1.47 (0.73 to 2.94)	2.83 (1.53 to 5.24)	0.005
					1				

Appendix 1. The association between baseline HbA_{1c} and Incidence of high frequency hearing impairment (n=126,823).
STROBE Statement—	-checklist of items	s that should be	included in r	eports of observ	ational studies
STRODE Statement		, mat should be	monada m r	epones of coser,	actonial staates

	Item No	Recommendation	Page number
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	P1
		abstract	Line1
		(b) Provide in the abstract an informative and balanced summary of what	P3 Line31,
		was done and what was found	P4 Line51
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	P5 Line64-
C		reported	79
Objectives	3	State specific objectives, including any prespecified hypotheses	P6 Line83-
			88
Methods			
Study design	4	Present key elements of study design early in the paper	P7 Line90
Setting	5	Describe the setting, locations, and relevant dates, including periods of	P7 Line90-
C		recruitment, exposure, follow-up, and data collection	107
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods	P7 Line99-
I		of selection of participants. Describe methods of follow-up	108
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale for	
		the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number	
		of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	P8
		and effect modifiers. Give diagnostic criteria, if applicable	Line118-
		0.	155
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	Р9
measurement		assessment (measurement). Describe comparability of assessment methods	Line143-
		if there is more than one group	153
Bias	9	Describe any efforts to address potential sources of bias	P15
			Line271-
			278,
			Line282
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	Р9
		applicable, describe which groupings were chosen and why	Line127-
			143
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	P10
		confounding	Line157-
			193
		(b) Describe any methods used to examine subgroups and interactions	P11
			Line173-

1 ว			184
<u>-</u> 3		(c) Explain how missing data were addressed	P7
4		(c) Express non mooning and more addressed	Line105-
5			107
б		$(\mathcal{X}_{\mathcal{C}})$ be set of $\mathcal{X}_{\mathcal{C}}$ and $$	10/
7		(a) Conort study—If applicable, explain how loss to follow-up was	
8		addressed	
9		Case-control study—If applicable, explain how matching of cases and	
10		controls was addressed	
11		Cross-sectional study—If applicable, describe analytical methods taking	
12		account of sampling strategy	
15 1 <i>1</i>		(e) Describe any sensitivity analyses	P12
14			Line185-
15			187
17			107
18	Continued on next page	e	
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44 4 F			
45 46			
40 47			
+/ 48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59		F	
60	I	For peer review only - http://bmjopenf.bmj.com/site/about/guidelines.xhtml	

Doculto			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow up, and analysed	Table Fig2
		(b) Give reasons for non-participation at each stage	P11 Line
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	P12 Line 200,
		(b) Indicate number of nonticinants with missing data for each variable of interact	Table
		(b) indicate number of participants with missing data for each variable of interest	P/ Line 109
		(c) Cohort study—Summarise follow-up time (eg. average and total amount)	P12
			Line2 206
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	P12
			Line2 206
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
Main results	16	(a) Give unadjusted estimates and if applicable confounder-adjusted estimates and	P13
		their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Line2
		(b) Report category boundaries when continuous variables were categorized	P10
			Line 161
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	P14 Line2
Discussion			225
Key results	18	Summarise key results with reference to study objectives	P14 Line2
			231
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	P17 Line2
Internation	20	Cive a continue querell intermetation of results considering chiestings limitations	284
interpretation	20	multiplicity of analyses, results from similar studies, and other relevant evidence	Line2
Generalisability	21	Discuss the generalisability (external validity) of the study results	P17 Line2

		285
ation		
22	Give the source of funding and the role of the funders for the present study and, if	P18
	applicable, for the original study on which the present article is based	Line301
	ation 22	22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

or of the terms only

BMJ Open

Hemoglobin A1c and Hearing Impairment: longitudinal analysis using a large occupational health check-up data of Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023220.R1
Article Type:	Research
Date Submitted by the Author:	15-Jun-2018
Complete List of Authors:	Nagahama, Satsue; Toho University Graduate School of Medicine, Department of Environmental and Occupational Health; All Japan Labor Welfare Foundation, Division of Occupational Health and Promotion Kashino, Ikuko; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Hu, Huanhuan; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Nanri, Akiko; Fukuoka Women's University, Department of Food and Health Sciences International College of Arts and Sciences Kurotani, Kayo; National Institutes of Biomedical Innovation, Health and Nutrition, National Institute of Health and Nutrition, Department of Nutritional Epidemiology and Shokuiku Kuwahara, Keisuke; Teikyo University, Graduate School of Public Health; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Dan, Masashi; All Japan Labor Welfare Foundation, Michikawa, Takehiro; National Institute for Environmental Studies, Environmental Epidemiology Section, Center for Environmental Health Sciences Akter, Shamima; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Mizoue, Tetsuya; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Mizaue, Tetsuya; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Mizaue, Tetsuya; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Mizaue, Tetsuya; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Murakami, Yoshitaka ; Toho University Graduate School of Medicine, Department of Medical statistics Nishiwaki, Yuji; Toho University Graduate School of Medicine, Department of Environmental and Occupation
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Diabetes and endocrinology, Ear, nose and throat/otolaryngology, Epidemiology
Keywords:	EPIDEMIOLOGY, Diabetes & endocrinology < INTERNAL MEDICINE, OCCUPATIONAL & INDUSTRIAL MEDICINE, Audiology < OTOLARYNGOLOGY

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Hemoglobin A1c and Hearing Impairment: longitudinal analysis using a large
2	occupational health check-up data of Japan
3	
4	Satsue Nagahama 1 2 3*, Ikuko Kashino 3, Huanhuan Hu 3, Akiko Nanri 4, Kayo
5	Kurotani 5, Keisuke Kuwahara 6 3, Masashi Dan 2, Takehiro Michikawa 7, Shamima
6	Akter 3, Tetsuya Mizoue 3, Yoshitaka Murakami 8, Yuji Nishiwaki 1
7	
8	1 Toho University Graduate School of Medicine, Department of Environmental and
9	Occupational Health, 5-21-16, Omorinishi, Otaku, Tokyo, 143-8540, Japan. Phone
10	+81-3-3762-4151(2403), Fax +81-3-5493-5416
11	E-mail: <u>satsue-n@umin.ac.jp</u>
12	;
13	2 All Japan Labor Welfare Foundation, Division of Occupational Health and Promotion,
14	6-16-11, Hatanodai, Shinagawa, Tokyo, 142-0064, Japan;
15	3 National Center for Global Health and Medicine, Department of Epidemiology and
16	Prevention, Center for Clinical Sciences, 1-21-1, Toyama, Shinjuku, Tokyo, Japan;
17	4 Fukuoka Women's University, Department of Food and Health Sciences International
18	College of Arts and Sciences, 1-1-1, Kasumigaoka, Higashiku, Fukuoka, Japan;
	1
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 of 38		BMJ Open
	19	5 National Institutes of Biomedical Innovation, Health and Nutrition, National Institute
	20	of Health and Nutrition, Department of Nutritional Epidemiology and Shokuiku, 1-23-1,
	21	Toyama, Shinjuku, Tokyo, Japan;
	22	6 Teikyo University, Graduate School of Public Health, 2-11-1, Kaga, Itabashi, Tokyo,
	23	Japan;
	24	7 Centre for Health and Environmental Risk Research, National Institute for
	25	Environmental Studies, Environmental Epidemiology Section, 16-2, Onogawa,
	26	Tsukubashi, Ibaraki, Japan;
	27	8 Toho University Graduate School of Medicine, Department of Medical statistics,
	28	5-21-16, Omorinishi, Otaku, Tokyo, Japan;
	29	*Correspondence to S. Nagahama.
	30	
	31	Word count 3.091
	32	Tables 2
	33	Figures 2
	55	
		2
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

34	Objectives The aim of this study was to determine whether hemoglobin A1c (HbA1c)
35	level is associated with the incidence of hearing impairment accounting for smoking
36	status and diabetic condition at baseline.
37	Methods Participants were 131,689 men and 71,286 women aged 30-65 years and free
38	of hearing impairment at baseline (2008) who attended annual health check-ups from
39	2008 to 2015. We defined low frequency hearing impairment at a hearing threshold >30
40	dB at 1 kHz and high frequency at >40 dB at 4 kHz in the better ear in pure-tone
41	audiometric tests. HbA1c was categorized into 7 categories. The association between
42	HbA1c and hearing impairment was assessed using the Cox proportional hazards
43	model.
44	Results On 5 years' mean follow-up, high HbA1c was associated with high frequency
45	hearing impairment. In non-smokers, HbA1c \geq 8.0% was associated with high frequency
46	hearing impairment, with a multivariable hazard ratio (95% confidence interval)
47	compared with HbA1c 5.0-5.4% of 1.46 (1.10-1.94) in men and 2.15 (1.13-4.10) in
48	women. There was no significant association between HbA1c and hearing impairment
49	in smokers. A J-shaped association between HbA1c and high frequency hearing
50	impairment was observed for participants with diabetes at baseline. HbA1c was not
51	associated with low frequency hearing impairment among any participants.
	3

3		
4		
5 6 7	52	Conclusions HbA1c \ge 8.0% of non-smokers and \ge 7.3% of participants with diabetes
8 9	53	was associated with high frequency hearing impairment. These findings indicate that
10 11 12	54	appropriate glycemic control may prevent diabetic-related hearing impairment.
13 14	55	
15 16		
17	56	Strengths and limitations of this study
18	50	Strengths and minitations of this study
19		
20	57	• This study included a large number of participants, accounting for gender and smoking
22		
23	58	status.
24		
25	59	• To determine whether HbA1c was associated with hearing impairment among
20 27		
28	00	next i i next with the base of here line
29	60	participants with diabetes at baseline.
30		
31	61	• Information on noise exposure, ototoxic drug use, ear surgery, and ear infection was
32 33		
34	62	not obtained
35	02	
36		
37	63	
38 39		
40		
41		
42		
43		
44 45		
46		
47		
48		
49		
50 51		
52		
53		
54		
55		
56 57		
58		4
59		

64 BACKGROUND

65	Patients with hearing impairment experience a range of complications, including
66	impaired quality of life, dementia, depression, loneliness, poor self-esteem and
67	functional disability (1-4). These complications have made this condition a social and
68	economic problem worldwide. More than 5% of the world population has hearing
69	impairment, and this is expected to increase with the aging of the population (5).
70	Although this bleak picture points to the importance of identifying preventable risk
71	factors for hearing impairment, such studies are in fact scarce.
72	Emerging evidence suggests that diabetes mellitus may be a risk factor for hearing
73	impairment. Meta-analyses of 13 cross-sectional studies showed that subjects with
74	diabetes had a 2-fold-increased risk of developing hearing impairment (odds ratio 2.15,
75	95%CI 1.72-2.68) (6). Diabetic hearing impairment is hypothesized to be due to
76	microvascular complications (7, 8). Diabetic hearing impairment may thus be prevented
77	by appropriate glycemic control, which has been shown to be effective for other
78	microvascular complications of diabetes, such as retinopathy, nephropathy and
79	neuropathy (9-12). Three studies have reported the association between hearing
80	impairment and hemoglobin A1c (HbA1c), an indicator for glycemic control (13-15).
81	One of these reported a positive dose-relationship between HbA1c and hearing
	5

82	impairment as defined using a pure-tone average threshold of mainly low frequencies
83	(15), while the other two reported that HbA1c was positively associated with high
84	frequency hearing impairment (13, 14). Nevertheless, no study has yet reported the
85	precise shape of the dose-relationship between HbA1c and high frequency hearing
86	impairment. Furthermore, no study has yet investigated whether HbA1c is associated
87	with hearing impairment among those with diabetes.
88	In Japan, a pure-tone audiometric test is mandatory in annual occupational health
89	check-ups (16). The large sample size this affords has enabled us to investigate the
90	dose-response relationship between HbA1c and hearing impairment, while accounting
91	for well-known risk factors of hearing impairment such as gender and smoking (17, 18).
92	The present study had two aims. The first aim was to investigate the association
93	between HbA1c and the incidence of hearing impairment using a large dataset from
94	annual occupational health check-ups in Japan, accounting for gender and smoking
95	status. The second aim was to determine whether HbA1c was associated with hearing
96	impairment among participants with diabetes.
97	
98	METHODS
99	Study population

	BMJ Open
100	The present study was conducted using data from annual health check-ups of Japanese
101	workers. The All Japan Labor Welfare Foundation, a health service provider with
102	centers in Tokyo, Aomori, Nagano, Yamagata, Ibaraki, Gunma and Nagoya provided the
103	data from April 2008 through Dec 2015, allowing a maximum of 7 years of follow-up.
104	In Japan, annual health check-ups are mandatory for all employees and include a
105	hearing test under the Industrial Safety and Health Act. Nearly all employees attend a
106	health check-up every year. Participants were mainly Japanese employees but also
107	included a small number of their dependents, employers and foreign workers.
108	A total of 312,512 participants aged 30-65 years underwent a hearing test and HbA1c
109	test at baseline (between Apr 2008 and Mar 2009). Of these, we excluded participants
110	with hearing impairment at baseline (n=51,489). Given that diabetic patients with
111	complications may receive more intensive treatments, which may bias the association
112	between HbA1c and hearing impairment, we excluded participants with cardiovascular
113	disease and stroke (n=913). We further excluded participants who did not attend any
114	subsequent health examinations or hearing tests (n=48,618). After further exclusion of
115	8,517 participants with missing information on covariates (5,011 for smoking status,
116	5,152 for alcohol consumption, 1,815 for physical activity data, 5 for body mass index
117	(BMI), 9 for hypertension and 9 for dyslipidemia data; some participants had missing
	7
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

118	data for more than one parameter), leaving 202,975 participants (131,689 men and
119	71,286 women) for analysis.
120	Ethics
121	We obtained written informed consent from each participant who attended the heath
122	check-up after April 2013. Before March 2013, we disclosed the purpose of our study
123	by posters and the participants had the opportunity to refuse the use of their data for the
124	study. This procedure conforms to the Japanese Ethical Guidelines for Medical and
125	Health Research Involving Human Subjects, where the obtaining consent may be
126	simplified for observational studies using existing data. The research protocol including
127	consent procedure was approved by the Ethics Committee of the Faculty of Medicine,
128	Toho University (No. 25017 and No.A16130) and the Ethics Committee of the National
129	Center for Global Health and Medicine (No. NCGM-G-001254-02).
130	Ascertainment of hearing impairment
131	Trained staff performed pure-tone air-conduction audiometry using an audiometer
132	(AA-57, RION Inc., Tokyo, Japan). Low frequency hearing impairment was defined as
133	failure to hear a pure-tone signal of 30dB at 1 kHz in the better ear, and high frequency
134	hearing impairment as failure to hear a pure-tone signal of 40dB at 4 kHz in the better
135	ear. These thresholds are recommended for use in annual health check-ups by Ministry
	8

1	
2	
3	
4	
5	
6	
7	
8	
9 10	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 25	
35	
30	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 70	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

136	of Health, Labor and Welfare in Japan (16). Onset of hearing impairment was defined as
137	the day of the health check-up on which hearing impairment was first detected.
138	Data collection and measurements at baseline (between Apr 2008 and Mar 2009)
139	We used a self-administered questionnaire developed by the Ministry of Health, Labor
140	and Welfare for a specific health examination, namely the national health checkup
141	system focused on metabolic syndrome (19), to assess medical history, regular physical
142	activity (walking time <60 min/day or \geq 60 min/day), smoking status (non-smoker, daily
143	smoker ≤20 cigarettes/day or >20 cigarettes/day), alcohol consumption (non-drinker, <1
144	go, 1 to <2 go or ≥ 2 go/day; one go of sake, a traditional Japanese beverage, is equal to
145	about 180 mL of 10-14% ethanol and contains about 23 g of ethanol) (20), and
146	self-reported diabetes (treatments with anti-diabetic medication or a self-reported
147	history of diabetes: yes or no). Job type was categorized as professional job,
148	management, office job, sales, service, telegraph, manufacturing, transportation and
149	other. Height was measured to the nearest 0.1 cm and weight to the nearest 0.1 kg. Body
150	mass index (BMI) was calculated as the weight in kilograms divided by the square of
151	height in metres and categorized into 4 groups (<18.5, 18.5-22.9, 23-29.9, \geq 30kg/m ²).
152	Blood pressure was measured in the sitting position using an automated
153	sphygmomanometer (HEM-907, Omron, Kyoto, Japan). Participants with high blood
	9

154	pressure (\geq 130 mmHg systolic or \geq 85 mmHg diastolic) received a second measurement
155	and the average was used for the analysis. Hypertension was defined by $\geq 140 \text{ mmHg}$
156	systolic, \geq 90 mmHg diastolic or the use of medication for hypertension. A venous blood
157	sample was collected and stored in a cooler at 4 °C for transportation to an external
158	laboratory (SRL, Tokyo, Japan). Triglyceride level was measured using an enzymatic
159	colorimetric test and high-density lipoprotein cholesterol (HDL-C) was determined
160	using a direct method. Dyslipidemia was defined by triglyceride ≥150 mg/dL (1.7
161	mmol/L) in men and women, HDL-C <40 mg/dL (1.04 mmol/L) in men and <50 mg/dL
162	(1.3 mmol/L) in women or use of medication for dyslipidemia. HbA1c was measured by
163	latex agglutination turbidimetry and converted to the National Glycohemoglobin
164	Standardization Program equivalent value (%) using the formula below, according to the
165	Japan Diabetes Society statement (21) :
166	HbA1c (%) = 1.02 ×HbA1c (Japan Diabetes Society) (%) + 0.25%
167	Diabetes was defined as FPG≥126mg/dL, HbA1c≥6.5%, or self-reported diabetes.
168	Statistical analysis
169	Participants were divided into 7 groups according to their HbA1c level at baseline
170	[<5.0% (31mmol/mol), 5.0-5.4% (31-36mmol/mol), 5.5-5.9% (37-41mmol/mol),
171	6.0-6.4% (42-46mmol/mol), 6.5-6.9% (48-52mmol/mol), 7.0-7.9% (53-63mmol/mol),
	10

172	\geq 8.0% (64 mmol/mol)]. The HbA1c group specific baseline characteristics of
173	participants were described as means (SD) for continuous variables and percentages for
174	categorical variables. Person-years was calculated from baseline to the onset of hearing
175	impairment, or the date of the last health check-up through Dec 2015 (whichever
176	occurred first). Crude incident rates of hearing impairment were shown in events per
177	1000 person-years. Survival analyses were performed using Cox regression to estimate
178	the hazard ratio (HR) with 95% confidence interval (CI) for the incidence of hearing
179	impairment across HbA1c categories, with 5.0-5.4% (31-36mmol/mol) as the reference
180	value. The analyses were stratified by sex because the interaction between hearing
181	impairments and sex was significant (p for interaction <0.001). Age-adjusted model
182	(model 1) and multiple-adjusted model (model 2), which included alcohol consumption,
183	physical activity, BMI, hypertension, dyslipidemia, self-reported diabetes and smoking
184	status were used for the analysis. Although smoking status itself was related to hearing
185	impairment in this study, the association between HbA1c and hearing impairment
186	differed according to smoking status (p for interaction <0.001). We therefore
187	additionally performed analyses according to combined HbA1c (7 groups) and smoking
188	status (non-smoker and current smoker), by considering HbA1c 5.0-5.4%
189	(31-36mmol/mol) and non-smoker as the reference category. We did not analyze
	11

Page 13 of 38

1

2
з
1
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
24
24
35
36
37
38
39
40
Δ1
40
4Z 42
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
50
5/
58
59
60

190	women's smokers because of the small number of cases. To assess whether control of
191	HbA1c would reduce the incidence of hearing impairment in those with diabetes, we
192	elucidated the shape of the relationship between HbA1c and high frequency hearing
193	impairment among those with diabetes. We fitted restricted cubic splines models with
194	seven knots placed at the 1th, 5th, 25th, 50th, 75th, 95th, and 99th centiles as reference
195	values of HbA1c 6.6% (25th) (22). The HRs were adjusted for alcohol consumption,
196	physical activity, BMI, hypertension, dyslipidemia and smoking status. As a sensitivity
197	analysis, we further adjusted for job type in the main analyses (model 2) among
198	participants with this information (n=126,823). We tested the proportional hazards
199	assumption using Schoenfeld residuals. We found no significant deviations for any
200	covariate. P value of two-tailed test <0.05 was considered statistically significant. Trend
201	association was assessed by assigning ordinal numbers (0–6) to the HbA1c categories.
202	We calculated the p for the quadratic trend because it was a better fit for the data than
203	the simple linear model. All statistical analyses were performed using Stata version 12.1
204	(StataCorp, College Station, Texas, USA).
205	
206	RESULTS

207	Baseline characteristics by category of HbA1c are shown in Table 1. The mean age of
208	participants was 45 years for men and 47 years for women. Participants who had higher
209	HbA1c tended to be non-drinkers and to have higher BMI, hypertension, and
210	dyslipidemia in both men and women. Male participants with higher HbA1c tended to
211	be smokers consuming > 20 cigarettes per day.
212	In men, 4,621 developed high frequency hearing impairment with 661,937 person-years
213	(mean duration of follow-up was 5.0 years) and 1,311 developed low frequency hearing
214	impairment with 670,153 person-years (5.1 years). In women, 582 developed high
215	frequency hearing impairment with 345,312 person-years (4.8 years) and 1,207
216	developed low frequency hearing impairment with 344,057 person-years (4.8 years).
217	Table 2 shows the association between HbA1c and the incidence of hearing impairment.
218	In the multivariable-adjusted model, HbA1c showed a quadratic trend with the
219	incidence of high frequency hearing impairment in men (p for quadratic=0.007), and a
220	statistically marginal association in women (p for quadratic=0.08). HbA1c was not
221	associated with low frequency hearing impairment. Figure 1 shows the association
222	between HbA1c and high frequency hearing impairment with accounting for smoking
223	status [the interaction between HbA1c and smoking status (p for interaction <0.001)].
224	Compared to non-smokers with HbA1c 5.0-5.4% (31-36mmol/mol), non-smokers with
	13

225	HbA1c \geq 8.0% (64 mmol/mol) showed an association with hearing impairment [HR
226	(95%CI) of 1.46 (1.11-1.92) in men and 2.36 (1.34-4.15) in women]. Although smokers
227	had higher HRs of hearing impairment than non-smokers, HbA1c level was not
228	associated with hearing impairment among smokers. Additional adjustments for job
229	type did not affect the results (Appendix 1).
230	Figure 2 shows the spline regression model of high frequency hearing impairment at
231	various HbA1c levels against a reference HbA1c level of 6.6% in participants with
232	diabetes at baseline (n=10,154). The relationship between HbA1c and the incidence of
233	hearing impairment was J-shaped, with the significant increase of HR for HbA1c≥7.2%.
234	
234 235	DISCUSSION
234 235 236	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of
234 235 236 237	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64
234 235 236 237 238	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64 mmol/mol) were associated with high frequency hearing impairment among
234 235 236 237 238 239	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64 mmol/mol) were associated with high frequency hearing impairment among non-smokers. A J-shaped association between HbA1c and high frequency hearing
 234 235 236 237 238 239 240 	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64 mmol/mol) were associated with high frequency hearing impairment among non-smokers. A J-shaped association between HbA1c and high frequency hearing impairment was observed among participants with diabetes at baseline. Our findings
 234 235 236 237 238 239 240 241 	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64 mmol/mol) were associated with high frequency hearing impairment among non-smokers. A J-shaped association between HbA1c and high frequency hearing impairment was observed among participants with diabetes at baseline. Our findings indicate that appropriate glycemic control may prevent the incidence of diabetic hearing
 234 235 236 237 238 239 240 241 242 	DISCUSSION In this study, we found a quadratic trend between HbA1c and the incidence of high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64 mmol/mol) were associated with high frequency hearing impairment among non-smokers. A J-shaped association between HbA1c and high frequency hearing impairment was observed among participants with diabetes at baseline. Our findings indicate that appropriate glycemic control may prevent the incidence of diabetic hearing impairment.

Page 16 of 38

BMJ Open

3	
4	
5	
7	
, 8	
9	
10	
11	
12	
12	
15	
16	
17	
18	
19 20	
20	
22	
23	
24	
25	
20 27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
38	
40	
41	
42	
43	
44 45	
45 46	
47	
48	
49	
50	
51 52	
53	
54	
55	
56	
5/ 50	
50 59	
60	

243	Our finding of a quadratic trend between HbA1c and hearing impairment is
244	supported by the results of two longitudinal studies. (13, 15) One of these reported an
245	odds ratio (95% CI) of high frequency hearing impairment per 1.0% increase in HbA1c
246	of 1.52 (1.03 to 2.23), albeit no statistical association between the three categories of
247	HbA1c and high frequency hearing impairment (13). The second reported that HbA1c
248	was positively associated with average hearing threshold, mainly among low
249	frequencies (15). The present study provides novel evidence that an HbA1c of 8.0% (64
250	mmol/mol) or above is associated with increased risk of high frequency hearing
251	impairment in non-smokers. Our findings are consistent with the work of Cruickshanks
252	et al., who reported that poor glycemic control, defined by a glycosylated hemoglobin
253	level, was associated with hearing impairment (23).
254	Additionally, we found that the J-shaped association between HbA1c and
255	hearing impairment remained even among participants with diabetes at baseline. This
256	result suggests that proper glycemic control may prevent diabetic-related hearing
257	impairment even in those with diabetes. Previous studies have also reported a J-shaped
258	association between HbA1c and diabetics complications, and noted that hypoglycemia
259	might increase diabetic complications (24-26). More research is needed to determine a

BMJ Open

2	
3	
1	
-	
5	
6	
7	
8	
0	
9	
10	
11	
12	
12	
1.1	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
20	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
27	
57	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
40	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	
60	
00	

suitable HbA1c level for glycemic targeting to prevent hearing impairment in diabeticmanagement.

262	We found that high frequency hearing impairment has a quadratic trend with
263	HbA1c among non-smokers but not smokers. Previous studies have reported an adverse
264	effect of smoking cigarettes on hearing impairment (23, 27, 28). It is plausible that the
265	effect of smoking cigarettes may be stronger than HbA1c and might mask the effect of
266	HbA1c. Further research is needed to confirm the joint effect of smoking and HbA1c on
267	hearing impairment.
268	The pathophysiology underlying high-HbA1c-associated hearing impairment is
269	unclear, which allows for speculation. One possible explanation is that
270	hyperglycemia-related microvascular complications lead to thickening of the cochlea
271	and vestibulopathy, and result in hearing impairment (7, 8, 29-33). Diabetic-related
272	hearing impairment has been mainly observed at high frequencies, suggesting that high
273	frequency-specific areas of the cochlea may be more fragile to ischemic changes due to
274	microvascular complications (34-38). This mechanism is supported by the J-shaped
275	association between HbA1c and hearing impairment observed in the present study, since
276	previous studies also reported a J-shaped-association between HbA1c and diabetic
277	vascular complications (39, 40). Further studies to confirm this idea are required.
	16

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

278	This study has several strengths. The large dataset allowed us to investigate the
279	association between HbA1c and hearing impairment with comprehensive adjustment for
280	covariates, and additionally, among participants with diabetes at baseline. Audiometry
281	to confirm hearing impairment was conducted by trained staff. Several limitations of the
282	study also need to be considered. First, though noise exposure is an important risk factor
283	on hearing impairment (41, 42), information on noise exposure was not available and
284	thus noise information was not considered in the analyses. The present study thus might
285	include the cofounding influence of noise exposure. However, a previous study reported
286	that the relationship between diabetes and hearing impairment was independent of this
287	variable (37). Moreover, in the present study, HbA1c level was associated with hearing
288	impairment even after accounting for job type in a sensitivity analysis. Second,
289	information on ototoxic drug use, ear surgery, and ear infection was not collected, and
290	we were therefore unable to exclude cases of hearing impairment due to these factors.
291	Third, blood pressure was measured once, followed by a second measurement if the first
292	systolic blood pressure \geq 130 mmHg systolic or diastolic blood pressure \geq 85 mmHg. All
293	participants didn't have the same evaluation of blood pressure. This may lead to
294	misclassification of hypertension. Fourth, we did not account for gender or smoking
295	status in the association between HbA1c and hearing impairment for participants with
	17

296	diabetes because of the small sample size. Fifth, the hearing test was only conducted at
297	1 kHz and 4 kHz. Hearing impairment at other frequencies could not therefore be
298	identified. Sixth, we cannot exclude the possibility of residual confounding and
299	confounding by unmeasured variables. Finally, the study participants were mainly
300	workers, and thus caution is required when generalizing our findings.
301	CONCLUSION
302	We found the quadratic trend between HbA1c and the incidence of high
303	frequency hearing impairment in non-smokers. The trend between HbA1c and hearing
304	impairment remained even among those with diabetes. These findings indicate that
305	diabetic-related hearing impairment may be prevented with appropriate glycemic
306	control. These findings warrant confirmation in interventional studies.
307	Abbreviations
308	HbA1c: hemoglobin A1c; BMI: body mass index; HR: hazard ratio; CI: confidence
309	interval
310	Acknowledgements
311	The authors would like to thank Dr Nobuo Yanagisawa and Dr Takeshi Kawaguchi for
312	coordinating the study.
313	Contributors
	18

-
2
2
3
Δ
4
5
~
6
7
/
8
9
10
10
11
12
13
11
14
15
15
16
17
17
18
10
19
20
20
21
∠1
22
~~
23
24
24
25
25
26
27
20
28
20
29
30
~ ~
31
22
52
33
55
34
25
35
36
50
37
38
20
27
40
ΨU
41
42
42
12
чJ
44
4-
45
16
40
47
48
40
49
50
50
51
52
52
22
54
55
FC
56
57
57
58
59
60
00

314	SN, TaM and IK designed study and drafted the manuscript. SN, HHH, KaK, AN and
315	KeK performed the data analysis. MD collected and interpreted the data. All authors
316	participated in interpretation of the findings, revised the paper critically for important
317	intellectual content and approved the final version to be published. YN and YM
318	provided administrative, technical and material support. SN and YN are guarantors.
319	Funding
320	This research was funded by All Japan Labor Welfare Foundation Research Fellowship.
321	Competing interests
322	None declared. SN is occupational physicians in the participating company.
323	Ethics approval
324	The research protocol was approved by the Ethics Committee of the Faculty of
325	Medicine, Toho University and the Ethics Committee of the National Center for Global
326	Health and Medicine.
327	Patient and public involvement
328	No patient were involved in setting the research question or the outcome measures,
329	planning for the design of the study. Detail has been removed from this case
330	description/these case descriptions to ensure anonymity. Patient consent was not
331	required for the study.

1		
2		
3		
4		
5	332	Data sharing statement
7	002	
8		
9	333	No additional data are available.
10		
11	334	
13		
14		
15		
16 17		
18		
19		
20		
21 22		
23		
24		
25		
26		
27		
29		
30		
31		
32 33		
34		
35		
36		
37 38		
39		
40		
41		
42 43		
44		
45		
46		
47 49		
40 49		
50		
51		
52		
53 54		
55		
56		
57		20
58 50		20
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

2
3
Δ
5
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
24 25
35
36
37
38
39
40
/1
41
42
43
44
45
46
47
<u>1</u> 2
40
49
50
51
52
53
54
55
55
50
5/
58
59
60

0.0 -	D . f
335	References

- 1. Lin FR, Metter EJ, O'Brien RJ, Resnick SM, Zonderman AB, Ferrucci L. Hearing
- loss and incident dementia. Arch Neurol. 2011;68(2):214-20.
- 338 2. Li CM, Zhang X, Hoffman HJ, Cotch MF, Themann CL, Wilson MR. Hearing
- 339 impairment associated with depression in US adults, National Health and Nutrition
- 340 Examination Survey 2005-2010. JAMA Otolaryngol Head Neck Surg.
- 341 2014;140(4):293-302.
- 342 3. Herbst KG, Humphrey C. Hearing impairment and mental state in the elderly living
- 343 at home. Br Med J. 1980;281(6245):903-5.
- 4. Wilson BS, Tucci DL, Merson MH, O'Donoghue GM. Global hearing health care:
- new findings and perspectives. Lancet. 2017;390(10111):2503-15.
- 346 5. WHO [Internet]. Deafness and hearing loss.
- 347 http://www.who.int/mediacentre/factsheets/fs300/en. Accessed 11 Jan 2018.
- 348 6. Horikawa C, Kodama S, Tanaka S, Fujihara K, Hirasawa R, Yachi Y, et al. Diabetes
- and risk of hearing impairment in adults: a meta-analysis. J Clin Endocrinol Metab.

350 2013;98(1):51-8.

Page 23 of 38

BMJ Open

351	7. Fukushima H, Cureoglu S, Schachern PA, Paparella MM, Harada T, Oktay MF.
352	Effects of type 2 diabetes mellitus on cochlear structure in humans. Arch Otolaryngol
353	Head Neck Surg. 2006;132(9):934-8.
354	8. Oron Y, Elgart K, Marom T, Roth Y. Cardiovascular risk factors as causes for hearing
355	impairment. Audiol Neurootol. 2014;19(4):256-60.
356	9. Klein R, Klein BE, Moss SE. Relation of glycemic control to diabetic microvascular
357	complications in diabetes mellitus. Ann Intern Med. 1996;124(1 Pt 2):90-6.
358	10. Danne T, Weber B, Dinesen B, Mortensen HB. Threshold of HbA1c for the effect of
359	hyperglycemia on the risk of diabetic microangiopathy. Diabetes Care. 1996;19(2):183.
360	11. Li W, Katzmarzyk PT, Horswell R, Wang Y, Johnson J, Hu G. HbA1c and all-cause
361	mortality risk among patients with type 2 diabetes. Int J Cardiol. 2016;202:490-6.
362	12. 5. Glycemic Targets. Diabetes Care. 2016;39 Suppl 1:S39-46.
363	13. Michikawa T, Mizutari K, Saito H, Takebayashi T, Nishiwaki Y. Glycosylated
364	hemoglobin level is associated with hearing impairment in older Japanese: the
365	Kurabuchi Study. J Am Geriatr Soc. 2014;62(7):1231-7.
366	14. Kang SH, Jung DJ, Cho KH, Park JW, Lee KY, Do JY. Association Between HbA1c
367	Level and Hearing Impairment in a Nondiabetic Adult Population. Metabolic Syndrome
368	and Related Disorders. 2016;14(2):129-34.
	22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	23
386	Questionnaire.
385	20. Ministry of Health, Labour and Welfare (Japanese Page): Health guidance
384	Accessed 11 Jan 2018.
383	and Specific Health Guidance. http://www.mhlw.go.jp/english/wp/wp-hw3/dl/2-007.pdf.
382	19. Ministry of Health, Labour and Welfare (English Page): Specific Health Checkups
381	Composition Study. J Am Geriatr Soc. 2005;53(12):2119-27.
380	Race and sex differences in age-related hearing loss: the Health, Aging and Body
379	18. Helzner EP, Cauley JA, Pratt SR, Wisniewski SR, Zmuda JM, Talbott EO, et al.
378	2016;21 Suppl 1:10-5.
377	Women: Results from the Population-Based Rotterdam Study. Audiol Neurootol.
376	Goedegebure A. Contributing Determinants to Hearing Loss in Elderly Men and
375	17. Rigters SC, Metselaar M, Wieringa MH, Baatenburg de Jong RJ, Hofman A,
374	984. Accessed 11 Jan 2018.
373	http://www.japaneselawtranslation.go.jp/law/detail_main?re=01&ia=03&vm=02&id=1
372	Industrial Safety and Health, Article 44 Periodical Medical Examination, (iii).
371	16. Japan Industrial Safety and Health Association (English Page): Ordinance on
370	the incidence of hearing loss: a cohort study. Int J Epidemiol. 2016.
369	15. Kim MB, Zhang Y, Chang Y, Ryu S, Choi Y, Kwon MJ, et al. Diabetes mellitus and

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

387	http://www.mhlw.go.jp/seisakunitsuite/bunya/kenkou_iryou/kenkou/seikatsu/dl/hoken-p
388	rogram2_02.pdf. Accessed 11 Jan 2018.
389	21. Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanafusa T, Ito H, et al. International
390	clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society
391	to National Glycohemoglobin Standardization Program values. J Diabetes Investig.
392	2012;3(1):39-40.
393	22. Harrell F. Regression Modeling Strategies: With Applications to Linear Models,
394	Logistic and Ordinal Regression, and Survival Analysis: Springer International
395	Publishing; 2015.
396	23. Cruickshanks KJ, Nondahl DM, Dalton DS, Fischer ME, Klein BE, Klein R, et al.
397	Smoking, central adiposity, and poor glycemic control increase risk of hearing
398	impairment. J Am Geriatr Soc. 2015;63(5):918-24.
399	24. Carson AP, Fox CS, McGuire DK, Levitan EB, Laclaustra M, Mann DM, et al. Low
400	hemoglobin A1c and risk of all-cause mortality among US adults without diabetes. Circ
401	Cardiovasc Qual Outcomes. 2010;3(6):661-7.
402	25. Goto A, Noda M, Matsushita Y, Goto M, Kato M, Isogawa A, et al. Hemoglobin alc
403	levels and the risk of cardiovascular disease in people without known diabetes: a
404	population-based cohort study in Japan. Medicine (Baltimore). 2015;94(17):e785.
	24

405	26. Snell-Bergeon JK, Wadwa RP. Hypoglycemia, diabetes, and cardiovascular disease.
406	Diabetes Technol Ther. 2012;14 Suppl 1:S51-8.
407	27. Barone JA, Peters JM, Garabrant DH, Bernstein L, Krebsbach R. Smoking as a risk
408	factor in noise-induced hearing loss. J Occup Med. 1987;29(9):741-5.
409	28. Nomura K, Nakao M, Morimoto T. Effect of smoking on hearing loss: quality
410	assessment and meta-analysis. Prev Med. 2005;40(2):138-44.
411	29. Lisowska G, Namyslowski G, Morawski K, Strojek K. Cochlear dysfunction and
412	diabetic microangiopathy. Scand Audiol Suppl. 2001(52):199-203.
413	30. Akinpelu OV, Ibrahim F, Waissbluth S, Daniel SJ. Histopathologic changes in the
414	cochlea associated with diabetes mellitusa review. Otol Neurotol. 2014;35(5):764-74.
415	31. Krogsboll LT, Jorgensen KJ, Gronhoj Larsen C, Gotzsche PC. General health checks
416	in adults for reducing morbidity and mortality from disease: Cochrane systematic
417	review and meta-analysis. BMJ (Clinical research ed.). 2012;345:e7191.
418	32. Kazmierczak H, Doroszewska G. Metabolic disorders in vertigo, tinnitus, and
419	hearing loss. Int Tinnitus J. 2001;7(1):54-8.
420	33. Nash SD, Cruickshanks KJ, Klein R, Klein BE, Nieto FJ, Huang GH, et al. The
421	prevalence of hearing impairment and associated risk factors: the Beaver Dam
422	Offspring Study. Arch Otolaryngol Head Neck Surg. 2011;137(5):432-9.
	25

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 38

423	34. Uchida Y, Sugiura S, Ando F, Nakashima T, Shimokata H. Diabetes reduces auditory
424	sensitivity in middle-aged listeners more than in elderly listeners: a population- based
425	study of age-related hearing loss. Med Sci Monit. 2010;16(7):Ph63-8.
426	35. Konrad-Martin D, Reavis KM, Austin D, Reed N, Gordon J, McDermott D, et al.
427	Hearing Impairment in Relation to Severity of Diabetes in a Veteran Cohort. Ear Hear.
428	2015;36(4):381-94.
429	36. Bainbridge KE, Hoffman HJ, Cowie CC. Risk factors for hearing impairment
430	among U.S. adults with diabetes: National Health and Nutrition Examination Survey
431	1999-2004. Diabetes Care. 2011;34(7):1540-5.
432	37. Bainbridge KE, Hoffman HJ, Cowie CC. Diabetes and hearing impairment in the
433	United States: audiometric evidence from the National Health and Nutrition
434	Examination Survey, 1999 to 2004. Ann Intern Med. 2008;149(1):1-10.
435	38. Kim JS, Lee H. Inner ear dysfunction due to vertebrobasilar ischemic stroke. Semin
436	Neurol. 2009;29(5):534-40.
437	39. Huang ES, Liu JY, Moffet HH, John PM, Karter AJ. Glycemic control,
438	complications, and death in older diabetic patients: the diabetes and aging study.
439	Diabetes Care. 2011;34(6):1329-36.

3	
4	
5	
7	
, 8	
9	
10	
11	
12	
13	
15	
16	
17	
18	
19 20	
20	
22	
23	
24	
25	
20	
28	
29	
30	
31	
33	
34	
35	
36	
3/ 38	
39	
40	
41	
42	
43 11	
45	
46	
47	
48	
49 50	
51	
52	
53	
54	
56	
57	
58	
59	
60	

440	40. Ostgren CJ, Sundstrom J, Svennblad B, Lohm L, Nilsson PM, Johansson G.
441	Associations of HbA1c and educational level with risk of cardiovascular events in
442	32,871 drug-treated patients with Type 2 diabetes: a cohort study in primary care.
443	Diabet Med. 2013;30(5):e170-7.
444	41. Lie A, Skogstad M, Johannessen HA, Tynes T, Mehlum IS, Nordby KC, et al.
445	Occupational noise exposure and hearing: a systematic review. Int Arch Occup Environ
446	Health. 2016 Apr;89(3):351-72.
447	42. Henderson D, Bielefeld EC, Harris KC, Hu BH. The role of oxidative stress in
448	noise-induced hearing loss. Ear Hear. 2006 Feb;27(1):1-19.
449	
450	

1	
2	
3	
Δ	
5	
2	
6	
7	
8	
9	
1	0
1	1
1	2
1	2
1	د م
1	4
1	5
1	6
1	7
1	8
1	9
ว	0
2	1
2	ו ר
2	2
2	3
2	4
2	5
2	6
2	7
2	, Ω
2	0
2	9
3	0
3	1
3	2
3	3
3	4
2	5
2	6
2	0
3	/
3	8
3	9
4	0
4	1
4	2
4	3
1	л Л
4	4
4	5
4	6
4	7
4	8
4	9
5	0
5	1
5	י ר
С С	∠ ۲
5	3
5	4
5	5
5	6
-	-
5	7

59

60

Table I Baseline char	acteristics of	of study pa	rticipants a	iccording t	to HbA _{1c} (n	=202,975)	•	
			H	$bA_{1c}(\%)$ (1	mmol/mol)			
	Overall	<5.0 (<31)	5.0-5.4 (31-36)	5.5-5.9 (37-41)	6.06.4 (42-46)	6.5-6.9 (48-52)	7.0-7.9 (53-63)	≥8 (≥64)
Men				· · ·				
n	131,689	10,701	53,839	50,957	8,995	2,488	2,224	2,485
Age (years)*	44.6 (9.1)	40.9 (8.2)	42.6 (8.6)	45.7 (9.0)	49.6 (8.6)	51.7 (7.9)	51.6 (7.8)	49.2 (8.2)
Walking time, ≥60 min/day (%) Smoking status (%)	16	16	17	17	15	15	16	13
Non-smoker	45.15	44	44	46	47	50	46	40
≤20 cigarettes/day	37.04	39	39	36	34	31	32	35
Daily consuming >20 cigarettes/day Alcohol	17.8	17	17	18	19	19	22	25
consumption (%)	26	10	24	20	21	20	22	26
Drinker <1	35	32	35	29 36	31	30 34	30	30
Drinker 1 to <2	26	30	27	25	25	25	26	22
go/day Drinker ≥ 2	12	10	13	10	10		-0	10
go/day [†] Self-reported	2.2	0.07	0.10	0.4	10	22.4	41.1	27.2
diabetes (%) [‡]	2.5	0.07	0.10	24.0	4.0 25.4	22.4	41.1	57.5 26.4
BMI (kg/m2)*	(3.5)	(2.9)	(3.1)	(3.5)	(4.0)	(4.2)	(4.3)	(4.5)
Hypertension (%) ^s Dyslipidemia (%) ['] Women	28 39	21 29	22 33	29 41	44 54	57 59	57 60	53 65
n	71,286	5,880	28,277	29,741	5,286	890	618	594
Age (years)*	47.1 (9.0)	41.5 (7.6)	44.6 (8.6)	49.0 (8.6)	52.6 (7.6)	53.9 (7.2)	53.9 (7.2)	52.0 (7.6)
Walking time, ≥60 min/day (%)	12	11	11	12	13	12	13	11
Smoking status (%)	80	71	77	83	86	86	83	77
Daily consuming	19	26	21	16	13	13	16	22
Daily consuming >20 cigarettes/day Alcohol	1.4	2.5	1.5	1.2	1.2	1.1	1.5	1.9
consumption (%)	(0	15	50	(5	70	74	72	70
Non-drinker Drinker <1	60	45	50	65	70	/4	/3	/8
go/day Drinker 1 to <2	31	36	34	29	26	22	22	19
go/day [†]	6.8	14.4	7.8	5.0	3.8	3.9	3.7	2.7
go/day [†]	1.7	5.3	1.9	1.0	0.5	0.6	0.5	0.7
Self-reported diabetes (%) [‡]	1.2	0.05	0.03	0.1	2.5	17.4	38.2	47.5
BMI (kg/m2)*	22.3 (3.6)	21.2 (2.9)	21.6 (3.2)	22.5 (3.7)	23.9 (4.3)	25.5 (4.7)	26.4 (4.8)	26.6 (4.6)
Hypertension $(\%)^{\$}$	19	11	14	21	34	52	59	53
L on aitu dinal aumusu a	£202.050 a	13	10	24	<u> </u>	J4	2000	59

of study particin hla 1 Basalina ch rictio 1. TT1 A (-202 075

Longitudinal survey of 202,950 examinees in All Japan Labor Welfare Foundation, Japan, 2008.

* Mean (SD) One *go* contains ~23g of ethanol.

^{*}Self-reported diagnosis of diabetes or receiving medication.

⁸ Systolic blood pressure \geq 140mmHg, diastolic blood pressure \geq 90 mmHg or receiving medication.

 $^{\rm l}$ Triglyceride level $\geq 150 \text{mg/dL}$ (1.7mmol/L), high-density lipoprotein cholesterol level $<\!40$ mg/dL (1.04 mmol/L) in men and $<\!50$ mg/dL (1.3 mml/L) in women or receiving medication.

					HbA_{1c} (%) (mmc	ol/mol)			
		<5.0 (<31) 5.0-5.4 (31-36)		5.5-5.9 (37-41) 6.06.4 (42-46)		6.5-6.9 (48-52)	7.0-7.9 (53-63)	≥8 (≥64)	P for quadratic
Low f	frequency								
Men	Person-year	54,055	275,953	261,290	44,807	11,798	10,637	11,613	
	No. cases	84	447	548	122	45	26	39	
	Model 1	1.15 (0.91 to 1.45)	1.00	0.98 (0.86 to 1.11)	0.94 (0.77 to 1.15)	1.11 (0.81 to 1.51)	0.73 (0.49 to 1.08)	1.22 (0.88 to 1.70)	0.15
	Model 2	1.11 (0.88 to 1.40)	1.00	1.00 (0.88 to 1.14)	0.98 (0.79 to 1.20)	1.16 (0.84 to 1.60)	0.75 (0.49 to 1.15)	1.26 (0.88 to 1.80)	0.27
Women	Person-year	28,447	137,761	143,295	25,083	4,136	2,760	2,576	
	No. cases	65	415	553	133	18	14	9	
	Model 1	1.04 (0.80 to 1.35)	1.00	0.90 (0.79 to 1.03)	0.94 (0.77 to 1.14)	0.71 (0.44 to 1.14)	0.86 (0.51 to 1.48)	0.68 (0.35 to 1.31)	0.79
	Model 2	1.04 (0.80 to 1.35)	1.00	0.91 (0.80 to 1.03)	0.93 (0.76 to 1.14)	0.67 (0.41 to 1.10)	0.77 (0.43 to 1.38)	0.57 (0.28 to 1.19)	0.51
High 1	frequency								
Men	Person-year	53,617	273,025	257,812	44,093	11,621	10,345	11,424	
	No. cases	280	1,610	1,941	416	116	128	130	
	Model 1	1.05 (0.92 to 1.19)	1.00	0.98 (0.91 to 1.04)	0.91 (0.82 to 1.02)	0.82 (0.67 to 0.99)	1.05 (0.88 to 1.26)	1.15 (0.96 to 1.38)	0.003
	Model 2	1.03 (0.90 to 1.17)	1.00	0.99 (0.92 to 1.06)	0.93 (0.83 to 1.03)	0.84 (0.69 to 1.02)	1.08 (0.89 to 1.32)	1.18 (0.97 to 1.43)	0.007
Women	Person-year	28,520	138,232	143,882	25,246	4,124	2,753	2,555	
	No. cases	23	169	277	67	18	13	15	
	Model 1	1.02 (0.66 to 1.58)	1.00	1.00 (0.83 to 1.22)	0.97 (0.73 to 1.29)	1.43 (0.88 to 2.34)	1.62 (0.92 to 2.86)	2.41 (1.42 to 4.10)	0.03
	Model 2	1.03 (0.66 to 1.60)	1.00	0.97 (0.80 to 1.17)	0.86 (0.64 to 1.16)	1.17 (0.70 to 1.95)	1.24 (0.67 to 2.29)	1.78 (0.95 to 3.34)	0.08

Model 1: Adjusted for age.

Model 2: Adjusted for age, walking time, smoking status, alcohol consumption, self-reported diabetes, BMI, hypertension and hyperlipidemia.

1 2		
3 4		
5	452	Fig1. The association between HbA1c and hearing impairment of high frequency stratified by smoking status.
6 7	453	Footnote; Results obtained by multivariable Cox regression. The reference value was 5.0-5.4% of HbA1c in
8	454	non-smoker. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 23-29.9, or
9	455	\geq 30.0 kg/m2), alcohol consumption (non-drinker, drinker consuming <1, 1 to <2, or \geq 2 go of Japanese sake
10 11	456	contains approximately 23g of ethanol), walking time (<60, or ≥60 min/day), self-reported diabetes, hypertension
12	457	(systolic blood pressure \geq 140mmHg, diastolic blood pressure \geq 90 mmHg or receiving medication), and
13	458	hyperlipidemia (triglyceride level >150mg/dL, high-density lipoprotein cholesterol level <40 mg/dL or receiving
14 15	459	medication)
16	100	incurcution).
17		
18 19		
20		
21		
22 23		
24		
25		
26 27		
27		
29		
30 21		
32		
33		
34 25		
35 36		
37		
38		
39 40		
41		
42		
43 44		
45		
46		
47 48		
49		
50		
51 52		
52 53		
54		
55		
56		

57

58 59
Fig 2. Adjusted hazard ratio of high frequency hearing impairment among participants with diabetes at baseline (n=10,154).

Footnote; Results obtained by multivariable Cox regression with restricted cubic splines with seven knots (p1, p5, p25, p50, p75, p95 and p99). The reference value was 6.6% (p25) of HbA1c. The continuous line presents hazard ratios and the dashed line presents 95% confidence intervals. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 23-29.9, or \geq 30.0 kg/m2), smoking status (non-smoker, smoker consuming \leq 20, the status of the status or > 20 cigarettes per day), alcohol consumption (non-drinker, drinker consuming <1, 1 to <2, or \geq 2 go of Japanese sake contains approximately 23g of ethanol), walking time (<60, or ≥60 min/day), hypertension (systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90 mmHg or receiving medication), and hyperlipidemia (triglyceride level ≥150mg/dL, high-density lipoprotein cholesterol level <40 mg/dL in men and <50 mg/dL in women or receiving medication).

Fig1. The association between HbA1c and hearing impairment of high frequency stratified by smoking status.

Footnote; Results obtained by multivariable Cox regression. The reference value was 5.0-5.4% of HbA1c in non-smoker. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 23-29.9, or ≥ 30.0 kg/m2), alcohol consumption (non-drinker, drinker consuming <1, 1 to < 2, or ≥ 2 go of Japanese sake contains approximately 23g of ethanol), walking time (<60, or ≥60 min/day), self-reported diabetes, hypertension (systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90 mmHg or receiving medication), and hyperlipidemia (triglyceride level ≥150mg/dL, high-density lipoprotein cholesterol level <40 mg/dL or receiving medication).

203x197mm (96 x 96 DPI)

Fig 2. Adjusted hazard ratio of high frequency hearing impairment among participants with diabetes at baseline (n=10,154).

Footnote; Results obtained by multivariable Cox regression with restricted cubic splines with seven knots (p1, p5, p25, p50, p75, p95 and p99). The reference value was 6.6% (p25) of HbA1c. The continuous line presents hazard ratios and the dashed line presents 95% confidence intervals. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 23-29.9, or ≥ 30.0 kg/m2), smoking status (non-smoker, smoker consuming ≤ 20, or > 20 cigarettes per day), alcohol consumption (non-drinker, drinker consuming <1, 1 to < 2, or ≥ 2 go of Japanese sake contains approximately 23g of ethanol), walking time (<60, or ≥60 min/day), hypertension (systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90 mmHg or receiving medication), and hyperlipidemia (triglyceride level ≥150mg/dL, high-density lipoprotein cholesterol level <40 mg/dL in men and <50 mg/dL in women or receiving medication).

312x193mm (96 x 96 DPI)

 BMJ Open

					HbA _{1c} (%)	(mmol/mol)			
		<5.0 (<31)	5.0-5.4 (31-36)	5.5-5.9 (37-41)	6.06.4 (42-46)	6.5-6.9 (48-52)	7.0-7.9 (53-63)	≥8 (≥64)	P for quadratic
Men	Person-year	44,265	227,740	215,647	36,368	9,184	8,148	8,888	
	No.cases	229	1,345	1,535	329	91	99	100	
	non-smoker	0.94 (0.73 to 1.20)	1.00	0.93 (0.82 to 1.05)	0.89 (0.73 to 1.07)	0.68 (0.48 to 0.96)	1.10 (0.80 to 1.53)	1.37 (1.00 to 1.88)	0.01
	smoker	1.06 (0.89 to 1.26)	1.00	0.95 (0.86 to 1.05)	0.91 (0.77 to 1.07)	1.00 (0.76 to 1.31)	1.10 (0.84 to 1.44)	1.04 (0.79 to 1.37)	0.23
Women	Person-year	22,749	110,979	114,327	19,601	3,143	2,062	1,813	
	No.cases	19	140	214	48	15	11	13	
	non-smoker	1.11 (0.65 to 1.91)	1.00	0.92 (0.72 to 1.18)	0.88 (0.61 to 1.26)	1.28 (0.69 to 2.35)	1.47 (0.73 to 2.94)	2.83 (1.53 to 5.24)	0.005

Appendix 1. The association between baseline HbA_{1c} and Incidence of high frequency hearing impairment (n=126,823).

Adjusted for age, walking time, alcohol consumption, self-reported diabetes, BMI, hypertension, hyperlipidemia and job type.

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page number
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	P1
		abstract	Linel
		(b) Provide in the abstract an informative and balanced summary of what	P3 Line31,
		was done and what was found	P4 Line51
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	P5 Line64- 79
Objectives	3	State specific objectives, including any prespecified hypotheses	P6 Line83-
Madha da			00
Methods Stada darian	4	Descriptions along the off the design and a in the second	D7 L :
Study design	4	Present key elements of study design early in the paper	P/Line90
Setting	5	Describe the setting, locations, and relevant dates, including periods of	P / Line90-
D (1) (1)	6	recruitment, exposure, follow-up, and data collection	10/
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods	P/Line99-
		of selection of participants. Describe methods of follow-up	108
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale for	
		the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number	
		of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	P8
		and effect modifiers. Give diagnostic criteria, if applicable	Line118-
			155
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	Р9
measurement		assessment (measurement). Describe comparability of assessment methods	Line143-
		if there is more than one group	153
Bias	9	Describe any efforts to address potential sources of bias	P15
			Line271-
			278.
			Line282
Study size	10	Explain how the study size was arrived at	
Ouantitative variables	11	Explain how quantitative variables were handled in the analyses. If	Р9
		applicable, describe which groupings were chosen and why	Line127-
			143
Statistical methods	12	(a) Describe all statistical methods including those used to control for	P10
_ answear memorious	12	confounding	Line157-
			193
		(b) Describe any methods used to examine subgroups and interactions	D11
		(o) reserve any memous used to examine subgroups and interactions	L_{11}
			Line1/3-

1			184
3		(c) Explain how missing data were addressed	P7
4		(c) <u>- p</u>	Line105-
5			107
6		(d) Cohort study—If applicable, explain how loss to follow-up was	107
7		addressed	
8		Case-control study_If applicable, explain how matching of cases and	
10		controls was addressed	
11		Cross-sectional study—If annlicable describe analytical methods taking	
12		cross-sectional statuy—in applicable, describe analytical methods taking	
13		(a) Describe any consistivity analyzes	D12
14		(<u>e</u>) Describe any sensitivity analyses	F12
15			Line185-
10	` `		187
18	Continued on next page		
19			
20			
21			
22			
25 24			
25			
26			
27			
28			
29			
30 31			
32			
33			
34			
35			
36			
3/			
39			
40			
41			
42			
43			
44 45			
45			
47			
48			
49			
50			
51			
52 53			
54			
55			
56			
57			
58			
59 60	For peer revie	w only - http://bmjopen ² bmi.com/site/about/quidelines.xhtml	
00	. or peer revie		

2	
2	
3	
4	
5	
~	
6	
7	
, ,	
8	
9	
10	
11	
12	
13	
15	
14	
15	
15	
16	
17	
17	
18	
10	
19	
20	
21	
21	
22	
22	
23	
24	
25	
25	
26	
27	
27	
28	
20	
29	
30	
21	
31	
32	
22	
33	
34	
54	
35	
36	
50	
37	
38	
50	
39	
∆∆	
-10	
41	
Δ٦	
72	
43	
ДЛ	
-+-+	
45	
46	
40	
47	
10	
40	
49	
50	
50	
51	
г. г.	
52	
53	
54	
55	
56	
57	
5,	
58	
59	
~~	
60	

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	Table1,2,
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	Fig2
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	P11
			Line178
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	P12
data		information on exposures and potential confounders	Line196-
			200,
			Table1
		(b) Indicate number of participants with missing data for each variable of interest	P7
			Line1001-
			109 D12
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	P12
			Line201-
Outcome data	15*	Calendaria de Depart mumbers of outcome quanto an summers massing quantime	206 D12
Outcome data	15*	<i>Conort study</i> —Report numbers of outcome events or summary measures over time	P12
			206
		Case control study. Depart numbers in each avecause actogory, or summery manufactor	200
		cuse-control study—Report numbers in each exposure category, of summary measures	
		Cross sectional study Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and if applicable confounder-adjusted estimates and	P13
Widin results	10	(a) Give unadjusted estimates and, it applicable, comounder-adjusted estimates and their precision (eq. 95% confidence interval). Make clear which confounders were	Line215
		adjusted for and why they were included	Eme
		(b) Report category boundaries when continuous variables were categorized	P10
			Line158-
			161
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity	P14
		analyses	Line218-
			223
Discussion			
Key results	18	Summarise key results with reference to study objectives	P14
2			Line225-
			231
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	P17
		imprecision. Discuss both direction and magnitude of any potential bias	Line271-
			284
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	P17
		multiplicity of analyses, results from similar studies, and other relevant evidence	Line285-
			290
Generalisability	21	Discuss the generalisability (external validity) of the study results	P17
			Lino284

For peer review only - http://bmjopen?bmj.com/site/about/guidelines.xhtml

Other inforn	nation		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	P18
		applicable, for the original study on which the present article is based	Line3

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

or of the terms only

BMJ Open

Hemoglobin A1c and Hearing Impairment: longitudinal analysis using a large occupational health check-up data of Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023220.R2
Article Type:	Research
Date Submitted by the Author:	31-Jul-2018
Complete List of Authors:	Nagahama, Satsue; Toho University Graduate School of Medicine, Department of Environmental and Occupational Health; All Japan Labor Welfare Foundation, Division of Occupational Health and Promotion Kashino, Ikuko; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Hu, Huanhuan; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Nanri, Akiko; Fukuoka Women's University, Department of Food and Health Sciences International College of Arts and Sciences Kurotani, Kayo; National Institutes of Biomedical Innovation, Health and Nutrition, National Institute of Health and Nutrition, Department of Nutritional Epidemiology and Shokuiku Kuwahara, Keisuke; Teikyo University, Graduate School of Public Health; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Dan, Masashi; All Japan Labor Welfare Foundation, Michikawa, Takehiro; National Institute for Environmental Studies, Environmental Epidemiology Section, Center for Environmental Health Sciences Akter, Shamima; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Mizoue, Tetsuya; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Mizoue, Tetsuya; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Murakami, Yoshitaka ; Toho University Graduate School of Medicine, Department of Medical statistics Nishiwaki, Yuji; Toho University Graduate School of Medicine, Department of Environmental and Occupational Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Diabetes and endocrinology, Ear, nose and throat/otolaryngology, Epidemiology
Keywords:	EPIDEMIOLOGY, Diabetes & endocrinology < INTERNAL MEDICINE, OCCUPATIONAL & INDUSTRIAL MEDICINE, Audiology < OTOLARYNGOLOGY

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Hemoglobin A1c and Hearing Impairment: longitudinal analysis using a large
2	occupational health check-up data of Japan
3	
4	Satsue Nagahama 1 2 3*, Ikuko Kashino 3, Huanhuan Hu 3, Akiko Nanri 4, Kayo
5	Kurotani 5, Keisuke Kuwahara 6 3, Masashi Dan 2, Takehiro Michikawa 7, Shamima
6	Akter 3, Tetsuya Mizoue 3, Yoshitaka Murakami 8, Yuji Nishiwaki 1
7	
8	1 Toho University Graduate School of Medicine, Department of Environmental and
9	Occupational Health, 5-21-16, Omorinishi, Otaku, Tokyo, 143-8540, Japan. Phone
10	+81-3-3762-4151(2403), Fax +81-3-5493-5416
11	E-mail: <u>satsue-n@umin.ac.jp</u>
12	;
13	2 All Japan Labor Welfare Foundation, Division of Occupational Health and Promotion,
14	6-16-11, Hatanodai, Shinagawa, Tokyo, 142-0064, Japan;
15	3 National Center for Global Health and Medicine, Department of Epidemiology and
16	Prevention, Center for Clinical Sciences, 1-21-1, Toyama, Shinjuku, Tokyo, Japan;
17	4 Fukuoka Women's University, Department of Food and Health Sciences International
18	College of Arts and Sciences, 1-1-1, Kasumigaoka, Higashiku, Fukuoka, Japan;
	1
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 of 38		BMJ Open
	19	5 National Institutes of Biomedical Innovation, Health and Nutrition, National Institute
	20	of Health and Nutrition, Department of Nutritional Epidemiology and Shokuiku, 1-23-1,
	21	Toyama, Shinjuku, Tokyo, Japan;
	22	6 Teikyo University, Graduate School of Public Health, 2-11-1, Kaga, Itabashi, Tokyo,
	23	Japan;
	24	7 Centre for Health and Environmental Risk Research, National Institute for
	25	Environmental Studies, Environmental Epidemiology Section, 16-2, Onogawa,
	26	Tsukubashi, Ibaraki, Japan;
	27	8 Toho University Graduate School of Medicine, Department of Medical statistics,
	28	5-21-16, Omorinishi, Otaku, Tokyo, Japan;
	29	*Correspondence to S. Nagahama.
	30	
	31	Word count 3.091
	32	Tables 2
	33	Figures 2
	55	
		2
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

34	Objectives The aim of this study was to determine whether hemoglobin A1c (HbA1c)
35	level is associated with the incidence of hearing impairment accounting for smoking
36	status and diabetic condition at baseline.
37	Methods Participants were 131,689 men and 71,286 women aged 30-65 years and free
38	of hearing impairment at baseline (2008) who attended Japanese occupational annual
39	health check-ups from 2008 to 2015. We defined low frequency hearing impairment at a
40	hearing threshold >30 dB at 1 kHz and high frequency at >40 dB at 4 kHz in the better
41	ear in pure-tone audiometric tests. HbA1c was categorized into 7 categories. The
42	association between HbA1c and hearing impairment was assessed using the Cox
43	proportional hazards model.
44	Results On 5 years' mean follow-up, high HbA1c was associated with high frequency
45	hearing impairment. In non-smokers, HbA1c \geq 8.0% was associated with high frequency
46	hearing impairment, with a multivariable hazard ratio (95% confidence interval)
47	compared with HbA1c 5.0-5.4% of 1.46 (1.10-1.94) in men and 2.15 (1.13-4.10) in
48	women. There was no significant association between HbA1c and hearing impairment
49	in smokers. A J-shaped association between HbA1c and high frequency hearing
50	impairment was observed for participants with diabetes at baseline. HbA1c was not
51	associated
	3

52	with low frequency hearing impairment among any participants.
53	Conclusions HbA1c \ge 8.0% of non-smokers and \ge 7.3% of participants with diabetes
54	was associated with high frequency hearing impairment. These findings indicate that
55	appropriate glycemic control may prevent diabetic-related hearing impairment.
56	
57	Strengths and limitations of this study
58	This study included a large number of participants, accounting for gender and smoking
59	status.
60	• A median follow-up period was 5 years.
61	 This study findings are limited to workers in Japan.
62	• We investigated whether HbA1c was associated with hearing impairment among
63	participants with diabetes at baseline.
64	• Information on noise exposure, ototoxic drug use, ear surgery, and ear infection was
65	not obtained.
	4
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

66 BACKGROUND

67	Patients with hearing impairment experience a range of complications, including
68	impaired quality of life, dementia, depression, loneliness, poor self-esteem and
69	functional disability (1-4). These complications have made this condition a social and
70	economic problem worldwide. More than 5% of the world population has hearing
71	impairment, and this is expected to increase with the aging of the population (5).
72	Although this bleak picture points to the importance of identifying preventable risk
73	factors for hearing impairment, such studies are in fact scarce.
74	Emerging evidence suggests that diabetes mellitus may be a risk factor for hearing
75	impairment. Meta-analyses of 13 cross-sectional studies showed that subjects with
76	diabetes had a 2-fold-increased risk of developing hearing impairment (odds ratio 2.15,
77	95%CI 1.72-2.68) (6). Diabetic hearing impairment is hypothesized to be due to
78	microvascular complications (7, 8). Diabetic hearing impairment may thus be prevented
79	by appropriate glycemic control, which has been shown to be effective for other
80	microvascular complications of diabetes, such as retinopathy, nephropathy and
81	neuropathy (9-12). Three studies have reported the association between hearing
82	impairment and hemoglobin A1c (HbA1c), an indicator for glycemic control (13-15).
83	One of these reported a positive dose-relationship between HbA1c and hearing
	5

84	impairment as defined using a pure-tone average threshold of mainly low frequencies
85	(15), while the other two reported that HbA1c was positively associated with high
86	frequency hearing impairment (13, 14). Nevertheless, no study has yet reported the
87	precise shape of the dose-relationship between HbA1c and high frequency hearing
88	impairment. Furthermore, no study has yet investigated whether HbA1c is associated
89	with hearing impairment among those with diabetes.
90	In Japan, a pure-tone audiometric test is mandatory in annual occupational health
91	check-ups (16). The large sample size this affords has enabled us to investigate the
92	dose-response relationship between HbA1c and hearing impairment, while accounting
93	for well-known risk factors of hearing impairment such as gender and smoking (17, 18).
94	The present study had two aims. The first aim was to investigate the association
95	between HbA1c and the incidence of hearing impairment using a large dataset from
96	annual occupational health check-ups in Japan, accounting for gender and smoking
97	status. The second aim was to determine whether HbA1c was associated with hearing
98	impairment among participants with diabetes.
99	
100	METHODS
101	Study population

Page 8 of 38

BMJ Open

ว
2
3
4
5
6
7
8
0
9 10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
25
26
20
37
38
39
40
41
42
43
44
45
75 76
40
4/
48
49
50
51
52
53
51
54
22
56
57
58
59
60

102	The present study was conducted using data from annual health check-ups of Japanese
103	workers. The All Japan Labor Welfare Foundation, a health service provider with
104	centers in Tokyo, Aomori, Nagano, Yamagata, Ibaraki, Gunma and Nagoya provided the
105	data from April 2008 through Dec 2015, allowing a maximum of 7 years of follow-up.
106	In Japan, annual health check-ups are mandatory for all employees and include a
107	hearing test under the Industrial Safety and Health Act. Nearly all employees attend a
108	health check-up every year. Participants were mainly Japanese employees but also
109	included a small number of their dependents, employers and foreign workers.
110	A total of 312,512 participants aged 30-65 years underwent a hearing test and HbA1c
111	test at baseline (between Apr 2008 and Mar 2009). Of these, we excluded participants
112	with hearing impairment at baseline (n=51,489). Given that diabetic patients with
113	complications may receive more intensive treatments, which may bias the association
114	between HbA1c and hearing impairment, we excluded participants with cardiovascular
115	disease and stroke (n=913). We further excluded participants who did not attend any
116	subsequent health examinations or hearing tests (n=48,618). After further exclusion of
117	8,517 participants with missing information on covariates (5,011 for smoking status,
118	5,152 for alcohol consumption, 1,815 for physical activity data, 5 for body mass index
119	(BMI), 9 for hypertension and 9 for dyslipidemia data; some participants had missing

120	data for more than one parameter), leaving 202,975 participants (131,689 men and
121	71,286 women) for analysis.
122	Ethics
123	We obtained written informed consent from each participant who attended the heath
124	check-up after April 2013. Before March 2013, we disclosed the purpose of our study
125	by posters and the participants had the opportunity to refuse the use of their data for the
126	study. This procedure conforms to the Japanese Ethical Guidelines for Medical and
127	Health Research Involving Human Subjects, where the obtaining consent may be
128	simplified for observational studies using existing data. The research protocol including
129	consent procedure was approved by the Ethics Committee of the Faculty of Medicine,
130	Toho University (No. 25017 and No.A16130) and the Ethics Committee of the National
131	Center for Global Health and Medicine (No. NCGM-G-001254-02).
132	Ascertainment of hearing impairment
133	Trained staff performed pure-tone air-conduction audiometry using an audiometer
134	(AA-57, RION Inc., Tokyo, Japan). Low frequency hearing impairment was defined as
135	failure to hear a pure-tone signal of 30dB at 1 kHz in the better ear, and high frequency
136	hearing impairment as failure to hear a pure-tone signal of 40dB at 4 kHz in the better
137	ear. These thresholds are recommended for use in annual health check-ups by Ministry
	8

1	
י ר	
2	
3	
4	
5	
ر م	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20	
21	
22	
25	
25	
24	
25	
26	
27	
28	
29	
30	
21	
31	
32	
33	
24	
34	
35	
36	
27	
57	
38	
39	
40	
-TU 1	
41	
42	
43	
41	
44	
45	
46	
Δ7	
т/ 40	
48	
49	
50	
51	
51	
52	
53	
54	
57	
22	
56	
57	
50	
20	
59	
60	

138	of Health, Labor and Welfare in Japan (16). Onset of hearing impairment was defined as
139	the day of the health check-up on which hearing impairment was first detected.
140	Data collection and measurements at baseline (between Apr 2008 and Mar 2009)
141	We used a self-administered questionnaire developed by the Ministry of Health, Labor
142	and Welfare for a specific health examination, namely the national health checkup
143	system focused on metabolic syndrome (19), to assess medical history, regular physical
144	activity (walking time <60 min/day or ≥60 min/day), smoking status (non-smoker, daily
145	smoker ≤20 cigarettes/day or >20 cigarettes/day), alcohol consumption (non-drinker, <1
146	go, 1 to <2 go or ≥ 2 go/day; one go of sake, a traditional Japanese beverage, is equal to
147	about 180 mL of 10-14% ethanol and contains about 23 g of ethanol) (20), and
148	self-reported diabetes (treatments with anti-diabetic medication or a self-reported
149	history of diabetes: yes or no). Job type was categorized as professional job,
150	management, office job, sales, service, telegraph, manufacturing, transportation and
151	other. Height was measured to the nearest 0.1 cm and weight to the nearest 0.1 kg. Body
152	mass index (BMI) was calculated as the weight in kilograms divided by the square of
153	height in metres and categorized into 4 groups (<18.5, 18.5-22.9, 23-29.9, \geq 30kg/m ²).
154	Blood pressure was measured in the sitting position using an automated
155	sphygmomanometer (HEM-907, Omron, Kyoto, Japan). Participants with high blood
	9

156	pressure (\geq 130 mmHg systolic or \geq 85 mmHg diastolic) received a second measurement
157	and the average was used for the analysis. Hypertension was defined by $\geq 140 \text{ mmHg}$
158	systolic, \geq 90 mmHg diastolic or the use of medication for hypertension. A venous blood
159	sample was collected and stored in a cooler at 4 °C for transportation to an external
160	laboratory (SRL, Tokyo, Japan). Triglyceride level was measured using an enzymatic
161	colorimetric test and high-density lipoprotein cholesterol (HDL-C) was determined
162	using a direct method. Dyslipidemia was defined by triglyceride ≥150 mg/dL (1.7
163	mmol/L) in men and women, HDL-C <40 mg/dL (1.04 mmol/L) in men and <50 mg/dL
164	(1.3 mmol/L) in women or use of medication for dyslipidemia. HbA1c was measured by
165	latex agglutination turbidimetry and converted to the National Glycohemoglobin
166	Standardization Program equivalent value (%) using the formula below, according to the
167	Japan Diabetes Society statement (21) :
168	HbA1c (%) = $1.02 \times$ HbA1c (Japan Diabetes Society) (%) + 0.25%
169	Diabetes was defined as FPG≥126mg/dL, HbA1c≥6.5%, or self-reported diabetes.
170	Statistical analysis
171	Participants were divided into 7 groups according to their HbA1c level at baseline
172	[<5.0% (31mmol/mol), 5.0-5.4% (31-36mmol/mol), 5.5-5.9% (37-41mmol/mol),
173	6.0-6.4% (42-46mmol/mol), 6.5-6.9% (48-52mmol/mol), 7.0-7.9% (53-63mmol/mol),
	10

174	\geq 8.0% (64 mmol/mol)]. The HbA1c group specific baseline characteristics of
175	participants were described as means (SD) for continuous variables and percentages for
176	categorical variables. Person-years was calculated from baseline to the onset of hearing
177	impairment, or the date of the last health check-up through Dec 2015 (whichever
178	occurred first). Crude incident rates of hearing impairment were shown in events per
179	1000 person-years. Survival analyses were performed using Cox regression to estimate
180	the hazard ratio (HR) with 95% confidence interval (CI) for the incidence of hearing
181	impairment across HbA1c categories, with 5.0-5.4% (31-36mmol/mol) as the reference
182	value. The analyses were stratified by sex because the interaction between hearing
183	impairments and sex was significant (p for interaction <0.001). Age-adjusted model
184	(model 1) and multiple-adjusted model (model 2), which included alcohol consumption,
185	physical activity, BMI, hypertension, dyslipidemia, self-reported diabetes and smoking
186	status were used for the analysis. Although smoking status itself was related to hearing
187	impairment in this study, the association between HbA1c and hearing impairment
188	differed according to smoking status (p for interaction <0.001). We therefore
189	additionally performed analyses according to combined HbA1c (7 groups) and smoking
190	status (non-smoker and current smoker), by considering HbA1c 5.0-5.4%
191	(31-36mmol/mol) and non-smoker as the reference category. We did not analyze
	11

Page 13 of 38

BMJ Open

1	
2	
3	
4	
5	
6	
0	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
55	
54	
55	
56	
57	
58	
59	
60	

192	women's smokers because of the small number of cases. To assess whether control of
193	HbA1c would reduce the incidence of hearing impairment in those with diabetes, we
194	elucidated the shape of the relationship between HbA1c and high frequency hearing
195	impairment among those with diabetes. We fitted restricted cubic splines models with
196	seven knots placed at the 1th, 5th, 25th, 50th, 75th, 95th, and 99th centiles as reference
197	values of HbA1c 6.6% (25th) (22). The HRs were adjusted for alcohol consumption,
198	physical activity, BMI, hypertension, dyslipidemia and smoking status. As a sensitivity
199	analysis, we further adjusted for job type in the main analyses (model 2) among
200	participants with this information (n=126,823). We tested the proportional hazards
201	assumption using Schoenfeld residuals. We found no significant deviations for any
202	covariate. P value of two-tailed test <0.05 was considered statistically significant. Trend
203	association was assessed by assigning ordinal numbers (0–6) to the HbA1c categories.
204	We calculated the p for the quadratic trend because it was a better fit for the data than
205	the simple linear model. All statistical analyses were performed using Stata version 12.1
206	(StataCorp, College Station, Texas, USA).
207	Patient and public involvement
208	No patient were involved in setting the research question or the outcome measures,
209	planning for the design of the study
	10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

RESULTS

211	Baseline characteristics by category of HbA1c are shown in Table 1. The mean age of
212	participants was 45 years for men and 47 years for women. Participants who had higher
213	HbA1c tended to be non-drinkers and to have higher BMI, hypertension, and
214	dyslipidemia in both men and women. Male participants with higher HbA1c tended to
215	be smokers consuming > 20 cigarettes per day.
216	In men, 4,621 developed high frequency hearing impairment with 661,937 person-years
217	(mean duration of follow-up was 5.0 years) and 1,311 developed low frequency hearing
218	impairment with 670,153 person-years (5.1 years). In women, 582 developed high
219	frequency hearing impairment with 345,312 person-years (4.8 years) and 1,207
220	developed low frequency hearing impairment with 344,057 person-years (4.8 years).
221	Table 2 shows the association between HbA1c and the incidence of hearing impairment.
222	In the multivariable-adjusted model, HbA1c showed a quadratic trend with the
223	incidence of high frequency hearing impairment in men (p for quadratic=0.007), and a
224	statistically marginal association in women (p for quadratic=0.08). HbA1c was not
225	associated with low frequency hearing impairment. Figure 1 shows the association
226	between HbA1c and high frequency hearing impairment with accounting for smoking
227	status [the interaction between HbA1c and smoking status (p for interaction <0.001)].
	13

Page 15 of 38

228	Compared to non-smokers with HbA1c 5.0-5.4% (31-36mmol/mol), non-smokers with
229	HbA1c \geq 8.0% (64 mmol/mol) showed an association with hearing impairment [HR
230	(95%CI) of 1.46 (1.11-1.92) in men and 2.36 (1.34-4.15) in women]. Although smokers
231	had higher HRs of hearing impairment than non-smokers, HbA1c level was not
232	associated with hearing impairment among smokers. Additional adjustments for job
233	type did not affect the results (Appendix 1).
234	Figure 2 shows the spline regression model of high frequency hearing impairment at
235	various HbA1c levels against a reference HbA1c level of 6.6% in participants with
236	diabetes at baseline (n=10,154). The relationship between HbA1c and the incidence of
237	hearing impairment was J-shaped, with the significant increase of HR for HbA1c \geq 7.2%.
238	
239	DISCUSSION
240	In this study, we found a quadratic trend between HbA1c and the incidence of
241	high frequency hearing impairment. In particular, HbA1c concentrations over 8.0% (64
242	mmol/mol) were associated with high frequency hearing impairment among
243	non-smokers. A J-shaped association between HbA1c and high frequency hearing
244	impairment was observed among participants with diabetes at baseline. Our findings
	14

indicate that appropriate glycemic control may prevent the incidence of diabetic hearingimpairment.

247	Our finding of a quadratic trend between HbA1c and hearing impairment is
248	supported by the results of two longitudinal studies. (13, 15) One of these reported an
249	odds ratio (95% CI) of high frequency hearing impairment per 1.0% increase in HbA1c
250	of 1.52 (1.03 to 2.23), albeit no statistical association between the three categories of
251	HbA1c and high frequency hearing impairment (13). The second reported that HbA1c
252	was positively associated with average hearing threshold, mainly among low
253	frequencies (15). The present study provides novel evidence that an HbA1c of 8.0% (64
254	mmol/mol) or above is associated with increased risk of high frequency hearing
255	impairment in non-smokers. Our findings are consistent with the work of Cruickshanks
256	et al., who reported that poor glycemic control, defined by a glycosylated hemoglobin
257	level, was associated with hearing impairment (23).
258	Additionally, we found that the J-shaped association between HbA1c and
259	hearing impairment remained even among participants with diabetes at baseline. This
260	result suggests that proper glycemic control may prevent diabetic-related hearing
261	impairment even in those with diabetes. Previous studies have also reported a J-shaped
262	association between HbA1c and diabetics complications, and noted that hypoglycemia
	15

263	might increase diabetic complications (24-26). More research is needed to determine a
264	suitable HbA1c level for glycemic targeting to prevent hearing impairment in diabetic
265	management.
266	We found that high frequency hearing impairment has a quadratic trend with
267	HbA1c among non-smokers but not smokers. Previous studies have reported an adverse
268	effect of smoking cigarettes on hearing impairment (23, 27, 28). It is plausible that the
269	effect of smoking cigarettes may be stronger than HbA1c and might mask the effect of
270	HbA1c. Further research is needed to confirm the joint effect of smoking and HbA1c on
271	hearing impairment.
272	The pathophysiology underlying high-HbA1c-associated hearing impairment is
273	unclear, which allows for speculation. One possible explanation is that
274	hyperglycemia-related microvascular complications lead to thickening of the cochlea
275	and vestibulopathy, and result in hearing impairment (7, 8, 29-33). Diabetic-related
276	hearing impairment has been mainly observed at high frequencies, suggesting that high
277	frequency-specific areas of the cochlea may be more fragile to ischemic changes due to
278	microvascular complications (34-38). This mechanism is supported by the J-shaped
279	association between HbA1c and hearing impairment observed in the present study, since
	16

Page 18 of 38

BMJ Open

3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
16
17
18
10
י רכי
∠∪ ว1
21
22
23
24
25
26
27
28
29
30
31
37
J∠ 22
22
34
35
36
37
38
39
40
41
42
43
44
45
45 46
-10 //7
4/ 40
48
49
50
51
52
53
54
55
56
57
58
50
29
00

280	previous studies also reported a J-shaped-association between HbA1c and diabetic
281	vascular complications (39, 40). Further studies to confirm this idea are required.
282	This study has several strengths. The large dataset allowed us to investigate the
283	association between HbA1c and hearing impairment with comprehensive adjustment for
284	covariates, and additionally, among participants with diabetes at baseline. Audiometry
285	to confirm hearing impairment was conducted by trained staff. Several limitations of the
286	study also need to be considered. First, though noise exposure is an important risk factor
287	on hearing impairment (41, 42), information on noise exposure was not available and
288	thus noise information was not considered in the analyses. The present study thus might
289	include the cofounding influence of noise exposure. However, a previous study reported
290	that the relationship between diabetes and hearing impairment was independent of this
291	variable (37). Moreover, in the present study, HbA1c level was associated with hearing
292	impairment even after accounting for job type in a sensitivity analysis. Second,
293	information on ototoxic drug use, ear surgery, and ear infection was not collected, and
294	we were therefore unable to exclude cases of hearing impairment due to these factors.
295	Third, blood pressure was measured once, followed by a second measurement if the first
296	systolic blood pressure \geq 130 mmHg systolic or diastolic blood pressure \geq 85 mmHg. All
297	participants didn't have the same evaluation of blood pressure. This may lead to

Page 19 of 38

1	
2	
- २	
1	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22 22	
23	
24	
25	
26	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
⊿2	
45 AA	
44	
4) 16	
46	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

298	misclassification of hypertension. Fourth, we did not account for gender or smoking
299	status in the association between HbA1c and hearing impairment for participants with
300	diabetes because of the small sample size. Fifth, the hearing test was only conducted at
301	1 kHz and 4 kHz. Hearing impairment at other frequencies could not therefore be
302	identified. Sixth, we cannot exclude the possibility of residual confounding and
303	confounding by unmeasured variables. Finally, the study participants were mainly
304	workers, and thus caution is required when generalizing our findings.
305	CONCLUSION
306	We found the quadratic trend between HbA1c and the incidence of high
307	frequency hearing impairment in non-smokers. The trend between HbA1c and hearing
308	impairment remained even among those with diabetes. These findings indicate that
309	diabetic-related hearing impairment may be prevented with appropriate glycemic
310	control. These findings warrant confirmation in interventional studies.
311	Abbreviations
312	HbA1c: hemoglobin A1c; BMI: body mass index; HR: hazard ratio; CI: confidence
313	interval
314	Acknowledgements

	BMJ Open
315	The authors would like to thank Dr Nobuo Yanagisawa and Dr Takeshi Kawaguchi for
316	coordinating the study.
317	Contributors
318	SN, TaM and IK designed study and drafted the manuscript. SN, HHH, KaK, AN and
319	KeK performed the data analysis. MD collected and interpreted the data. All authors
320	participated in interpretation of the findings, revised the paper critically for important
321	intellectual content and approved the final version to be published. YN and YM
322	provided administrative, technical and material support. TM and SA revised the work
323	critically for important intellectual content. SN and YN are guarantors.
324	Funding
325	This research was funded by All Japan Labor Welfare Foundation Research Fellowship.
326	Competing interests
327	SN is occupational physicians in All Japan Labor Welfare Foundation. All Japan Labor
328	Welfare Foundation had no role in the design, analysis or writing of this articles. All
329	other authors declare no competing financial interests.
330	Ethics approval
	19
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3		
4		
5 6 7	331	The research protocol was approved by the Ethics Committee of the Faculty of
8		
9	332	Medicine, Toho University and the Ethics Committee of the National Center for Global
10		
12	333	Health and Medicine.
13		
14	334	Data sharing statement
15		
17	335	No additional data are available
18	000	
19	0.00	
20	330	
22		
23		
24 25		
26		
27		
28		
30		
31		
32		
33 34		
35		
36		
3/		
39		
40		
41 42		
43		
44		
45		
40 47		
48		
49		
50 51		
52		
53		
54 55		
56		
57		20
58 50		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22 22
∠⊃ ⊃4
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
72

60

1 2

005

345

DC

337	Kelerences
338	1. Lin FR, Metter EJ, O'Brien RJ, Resnick SM, Zonderman AB, Ferrucci L. Hearing
339	loss and incident dementia. Arch Neurol. 2011;68(2):214-20.
340	2. Li CM, Zhang X, Hoffman HJ, Cotch MF, Themann CL, Wilson MR. Hearing
341	impairment associated with depression in US adults, National Health and Nutrition
342	Examination Survey 2005-2010. JAMA Otolaryngol Head Neck Surg.
343	2014;140(4):293-302.
344	3. Herbst KG, Humphrey C. Hearing impairment and mental state in the elderly living

at home. Br Med J. 1980;281(6245):903-5.

- 4. Wilson BS, Tucci DL, Merson MH, O'Donoghue GM. Global hearing health care: 346
- new findings and perspectives. Lancet. 2017;390(10111):2503-15. 347
- 5. WHO [Internet]. Deafness and hearing loss. 348
- http://www.who.int/mediacentre/factsheets/fs300/en. Accessed 11 Jan 2018. 349
- 6. Horikawa C, Kodama S, Tanaka S, Fujihara K, Hirasawa R, Yachi Y, et al. Diabetes 350
- and risk of hearing impairment in adults: a meta-analysis. J Clin Endocrinol Metab. 351

2013;98(1):51-8. 352

Page 23 of 38

BMJ Open

353	7. Fukushima H, Cureoglu S, Schachern PA, Paparella MM, Harada T, Oktay MF.
354	Effects of type 2 diabetes mellitus on cochlear structure in humans. Arch Otolaryngol
355	Head Neck Surg. 2006;132(9):934-8.
356	8. Oron Y, Elgart K, Marom T, Roth Y. Cardiovascular risk factors as causes for hearing
357	impairment. Audiol Neurootol. 2014;19(4):256-60.
358	9. Klein R, Klein BE, Moss SE. Relation of glycemic control to diabetic microvascular
359	complications in diabetes mellitus. Ann Intern Med. 1996;124(1 Pt 2):90-6.
360	10. Danne T, Weber B, Dinesen B, Mortensen HB. Threshold of HbA1c for the effect of
361	hyperglycemia on the risk of diabetic microangiopathy. Diabetes Care. 1996;19(2):183.
362	11. Li W, Katzmarzyk PT, Horswell R, Wang Y, Johnson J, Hu G. HbA1c and all-cause
363	mortality risk among patients with type 2 diabetes. Int J Cardiol. 2016;202:490-6.
364	12. 5. Glycemic Targets. Diabetes Care. 2016;39 Suppl 1:S39-46.
365	13. Michikawa T, Mizutari K, Saito H, Takebayashi T, Nishiwaki Y. Glycosylated
366	hemoglobin level is associated with hearing impairment in older Japanese: the
367	Kurabuchi Study. J Am Geriatr Soc. 2014;62(7):1231-7.
368	14. Kang SH, Jung DJ, Cho KH, Park JW, Lee KY, Do JY. Association Between HbA1c
369	Level and Hearing Impairment in a Nondiabetic Adult Population. Metabolic Syndrome
370	and Related Disorders. 2016;14(2):129-34.
	22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	23
388	Questionnaire.
387	20. Ministry of Health, Labour and Welfare (Japanese Page): Health guidance
386	Accessed 11 Jan 2018.
385	and Specific Health Guidance. http://www.mhlw.go.jp/english/wp/wp-hw3/dl/2-007.pdf.
384	19. Ministry of Health, Labour and Welfare (English Page): Specific Health Checkups
383	Composition Study. J Am Geriatr Soc. 2005;53(12):2119-27.
382	Race and sex differences in age-related hearing loss: the Health, Aging and Body
381	18. Helzner EP, Cauley JA, Pratt SR, Wisniewski SR, Zmuda JM, Talbott EO, et al.
380	2016;21 Suppl 1:10-5.
379	Women: Results from the Population-Based Rotterdam Study. Audiol Neurootol.
378	Goedegebure A. Contributing Determinants to Hearing Loss in Elderly Men and
377	17. Rigters SC, Metselaar M, Wieringa MH, Baatenburg de Jong RJ, Hofman A,
376	984. Accessed 11 Jan 2018.
375	http://www.japaneselawtranslation.go.jp/law/detail_main?re=01&ia=03&vm=02&id=1
374	Industrial Safety and Health, Article 44 Periodical Medical Examination, (iii).
373	16. Japan Industrial Safety and Health Association (English Page): Ordinance on
372	the incidence of hearing loss: a cohort study. Int J Epidemiol. 2016.
371	15. Kim MB, Zhang Y, Chang Y, Ryu S, Choi Y, Kwon MJ, et al. Diabetes mellitus and

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

389	http://www.mhlw.go.jp/seisakunitsuite/bunya/kenkou_iryou/kenkou/seikatsu/dl/hoken-p
390	rogram2_02.pdf. Accessed 11 Jan 2018.
391	21. Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanafusa T, Ito H, et al. International
392	clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society
393	to National Glycohemoglobin Standardization Program values. J Diabetes Investig.
394	2012;3(1):39-40.
395	22. Harrell F. Regression Modeling Strategies: With Applications to Linear Models,
396	Logistic and Ordinal Regression, and Survival Analysis: Springer International
397	Publishing; 2015.
398	23. Cruickshanks KJ, Nondahl DM, Dalton DS, Fischer ME, Klein BE, Klein R, et al.
399	Smoking, central adiposity, and poor glycemic control increase risk of hearing
400	impairment. J Am Geriatr Soc. 2015;63(5):918-24.
401	24. Carson AP, Fox CS, McGuire DK, Levitan EB, Laclaustra M, Mann DM, et al. Low
402	hemoglobin A1c and risk of all-cause mortality among US adults without diabetes. Circ
403	Cardiovasc Qual Outcomes. 2010;3(6):661-7.
404	25. Goto A, Noda M, Matsushita Y, Goto M, Kato M, Isogawa A, et al. Hemoglobin a1c
405	levels and the risk of cardiovascular disease in people without known diabetes: a
406	population-based cohort study in Japan. Medicine (Baltimore). 2015;94(17):e785.
	24

407	26. Snell-Bergeon JK, Wadwa RP. Hypoglycemia, diabetes, and cardiovascular disease.
408	Diabetes Technol Ther. 2012;14 Suppl 1:S51-8.
409	27. Barone JA, Peters JM, Garabrant DH, Bernstein L, Krebsbach R. Smoking as a risk
410	factor in noise-induced hearing loss. J Occup Med. 1987;29(9):741-5.
411	28. Nomura K, Nakao M, Morimoto T. Effect of smoking on hearing loss: quality
412	assessment and meta-analysis. Prev Med. 2005;40(2):138-44.
413	29. Lisowska G, Namyslowski G, Morawski K, Strojek K. Cochlear dysfunction and
414	diabetic microangiopathy. Scand Audiol Suppl. 2001(52):199-203.
415	30. Akinpelu OV, Ibrahim F, Waissbluth S, Daniel SJ. Histopathologic changes in the
416	cochlea associated with diabetes mellitusa review. Otol Neurotol. 2014;35(5):764-74.
417	31. Krogsboll LT, Jorgensen KJ, Gronhoj Larsen C, Gotzsche PC. General health checks
418	in adults for reducing morbidity and mortality from disease: Cochrane systematic
419	review and meta-analysis. BMJ (Clinical research ed.). 2012;345:e7191.
420	32. Kazmierczak H, Doroszewska G. Metabolic disorders in vertigo, tinnitus, and
421	hearing loss. Int Tinnitus J. 2001;7(1):54-8.
422	33. Nash SD, Cruickshanks KJ, Klein R, Klein BE, Nieto FJ, Huang GH, et al. The
423	prevalence of hearing impairment and associated risk factors: the Beaver Dam
424	Offspring Study. Arch Otolaryngol Head Neck Surg. 2011;137(5):432-9.
	25
	-

Page 27 of 38

425	34. Uchida Y, Sugiura S, Ando F, Nakashima T, Shimokata H. Diabetes reduces auditory
426	sensitivity in middle-aged listeners more than in elderly listeners: a population- based
427	study of age-related hearing loss. Med Sci Monit. 2010;16(7):Ph63-8.
428	35. Konrad-Martin D, Reavis KM, Austin D, Reed N, Gordon J, McDermott D, et al.
429	Hearing Impairment in Relation to Severity of Diabetes in a Veteran Cohort. Ear Hear.
430	2015;36(4):381-94.
431	36. Bainbridge KE, Hoffman HJ, Cowie CC. Risk factors for hearing impairment
432	among U.S. adults with diabetes: National Health and Nutrition Examination Survey
433	1999-2004. Diabetes Care. 2011;34(7):1540-5.
434	37. Bainbridge KE, Hoffman HJ, Cowie CC. Diabetes and hearing impairment in the
435	United States: audiometric evidence from the National Health and Nutrition
436	Examination Survey, 1999 to 2004. Ann Intern Med. 2008;149(1):1-10.
437	38. Kim JS, Lee H. Inner ear dysfunction due to vertebrobasilar ischemic stroke. Semin
438	Neurol. 2009;29(5):534-40.
439	39. Huang ES, Liu JY, Moffet HH, John PM, Karter AJ. Glycemic control,
440	complications, and death in older diabetic patients: the diabetes and aging study.
441	Diabetes Care. 2011;34(6):1329-36.
	·//
3	
----	--
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
25	
24	
25	
26	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
54	
55	
22	
50	
5/	
20	
59	
60	

442	40. Ostgren CJ, Sundstrom J, Svennblad B, Lohm L, Nilsson PM, Johansson G.
443	Associations of HbA1c and educational level with risk of cardiovascular events in
444	32,871 drug-treated patients with Type 2 diabetes: a cohort study in primary care.
445	Diabet Med. 2013;30(5):e170-7.
446	41. Lie A, Skogstad M, Johannessen HA, Tynes T, Mehlum IS, Nordby KC, et al.
447	Occupational noise exposure and hearing: a systematic review. Int Arch Occup Environ
448	Health. 2016 Apr;89(3):351-72.
449	42. Henderson D, Bielefeld EC, Harris KC, Hu BH. The role of oxidative stress in
450	noise-induced hearing loss. Ear Hear. 2006 Feb;27(1):1-19.
451	
452	

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	י כ
1	2 2
1	ך ע
1	4 5
1	د د
1	0
1	/
	8
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1
3	2
3	3
3	4
ך 2	5
ך 2	6
2	7
2	/ Q
נ כ	0 0
د ۸	9 0
4	1
4	ן ר
4	2
4	3
4	4
4	5
4	6
4	7
4	8
4	9
5	0
5	1
5	2
5	3
5	4
5	5
5	6
5	7
5	8

59

60

Table I Baseline char	acteristics c	of study pa	rticipants a	iccording t	$O HbA_{1c}$ (n	=202,975)	•	
			H	$DA_{1c}(\%)$ (1	nmol/mol)	<i></i>		
	Overall	<5.0 (<31)	5.0-5.4 (31-36)	5.5-5.9 (37-41)	6.06.4 (42-46)	6.5-6.9 (48-52)	7.0-7.9 (53-63)	≥8 (≥64)
Men								
n	131,689	10,701	53,839	50,957	8,995	2,488	2,224	2,485
Age (years)*	44.6 (9.1)	40.9 (8.2)	42.6 (8.6)	45.7 (9.0)	49.6 (8.6)	51.7 (7.9)	51.6 (7.8)	49.2 (8.2)
Walking time, ≥60 min/day (%) Smoking status (%)	16	16	17	17	15	15	16	13
Non-smoker	45.15	44	44	46	47	50	46	40
≤ 20 cigarettes/day	37.04	39	39	36	34	31	32	35
Daily consuming >20 cigarettes/day	17.8	17	17	18	19	19	22	25
consumption (%)								
Non-drinker	26	19	24	29	31	30	33	36
Drinker <1 go/day [†]	35	32	35	36	34	34	30	32
Drinker 1 to <2 go/day [†]	26	30	27	25	25	25	26	22
Drinker ≥ 2 go/day [†]	12	19	13	10	10	11	11	10
Self-reported diabetes (%) [‡]	2.3	0.07	0.10	0.4	4.6	22.4	41.1	37.3
BMI (kg/m2)*	23.8 (3.5)	22.6 (2.9)	23.2 (3.1)	24.0 (3.5)	25.4 (4.0)	26.0 (4.2)	26.3 (4.3)	26.4 (4.5)
Hypertension (%) [§] Dyslipidemia (%) [†] Women	28 39	21 29	22 33	29 41	44 54	57 59	57 60	53 65
n	71,286	5,880	28,277	29,741	5,286	890	618	594
Age (years)*	47.1	41.5	44.6	49.0	52.6	53.9	53.9	52.0
Walking time >60	(9.0)	(7.0)	(8.0)	(8.0)	(7.0)	(7.2)	(7.2)	(7.0)
min/day (%)	12	11	11	12	13	12	13	11
Non-smoker	80	71	77	83	86	86	83	77
Daily consuming <20 cigarettes/day	19	26	21	16	13	13	16	22
Daily consuming >20 cigarettes/day Alcohol	1.4	2.5	1.5	1.2	1.2	1.1	1.5	1.9
consumption (%)								
Non-drinker	60	45	56	65	70	74	73	78
Drinker <1 go/day [†]	31	36	34	29	26	22	22	19
Drinker 1 to <2 go/day [†]	6.8	14.4	7.8	5.0	3.8	3.9	3.7	2.7
Drinker ≥ 2 go/day	1.7	5.3	1.9	1.0	0.5	0.6	0.5	0.7
Self-reported diabetes (%) [‡]	1.2	0.05	0.03	0.1	2.5	17.4	38.2	47.5
BMI (kg/m2)*	22.3 (3.6)	21.2 (2.9)	21.6 (3.2)	22.5 (3.7)	23.9 (4.3)	25.5 (4.7)	26.4 (4.8)	26.6 (4.6)
Hypertension (%) ⁸ Dyslipidemia (%) ¹	19	11	14	21	34	52 54	59	53
	£202.050 -				<u> </u>		2000	57

calir T T1 A 1 1 202 07

Longitudinal survey of 202,950 examinees in All Japan Labor Welfare Foundation, Japan, 2008.

* Mean (SD) One *go* contains ~23g of ethanol.

^{*}Self-reported diagnosis of diabetes or receiving medication.

⁸ Systolic blood pressure \geq 140mmHg, diastolic blood pressure \geq 90 mmHg or receiving medication.

 $^{\rm l}$ Triglyceride level $\geq 150 \text{mg/dL}$ (1.7mmol/L), high-density lipoprotein cholesterol level $<\!40$ mg/dL (1.04 mmol/L) in men and $<\!50$ mg/dL (1.3 mml/L) in women or receiving medication.

		HbA _{1c} (%) (mmol/mol)							
		<5.0 (<31)	5.0-5.4 (31-36)	5.5-5.9 (37-41)	6.06.4 (42-46)	6.5-6.9 (48-52)	7.0-7.9 (53-63)	≥8 (≥64)	P for quadratic
Low	frequency								
Men	Person-year	54,055	275,953	261,290	44,807	11,798	10,637	11,613	
	No. cases	84	447	548	122	45	26	39	
	Model 1	1.15 (0.91 to 1.45)	1.00	0.98 (0.86 to 1.11)	0.94 (0.77 to 1.15)	1.11 (0.81 to 1.51)	0.73 (0.49 to 1.08)	1.22 (0.88 to 1.70)	0.15
	Model 2	1.11 (0.88 to 1.40)	1.00	1.00 (0.88 to 1.14)	0.98 (0.79 to 1.20)	1.16 (0.84 to 1.60)	0.75 (0.49 to 1.15)	1.26 (0.88 to 1.80)	0.27
Women	Person-year	28,447	137,761	143,295	25,083	4,136	2,760	2,576	
	No. cases	65	415	553	133	18	14	9	
	Model 1	1.04 (0.80 to 1.35)	1.00	0.90 (0.79 to 1.03)	0.94 (0.77 to 1.14)	0.71 (0.44 to 1.14)	0.86 (0.51 to 1.48)	0.68 (0.35 to 1.31)	0.79
	Model 2	1.04 (0.80 to 1.35)	1.00	0.91 (0.80 to 1.03)	0.93 (0.76 to 1.14)	0.67 (0.41 to 1.10)	0.77 (0.43 to 1.38)	0.57 (0.28 to 1.19)	0.51
High	frequency								
Men	Person-year	53,617	273,025	257,812	44,093	11,621	10,345	11,424	
	No. cases	280	1,610	1,941	416	116	128	130	
	Model 1	1.05 (0.92 to 1.19)	1.00	0.98 (0.91 to 1.04)	0.91 (0.82 to 1.02)	0.82 (0.67 to 0.99)	1.05 (0.88 to 1.26)	1.15 (0.96 to 1.38)	0.003
	Model 2	1.03 (0.90 to 1.17)	1.00	0.99 (0.92 to 1.06)	0.93 (0.83 to 1.03)	0.84 (0.69 to 1.02)	1.08 (0.89 to 1.32)	1.18 (0.97 to 1.43)	0.007
Women	Person-year	28,520	138,232	143,882	25,246	4,124	2,753	2,555	
	No. cases	23	169	277	67	18	13	15	
	Model 1	1.02 (0.66 to 1.58)	1.00	1.00 (0.83 to 1.22)	0.97 (0.73 to 1.29)	1.43 (0.88 to 2.34)	1.62 (0.92 to 2.86)	2.41 (1.42 to 4.10)	0.03
	Model 2	1.03 (0.66 to 1.60)	1.00	0.97 (0.80 to 1.17)	0.86 (0.64 to 1.16)	1.17 (0.70 to 1.95)	1.24 (0.67 to 2.29)	1.78 (0.95 to 3.34)	0.08

Model 1: Adjusted for age.

Model 2: Adjusted for age, walking time, smoking status, alcohol consumption, self-reported diabetes, BMI, hypertension and hyperlipidemia.

BMJ Open

2	
3	
5 454 Fig1. The association between HbA1c and hearing impairment of high frequency stratified by smoking stat	us.
6 7 455 Footnote; Results obtained by multivariable Cox regression. The reference value was 5.0-5.4% of HbA1c i	n
8 456 non-smoker. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 2	3-29.9, or
9 $457 \ge 30.0 \text{ kg/m2}$, alcohol consumption (non-drinker, drinker consuming <1, 1 to <2, or ≥ 2 go of Japanese sa	ke
10 11 458 contains approximately 23g of ethanol), walking time (<60, or \geq 60 min/day), self-reported diabetes, hypert	ension
12 459 (systolic blood pressure \geq 140mmHg, diastolic blood pressure \geq 90 mmHg or receiving medication), and	
13 14 460 hyperlipidemia (triglyceride level ≥ 150 mg/dL, high-density lipoprotein cholesterol level <40 mg/dL or reco	eiving
15 461 medication).	C
16	
17	
19	
20	
21	
23	
24	
25	
27	
28	
30	
31	
32	
33	
35	
36	
37 38	

Fig 2. Adjusted hazard ratio of high frequency hearing impairment among participants with diabetes at baseline (n=10,154).

Footnote; Results obtained by multivariable Cox regression with restricted cubic splines with seven knots (p1, p5, p25, p50, p75, p95 and p99). The reference value was 6.6% (p25) of HbA1c. The continuous line presents hazard ratios and the dashed line presents 95% confidence intervals. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 23-29.9, or \geq 30.0 kg/m2), smoking status (non-smoker, smoker consuming \leq 20, the status of the status or > 20 cigarettes per day), alcohol consumption (non-drinker, drinker consuming <1, 1 to <2, or \geq 2 go of Japanese sake contains approximately 23g of ethanol), walking time (<60, or ≥60 min/day), hypertension (systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90 mmHg or receiving medication), and hyperlipidemia (triglyceride level ≥150mg/dL, high-density lipoprotein cholesterol level <40 mg/dL in men and <50 mg/dL in women or receiving medication).

Fig1. The association between HbA1c and hearing impairment of high frequency stratified by smoking status.

Footnote; Results obtained by multivariable Cox regression. The reference value was 5.0-5.4% of HbA1c in non-smoker. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 23-29.9, or ≥ 30.0 kg/m2), alcohol consumption (non-drinker, drinker consuming <1, 1 to < 2, or ≥ 2 go of Japanese sake contains approximately 23g of ethanol), walking time (<60, or ≥60 min/day), self-reported diabetes, hypertension (systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90 mmHg or receiving medication), and hyperlipidemia (triglyceride level ≥150mg/dL, high-density lipoprotein cholesterol level <40 mg/dL or receiving medication).

84x73mm (300 x 300 DPI)

Fig 2. Adjusted hazard ratio of high frequency hearing impairment among participants with diabetes at baseline (n=10,154).

Footnote; Results obtained by multivariable Cox regression with restricted cubic splines with seven knots (p1, p5, p25, p50, p75, p95 and p99). The reference value was 6.6% (p25) of HbA1c. The continuous line presents hazard ratios and the dashed line presents 95% confidence intervals. The model was adjusted for age (year, continuous), sex, body mass index (<18.5, 18.5-22.9, 23-29.9, or ≥ 30.0 kg/m2), smoking status (non-smoker, smoker consuming ≤ 20, or > 20 cigarettes per day), alcohol consumption (non-drinker, drinker consuming <1, 1 to < 2, or ≥ 2 go of Japanese sake contains approximately 23g of ethanol), walking time (<60, or ≥60 min/day), hypertension (systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90 mmHg or receiving medication), and hyperlipidemia (triglyceride level ≥150mg/dL, high-density lipoprotein cholesterol level <40 mg/dL in men and <50 mg/dL in women or receiving medication).

84x73mm (300 x 300 DPI)

 BMJ Open

					HbA _{1c} (%)	(mmol/mol)			
		<5.0 (<31)	5.0-5.4 (31-36)	5.5-5.9 (37-41)	6.06.4 (42-46)	6.5-6.9 (48-52)	7.0-7.9 (53-63)	≥8 (≥64)	P for quadratic
Men	Person-year	44,265	227,740	215,647	36,368	9,184	8,148	8,888	
	No.cases	229	1,345	1,535	329	91	99	100	
	non-smoker	0.94 (0.73 to 1.20)	1.00	0.93 (0.82 to 1.05)	0.89 (0.73 to 1.07)	0.68 (0.48 to 0.96)	1.10 (0.80 to 1.53)	1.37 (1.00 to 1.88)	0.01
	smoker	1.06 (0.89 to 1.26)	1.00	0.95 (0.86 to 1.05)	0.91 (0.77 to 1.07)	1.00 (0.76 to 1.31)	1.10 (0.84 to 1.44)	1.04 (0.79 to 1.37)	0.23
Women	Person-year	22,749	110,979	114,327	19,601	3,143	2,062	1,813	
	No.cases	19	140	214	48	15	11	13	
	non-smoker	1.11 (0.65 to 1.91)	1.00	0.92 (0.72 to 1.18)	0.88 (0.61 to 1.26)	1.28 (0.69 to 2.35)	1.47 (0.73 to 2.94)	2.83 (1.53 to 5.24)	0.005

Appendix 1. The association between baseline HbA_{1c} and Incidence of high frequency hearing impairment (n=126,823).

Adjusted for age, walking time, alcohol consumption, self-reported diabetes, BMI, hypertension, hyperlipidemia and job type.

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page number
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	P1
		abstract	Linel
		(b) Provide in the abstract an informative and balanced summary of what	P3 Line31,
		was done and what was found	P4 Line51
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	P5 Line64- 79
Objectives	3	State specific objectives, including any prespecified hypotheses	P6 Line83-
Madha da			00
Methods Stada darian	4	Descriptions along the off the design and a in the second	D7 L :
Study design	4	Present key elements of study design early in the paper	P/Line90
Setting	5	Describe the setting, locations, and relevant dates, including periods of	P / Line90-
D (1) (1)	6	recruitment, exposure, follow-up, and data collection	10/
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods	P/Line99-
		of selection of participants. Describe methods of follow-up	108
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale for	
		the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number	
		of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	P8
		and effect modifiers. Give diagnostic criteria, if applicable	Line118-
			155
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	Р9
measurement		assessment (measurement). Describe comparability of assessment methods	Line143-
		if there is more than one group	153
Bias	9	Describe any efforts to address potential sources of bias	P15
			Line271-
			278.
			Line282
Study size	10	Explain how the study size was arrived at	
Ouantitative variables	11	Explain how quantitative variables were handled in the analyses. If	Р9
		applicable, describe which groupings were chosen and why	Line127-
			143
Statistical methods	12	(a) Describe all statistical methods including those used to control for	P10
_ answear memorious	12	confounding	Line157-
			193
		(b) Describe any methods used to examine subgroups and interactions	D11
		(o) reserve any memous used to examine subgroups and interactions	L_{11}
			Line1/3-

BMJ Open

1			184
3		(c) Explain how missing data were addressed	P7
4		(c) <u>- p</u>	Line105-
5			107
6		(d) Cohort study—If applicable, explain how loss to follow-up was	107
7		addressed	
8		Case-control study_If applicable, explain how matching of cases and	
10		controls was addressed	
11		Cross-sectional study—If annlicable describe analytical methods taking	
12		cross-sectional statuy—in applicable, describe analytical methods taking	
13		(a) Describe any consistivity analyzes	D12
14		(<u>e</u>) Describe any sensitivity analyses	F12
15			Line185-
10			187
18	Continued on next page		
19			
20			
21			
22			
25 24			
25			
26			
27			
28			
29			
30 31			
32			
33			
34			
35			
36			
3/			
39			
40			
41			
42			
43			
44 45			
45			
47			
48			
49			
50			
51			
52 53			
54			
55			
56			
57			
58			
59 60	For peer revie	w only - http://bmjopen ² bmi.com/site/about/quidelines.xhtml	
00	. or peer revie		

2	
2	
3	
4	
5	
~	
6	
7	
, ,	
8	
9	
10	
11	
12	
13	
15	
14	
15	
15	
16	
17	
17	
18	
10	
19	
20	
21	
21	
22	
22	
23	
24	
25	
25	
26	
27	
27	
28	
20	
29	
30	
21	
31	
32	
22	
33	
34	
54	
35	
36	
50	
37	
38	
50	
39	
∆∆	
-10	
41	
Δ٦	
72	
43	
ДЛ	
-+-+	
45	
46	
40	
47	
10	
40	
49	
50	
50	
51	
г. г.	
52	
53	
54	
55	
56	
57	
5,	
58	
59	
~~	
60	

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	Table1,2,
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	Fig2
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	P11
			Line178
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	P12
data		information on exposures and potential confounders	Line196-
			200,
			Table1
		(b) Indicate number of participants with missing data for each variable of interest	P7
			Line1001-
			109 D12
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	P12
			Line201-
Outcome data	15*	Calendaria de Depart mumbers of outcome quanto an summers massing quantime	206 D12
Outcome data	15*	<i>Conort study</i> —Report numbers of outcome events or summary measures over time	P12 Line200
			206
		Case control study. Depart numbers in each avecause actogory, or summers manufactor	200
		cuse-control study—Report numbers in each exposure category, of summary measures	
		Cross sectional study Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and if applicable confounder-adjusted estimates and	P13
Widin results	10	(a) Give unadjusted estimates and, it applicable, comounder-adjusted estimates and their precision (eq. 95% confidence interval). Make clear which confounders were	Line215
		adjusted for and why they were included	Eme
		(b) Report category boundaries when continuous variables were categorized	P10
			Line158-
			161
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity	P14
		analyses	Line218-
			223
Discussion			
Key results	18	Summarise key results with reference to study objectives	P14
2			Line225-
			231
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	P17
		imprecision. Discuss both direction and magnitude of any potential bias	Line271-
			284
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	P17
		multiplicity of analyses, results from similar studies, and other relevant evidence	Line285-
			290
Generalisability	21	Discuss the generalisability (external validity) of the study results	P17
			Lino284

For peer review only - http://bmjopen?bmj.com/site/about/guidelines.xhtml

Other information					
Funding	22	Give the source of funding and the role of the funders for the present study and, if	P18		
		applicable, for the original study on which the present article is based	Line3		

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

or of the terms only