

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The impact of body mass index on survival of medical patients with sepsis: a prospective cohort study in a university hospital in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-021979
Article Type:	Research
Date Submitted by the Author:	29-Jan-2018
Complete List of Authors:	Zhou, Qingtao; Peking University Third Hospital, Department of pulmonary and critical care medicine Wang, Meng; Peking University Third Hospital, Department of pulmonary and critical care medicine Li, Shuo; Peking University Third Hospital, Emergency Department Zhang, Jing; Peking University Third Hospital, Department of pulmonary and critical care medicine Ma, Qingbian; Peking University Third Hospital, Emergency Department Ding, Yanling; Peking University Third Hospital, Emergency Department Ge, Hongxia; Peking University Third Hospital, Emergency Department Shen, Ning; Peking University Third Hospital, Emergency Department Shen, Ning; Peking University Third Hospital, Department of pulmonary and critical care medicine Zheng, Yaan; Peking University Third Hospital, Emergency Department Sun, Yongchang; Peking University Third Hospital, Emergency Department of pulmonary and critical care medicine
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, INFECTIOUS DISEASES, THORACIC MEDICINE

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3	1	The impact of body mass index on survival of medical patients with sepsis: a
4	T	The impact of body mass much on survival of medical patients with sepsis. a
5	_	
6	2	prospective cohort study in a university hospital in China
7		
8	3	
9		
10	Λ	Qingtao Zhou ¹ , Meng Wang ¹ , Shuo Li ² , Jing Zhang ¹ , Qingbian Ma ² , Yanling Ding ¹ ,
11	4	Qingtao Zhou, Meng wang, Shuo Li, Jing Zhang, Qingolan Ma, Tahinig Ding,
12		
13	5	Hongxia Ge ² , Ning Shen ¹ , Yaan Zheng ² , Yongchang Sun ^{1*}
14 15		
16	6	
17	Ū	
18	_	¹ Department of Pulmonary and Critical Care Medicine, Peking University Third
19	7	Department of Pulmonary and Critical Care Medicine, Peking University Inird
20		
21	8	Hospital, Beijing, China.
22		
23	9	² Emergency Department, Peking University Third Hospital, Beijing, China.
24	5	Entergency Department, i enting entreisity rinte riospital, Deljing, entita.
25		
26	10	
27		
28	11	*Corresponding author: Yongchang Sun, Department of Respiratory and Critical
29		
30	12	Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian
31	12	Care Medicine, Teking Oniversity Third Hospital, 49 North Garden Road, Hardian
32		
33	13	District, Beijing 100191, P R China. Email: suny@bjmu.edu.cn
34		
35	14	
36		
37	15	
38 39	15	
40		
40	16	
42		
43	17	
44		
45	18	
46	10	
47		
48	19	
49		
50	20	
51		
52	21	
53	6 1	
54		
55	22	
56		
57		1
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BMJ Open
23	Abstract
24	Objective To evaluate the impact of body mass index (BMI) on survival of a Chinese
25	cohort of medical patients with sepsis.
26	Design A single-center prospective cohort study conducted from May 2015 to April
27	2017.
28	Setting A tertiary care university hospital in China.
29	Participants 178 patients with sepsis admitted to the medical intensive care unit (ICU)
30	were included.
31	Main outcome measures The primary outcome was 90-day mortality. The secondary
32	outcomes were in-hospital mortality, length of ICU stay, and length of hospital stay.
33	Results The median age (interquartile range) was 78 (66-84) years and the majority of
34	patients (77.0%) were older than 65 years. The 90-day mortality was 47.2%. The
35	in-hospital mortality was 41.6%, and the length of ICU stay and hospital stay were 12
36	(5-22) and 15 (9-28) days, respectively. Compared with in-hospital survivors,
37	non-survivors had significantly lower BMI and PaO_2/FiO_2 (both p < 0.05), and higher
38	lactate, bilirubin, INR, sequential organ failure assessment (SOFA) score, and
39	APACHE II score (all $p < 0.05$). Those with healthcare-acquired infections,
40	hypotension, oliguria, septic shock, and intubation were also at increased risk of death
41	(all $p < 0.05$). Cox proportional hazard regression analysis identified that sequential
42	organ failure assessment (SOFA) score (HR = 1.229, $p < 0.001$), APACHE II score
43	(HR = 1.050, $p < 0.001$) and BMI (HR = 0.940, $p = 0.029$) were all independent
44	predictors of the 90-day mortality. Patients were divided into four groups based on
	2
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

45	BMI (underweight, normal, overweight, and obese). Differences in survival among
46	the four groups were demonstrated by Kaplan-Meier survival analysis ($p = 0.008$),
47	with the underweight patients showing a lower survival rate.
48	Conclusions SOFA score, APACHE II score and BMI were independent factors
49	associated with survival in a Chinese cohort of medical patients with sepsis, while
50	underweight patients were at higher risk of death.
51	
52	Key words: Sepsis; Septic shock; Body mass index; Critical care; Mortality
53	
54	Strengths and limitations of this study
55	Our prospective observational cohort study was focused on medical patients with
56	sepsis.
57	The clinical characteristics and clinical outcomes of medical patients with sepsis were
58	analysed in a university hospital in China.
59	The impact of BMI on survival of medical patients with sepsis was evaluated.
60	Our analyses were limited by the use of weight ascertained at ICU admission, rather
61	than the patient's true outpatient weight.
62	
63	
64	
65	
66	
	3

3
4
5
6
_
7
8
9
10
11
12
13
14
15
16
17 18
18
19
20
21
22
22
23 24
24 25
25
26
27
28
29
30
31
32
33
34
35
36 37
38
37 38 39
40
41
42
42 43
45
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

1 2

67 Introduction

68	Sepsis is a major cause of morbidity and mortality worldwide ^[1] . Of these
69	patients, half are treated in the intensive care unit (ICU) ^[2] . In a national
70	population-based study of sepsis in Spain, medical diagnostic categories were the
71	majority of patients who developed sepsis, while only 26% of surgical patients
72	developed sepsis ^[3] . Many studies have analyzed the characteristics and clinical
73	outcomes of surgical patients with sepsis but few of these have focused on medical
74	patients.
75	Body mass index (BMI) is a simple index of weight-for-height that is commonly
76	used to classify whether adults are underweight, overweight and obese ^[4] . Several
77	studies have examined the effects of BMI on mortality with conflicting conclusions.
78	Lower mortality in the obese has been observed in some studies ^[5-9] , but some
79	researchers believe that the true paradox may lie in the variations in sepsis
80	interventions, such as the administration of resuscitation fluids and antimicrobial
81	therapy ^[6] . In other studies, morbidly obese and underweight patients have been
82	shown to be associated with higher mortality $^{[10,11]}$. Thus, the impact of BMI on
83	survival of patients with sepsis is still controversial.
84	As the relationship between BMI and clinical outcomes of sepsis is complex,
85	which may be related partly to differences in patient characteristics, we therefore set
86	out to evaluate prospectively the impact of BMI on survival in a cohort of medical
87	patients with sepsis admitted to the medical ICU in a university hospital.
88	

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12 13 14 15 16	
11	
14	
15	
16	
17	
18	
19 20	
20	
21	
22	
23	
2/	
24 25 26	
25	
26	
27	
28	
29	
29 30	
31	
32	
33	
22	
34	
35 36	
36	
37	
37 38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

89 **Patients and Methods**

90 Design

91 This was a prospective cohort study, which was conducted in the medical ICU of

a university-affiliated urban teaching hospital from May 2015 to April 2017.

93 Subjects

94 Hospitalized patients admitted to the medical ICU with sepsis acquired in the 95 community or in a hospital were eligible for the study if they met any of the following criteria of severe sepsis ^[12]: (1) sepsis-induced hypotension, (2) lactate above upper 96 laboratory level limits, (3) urine output <0.5 mL Kg⁻¹ h⁻¹ for more than 2 h despite 97 adequate fluid resuscitation, (4) acute lung injury with Pao₂/Fio₂<250 in the absence 98 of pneumonia as infection source, (5) acute lung injury with $Pao_2/Fio_2 < 200$ in the 99 100 presence of pneumonia as infection source, (6) creatinine >2.0 mg/dL (176.8 μ mol/L), (7) bilirubin >2mg/dL (34.2 μ mol/L), (8) platelet count <100,000 μ L, and (9) 101 coagulopathy (international normalized ratio >1.5). 102

Patients were excluded from the study if they met one of the following criteria: (1) the patient had sepsis that required surgical treatment, or was caused by a surgical procedure related infection, (2) age <18 years, (3) the patient had a positive HIV antibody titer or had known/suspected tuberculosis at baseline, (4) expected lifespan <3 months due to severe pre-existing comorbidities, (5) active Do Not Resuscitate or Do Not Intubate order, and (6) pregnant.

109 All patients accepted treatment according to the international guidelines for 110 management of sepsis and septic shock ^[12,13]. We collected the following

2	
3 4	
5	
6 7	
8	
9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
21	
22 23	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
34	
35 36	
37	
38 39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
55	
56 57	
58	
59 60	
00	

1

111	demographic and clinical data: patient's gender, age, weight, height, primary site of
112	infection, community-acquired or hospital-acquired infection, hypotension, lactate
113	level, oliguria, PaO ₂ /FiO ₂ , serum creatinine, total bilirubin, platelets, international
114	normalized ratio (INR), Glasgow coma scale, SOFA score, acute physiology and
115	chronic health evaluation (APACHE) II score, septic shock, non-invasive ventilation,
116	intubation, positive blood culture, length of ICU stay, and length of hospital stay.
117	Those who survived to discharge were followed for at least 90 days.
118	BMI is defined as the weight in kilograms divided by the square of the height in
119	meters (kg/m ²). Using the World Health Organization (WHO) criteria for designation
120	of BMI ^[4] , patients were classified as underweight (BMI < 18.50 kg/m^2), normal
121	weight (BMI = 18.50 to 24.99 kg/m ²), overweight (BMI = 25.0 to 29.99 kg/m ²), and
122	obese (BMI \geq 30.0 kg/m ²).
123	obese (BMI \geq 30.0 kg/m ²). Outcomes
124	The primary outcome was 90-day mortality, while the secondary outcomes were
125	in-hospital mortality, length of ICU stay, and length of hospital stay.
126	Statistical analysis
127	Continuous variables were expressed as median (interquartile range) and
128	categorical variables as numbers (%). Clinical data were compared among the
129	in-hospital survivors and non-survivors. Continuous variables were compared using
130	the non-parametric Mann-Whitney U test, and categorical variables were compared
131	using the Chi squared test. Cox proportional hazard regression analysis was
132	undertaken to assess the factors associated with 90-day mortality. The variables

BMJ Open

13	significantly associated with 90-day non-survival in the univariate analysis were used
134	in the Cox proportional hazard regression analysis.
13	Patients were divided into four groups based on BMI (underweight, normal,
13	overweight, and obese). Clinical data were compared between the four groups, where
13	continuous variables were compared using the non-parametric Kruskal-Wallis H test,
13	and categorical variables were compared using the Chi squared test. Kaplan-Meier
13	survival curves were constructed to show the survival probabilities at day-90
14	according to BMI classification, and compared using the log rank test.
14	All analyses were conducted using SPSS, version 22.0 (IBM, Armonk, NY,
14	2 USA). A p value <0.05 was considered significant.
14.	3
14	A Results
14- 14:	
	In total, 178 medical patients with sepsis were included in this study, with male
14	In total, 178 medical patients with sepsis were included in this study, with male patients accounting for 65.2% (n=116). The median age (interquartile range) was 78
14: 14:	In total, 178 medical patients with sepsis were included in this study, with male patients accounting for 65.2% (n=116). The median age (interquartile range) was 78 (66-84) years, and most patients were at least 65 years old (137/178 cases, 77.0%).
14: 14: 14	In total, 178 medical patients with sepsis were included in this study, with male patients accounting for 65.2% (n=116). The median age (interquartile range) was 78 (66-84) years, and most patients were at least 65 years old (137/178 cases, 77.0%). The most common primary site of infection was the lung (131 cases, 73.6%),
14: 14: 14: 14:	In total, 178 medical patients with sepsis were included in this study, with male patients accounting for 65.2% (n=116). The median age (interquartile range) was 78 (66-84) years, and most patients were at least 65 years old (137/178 cases, 77.0%). The most common primary site of infection was the lung (131 cases, 73.6%), followed by abdomen (15 cases, 8.4%), urinary tract (13 cases, 7.3%), gastrointestinal
14: 14: 14: 14: 14:	In total, 178 medical patients with sepsis were included in this study, with male patients accounting for 65.2% (n=116). The median age (interquartile range) was 78 (66-84) years, and most patients were at least 65 years old (137/178 cases, 77.0%). The most common primary site of infection was the lung (131 cases, 73.6%), followed by abdomen (15 cases, 8.4%), urinary tract (13 cases, 7.3%), gastrointestinal tract (12 cases, 6.7%) and other sites (7 cases, 3.9%). Septic shock patients accounted
14: 14: 14: 14: 14: 14: 15:	In total, 178 medical patients with sepsis were included in this study, with male patients accounting for 65.2% (n=116). The median age (interquartile range) was 78 (66-84) years, and most patients were at least 65 years old (137/178 cases, 77.0%). The most common primary site of infection was the lung (131 cases, 73.6%), followed by abdomen (15 cases, 8.4%), urinary tract (13 cases, 7.3%), gastrointestinal tract (12 cases, 6.7%) and other sites (7 cases, 3.9%). Septic shock patients accounted for 33.1% (59 cases). Blood culture was positive in 38 patients (21.3%). The 90-day
14: 14: 14: 14: 14: 14: 15: 15:	In total, 178 medical patients with sepsis were included in this study, with male patients accounting for 65.2% (n=116). The median age (interquartile range) was 78 (66-84) years, and most patients were at least 65 years old (137/178 cases, 77.0%). The most common primary site of infection was the lung (131 cases, 73.6%), followed by abdomen (15 cases, 8.4%), urinary tract (13 cases, 7.3%), gastrointestinal tract (12 cases, 6.7%) and other sites (7 cases, 3.9%). Septic shock patients accounted for 33.1% (59 cases). Blood culture was positive in 38 patients (21.3%). The 90-day mortality was 47.2% (84/178 cases), and the in-hospital mortality was 41.6% (74/178
14: 14: 14: 14: 14: 14: 15: 15:	In total, 178 medical patients with sepsis were included in this study, with male patients accounting for 65.2% (n=116). The median age (interquartile range) was 78 (66-84) years, and most patients were at least 65 years old (137/178 cases, 77.0%). The most common primary site of infection was the lung (131 cases, 73.6%), followed by abdomen (15 cases, 8.4%), urinary tract (13 cases, 7.3%), gastrointestinal tract (12 cases, 6.7%) and other sites (7 cases, 3.9%). Septic shock patients accounted for 33.1% (59 cases). Blood culture was positive in 38 patients (21.3%). The 90-day mortality was 47.2% (84/178 cases), and the in-hospital mortality was 41.6% (74/178 cases). The length of ICU stay and the length of hospital stay were 12 (5-22) and 15

155	Compared with in-hospital survivors, non-survivors had significantly lower BMI
156	and PaO_2/FiO_2 (both p < 0.05), higher lactate, bilirubin, INR, SOFA score and
157	APACHE II score (all $p < 0.05$). Meanwhile, more patients died with
158	healthcare-acquired infections, hypotension, oliguria, septic shock, and intubation (all
159	p < 0.05) (table 1).
160	Cox proportional hazard regression analysis was conducted and the independent
161	factors for 90-day death were identified as SOFA score (HR = 1.220 , p < 0.001),
162	APACHE II score (HR = 1.050, $p < 0.001$) and BMI (HR = 0.940, $p = 0.029$) (table
163	2).
164	Patients were divided into four groups based on BMI (underweight, normal,
165	overweight, and obese). The percentage of males (72.7%, 71.4%, 55.6%, and 18.2%,
166	p = 0.002), chronic obstructive pulmonary disease (24.2%, 21.4%, 0, and 27.3%,
167	p=0.017), hypotension (57.6%, 34.7%, 25.0%, and 9.1%, p = 0.007), septic shock
168	(57.6%, 30.6%, 25.0%, and 9.1%, p = 0.004), in-hospital mortality (60.6%, 41.8%,
169	30.6%, and 18.2%, p = 0.027) and 90-day mortality (66.7%, 48.0%, 36.1%, and
170	18.2%, $p = 0.015$) were statistically different among the four groups (table 3).
171	Kaplan-Meier survival curves were constructed to show the survival probabilities
172	at day-90 according to BMI classification and these were compared using the log rank
173	test, which also showed that higher BMI was associated with better prognosis
174	(p=0.008) (figure 1).
175	
176	Discussion
	8

BMJ Open

2 3 4 5 6 7 8 9 10 11	
4 5 6 7 8 9 10 11	
5 6 7 8 9 10 11	
6 7 8 9 10 11	
7 8 9 10 11	
8 9 10 11	
9 10 11	
10 11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
22	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
50	
39	
39 40	
39 40 41	
39 40	
39 40 41 42 43	
39 40 41 42 43 44	
 39 40 41 42 43 44 45 	
 39 40 41 42 43 44 45 46 	
 39 40 41 42 43 44 45 46 47 	
 39 40 41 42 43 44 45 46 47 48 	
 39 40 41 42 43 44 45 46 47 48 49 	
 39 40 41 42 43 44 45 46 47 48 49 50 	
 39 40 41 42 43 44 45 46 47 48 49 50 51 	
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	

177	This prospective observational cohort study was focused on medical patients with
178	sepsis admitted to the ICU, and the results showed that SOFA score, APACHE II score
179	and BMI were identified as independent factors for 90-day mortality by Cox
180	regression analysis. Mortality increased with increasing SOFA and APACHE II score,
181	which was consistent with previous studies ^[14-16] . However, BMI was also found to be
182	an independent predictor of survival, where 90-day mortality decreased with an
183	increase in BMI. While studies examining the risk factors associated with outcomes in
184	sepsis reached inconsistent conclusions on the association of BMI with mortality, our
185	results confirmed a protective effect of higher BMI on mortality in patients with
186	sepsis caused by medical conditions.

Globally, the prevalence of obesity has reached epidemic proportions, especially 187 188 in developed countries. BMI is still a useful proxy of overall health because it is highly correlated with body surface area, which is commonly used as a surrogate 189 measure in obesity classification. Even though it is widely accepted that obesity is a 190 risk factor for diabetes mellitus, hypertension, and cardiovascular diseases, the present 191 study and several other studies have indicated that overweight and obese patients with 192 sepsis tend to experience lower mortality. This has been called the "obesity paradox" 193 ^[5-9,17]. Although some researchers have expressed doubt that the true paradox may lie 194 in the variations in sepsis interventions ^[6,18], a meta-analysis concluded that 195 individuals who are considered overweight or obese have a reduced adjusted mortality 196 when admitted to the ICU with sepsis or septic shock ^[8]. Recently another 197 198 meta-analysis also concluded that being overweight was associated with lower

199	mortality (OR 0.87, 95% CI 0.77-0.97, p = 0.02) compared with obese (OR 0.89, 95%
200	CI 0.72-1.10, $p = 0.29$) and morbidly obese (OR 0.64, 95% CI 0.38-1.08, $p = 0.09$)
201	patients who did not exhibit significantly reduced mortality compared with normal
202	weight patients ^[19] . In a large and nationally representative sample of over 1,000
203	hospitals in the US, obesity was found to be significantly associated with a 16%
204	decrease in the odds of dying among sepsis patients who were hospitalized ^[20] .
205	Underweight patients with sepsis may be more common in developing countries
206	than developed countries. In the present study, the percentages of underweight,
207	normal weight, overweight and obese patients were 18.4%, 55.3%, 20.1%, and 6.1%,
208	respectively, while those with sepsis in a study in Canada and the US represented
209	6.8%, 35.3%, 28.3%, and 29.0% $^{[6]}$. Being underweight was found to be one of the
210	independent risk factors of mortality in a study on the correlation between surgical
211	site infection and mortality ^[10] . Furthermore, Lee et al ^[11] also reported that being
212	underweight was associated with mortality in patients with severe sepsis and septic
213	shock.
214	Consequently, previous studies on sepsis have shown that overweight and obese
215	patients have a decreased risk for mortality, and underweight patients may have a
216	higher mortality. However, BMI has not been shown to be an independent factor for
217	clinical outcomes by multivariable analyses. In our cohort of medical patients with

sepsis, which mainly included the elderly and less obese patients, BMI was identified

as an independent factor for survival. The mechanism of the correlation between BMI

and mortality of sepsis is unclear. There are several potential reasons that could

Page 11 of 26

BMJ Open

221	explain this. First, higher BMI resulted in more fat reserves, and patients could have a
222	greater capacity to cope with the inflammatory response during sepsis and
223	sepsis-associated acute lung injury ^[21-23] . Furthermore, they may be able to tolerate
224	extensive weight loss and dysfunction associated with critical illness ^[24] . Secondly, a
225	higher BMI can lead to an increased level of lipoproteins. High-density lipoproteins
226	may not only bind and inactivate lipopolysaccharide (LPS) or other harmful bacterial
227	products released during sepsis ^[25] , but also modulate adhesion molecule expression,
228	upregulate endothelial nitric oxide synthase, and counteract oxidative stress ^[26] .
229	Thirdly, higher BMI can lead to increased adipose tissue deposition. Adipose tissue is
230	increasingly being considered as a functional endocrine organ and associated with
231	increased renin-angiotensin system activity [27]. It appears to have protective
232	hemodynamic effects during sepsis and may decrease the need for fluid or
233	vasopressor support ^[18,28] . This may be the reason why the percentages of patients
234	with hypotension and with septic shock in the four groups decreased as BMI
235	increased in the present study.
236	It should be noted that in the majority of our patients (73.6%) sepsis was

It should be noted that in the majority of our patients (73.6%) sepsis was associated with pulmonary infection, a much higher percentage as compared to other studies. Ranieri et al ^[29] reported that the primary sites of infection in adults with septic shock were lung (43.9%), abdomen (30.0%), urinary tract (12.3%), skin (5.5%) and other sites (8.3%). Scheer et al ^[30] found that the most common primary site of infection was different between medical and surgical patients. In medical patients, lung was the most common primary site (42.0%-56.7%), while it was abdomen

(48.4%-64.4%) in surgical patients.

There were several limitations to our study. Firstly, the BMI of our patients ranged from 12.11 to 32.46. Morbidly obese patients were not included in the study, although morbidly obese patients are not common in this country. Secondly, the present study used weight ascertained at ICU admission, rather than the patient's true outpatient weight. This practice may misclassify the BMI category in as many as 21.9% of patients due to lack of fluid balance adjustment ^[31]. Lastly, although 178 patients were included in this prospective study, it was still difficult to avoid sample-related bias, because a large proportion of our patients were older than 65 years.

253 Conclusions

To our knowledge, this is the first prospective cohort study that focused on medical patients with sepsis, showing that SOFA score, APACHE II score and BMI were independent predictors of survival, and more importantly, underweight patients were at higher risk of death.

- 259 Acknowledgements
- 260 Not applicable.

262 Authors' contributions

263 QTZ, YCS, YAZ designsed the study. QTZ, YCS, NS, YAZ, and QBM coordinated 264 the study. MW, JZ, YLD, SL, and HXG were responsible for patient screening,

BMJ Open

2		
3	265	enrollment, and follow-up. QTZ, MW, and YCS analyzed the data. QTZ drafted the
4 5		······································
6	266	manuscript. YCS critically revised the manuscript. All authors had full access to all
7		
8	267	study data, read and approved the final version of the manuscript.
9	207	study data, read and approved the main version of the manuscript.
10	268	
11 12	208	
13		
14	269	Funding
15		
16	270	None.
17		
18	271	
19		
20	272	Competing interests
21 22	272	
22	272	None declared.
24	273	None declared.
25		
26	274	
27		
28	275	Ethics approval and consent to participate
29		
30	276	The study protocol was approved (approval number M2015021) by the ethics
31 32		
33	277	committee of Peking University Third Hospital, Beijing, China. All patients or their
34		
35	278	legally authorized representatives provided written informed consent to participate in
36	270	legany autionzed representatives provided written informed consent to participate in
37		
38	279	the study.
39		
40 41	280	
42		
43	281	Data sharing statement
44		
45	282	No additional data are available.
46		
47	283	
48	205	
49 50	204	Deferences
50	284	References
52		
53	285	1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus
54		
55	286	Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315:801-10.
56		
57		13
58 50		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~ ~		

287	2.	Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013;369:2063.	
288	3.	Bouza C, López-Cuadrado T, Saz-Parkinson Z, et al. Epidemiology and recent trends of	
289		severe sepsis in Spain: a nationwide population-based analysis (2006-2011). BMC Infect Dis	S
290		2014; 14:3863.	
291	4.	WHO classification of body mass index (BMI). [http://apps.who.int/bmi/index.jsp?introPag	e=
292		intro_3.html] Accessed on 2 March 2015.	
293	5.	Wurzinger B, Dünser MW, Wohlmuth C, et al. The association between body-mass index an	ıd
294		patient outcome in septic shock: a retrospective cohort study. Wien Klin Wochenschr 2010;1	22:
295		31-6.	
296	6.	Arabi YM, Dara SI, Tamim HM, et al. Clinical characteristics, sepsis interventions and	
297		outcomes in the obese patients with septic shock:an international multicenter cohort study.	
298		<i>Crit Care</i> 2013;17:R72.	
299	7.	Prescott HC, Chang VW, O'Brien JM Jr, et al. Obesity and 1-year outcomes in older	
300		Americans with severe sepsis. Crit Care Med 2014;42:1766-74.	
301	8.	Pepper DJ, Sun J, Welsh J, et al. Increased body mass index and adjusted mortality in ICU	
302		patients with sepsis or septic shock: a systematic review and meta-analysis. Crit Care	
303		2016;20:181.	
304	9.	Gaulton TG, Marshall MacNabb C, Mikkelsen ME, et al. A retrospective cohort study	
305		examining the association between body mass index and mortality in severe sepsis. Intern	
306		Emerg Med 2015;10:471-9.	
307	10.	Giles KA, Hamdan AD, Pomposelli FB, et al. Body mass index:surgical site infections and	
308		mortality after lower extremity bypass from the National Surgical Quality Improvement	
			14
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

2		
3	309	Program 2005-2007. Ann Vasc Surg 2010;24:48-56.
4		c b b b b c c c c c c c c c c
5 6	210 11	Les SM Kong IW le VII et al Underweicht is associated with montality in notionts with
7	310 11.	Lee SM, Kang JW, Jo YH, et al. Underweight is associated with mortality in patients with
8		
9	311	severe sepsis and septic shock. Intensive Care Med Exp 2015; 3:A876.
10		
11	312 12.	Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines
12		
13	242	
14	313	for management of severe sepsis and septic shock: 2012. Crit Care Med 2013;41:580-637.
15		
16	314 13.	Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International
17		
18	315	Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017;
19	515	Suidemies for management of septies and septie brook. 2010. Intensive care mea 2017,
20		
21	316	43:304-77.
22		
23	317 14.	de Carvalho MA, Freitas FG, Silva Junior HT, et al. Mortality predictors in renal transplant
24		
25	318	recipients with severe sepsis and septic shock. <i>PLoS One</i> 2014;9:e111610.
26	210	recipients with severe sepsis and septic shock. <i>FLOS One</i> 2014,9.e111010.
27		
28	319 15.	Innocenti F, Tozzi C, Donnini C, et al. SOFA score in septic patients: incremental prognostic
29		
30	320	value over age, comorbidities, and parameters of sepsis severity. Intern Emerg Med 2017 Feb
31		
32	224	10 D.: 10 1007/11720 017 1(20 5 ED. 1 short - forcivel
33	321	10. Doi:10.1007/s11739-017-1629-5.[Epub ahead of print]
34		
35	322 16.	Song JE, Kim MH, Jeong WY, et al. Mortality Risk Factors for Patients with Septic
36		
37 38	323	Shock after Implementation of the Surviving Sepsis Campaign Bundles. Infect
39	525	Shoek alter hippelitentation of the Salviving Sepsis Campuign Dundee. hyper
40		
40	324	<i>Chemother</i> 2016;48:199-208.
42		
43	325 17.	Atamna A, Elis A, Gilady E, et al. How obesity impacts outcomes of infectious diseases. Eur
44		
45	326	J Clin Microbiol Infect Dis 2017; 36:585-91.
46	520	5 Cun Microbiol Inject Dis 2017, 50.565-51.
47		
48	327 18.	Taylor SP, Karvetski CH, Templin MA, et al. Initial fluid resuscitation following adjusted
49		
50	328	body weight dosing is associated with improved mortality in obese patients with suspected
51		
52	220	contin shool LCuit Cano 2018:42:7 12
53	329	septic shock. J Crit Care 2018;43:7-12.
54		
55	330 19.	Wang S, Liu X, Chen Q, et al. The role of increased body mass index in outcomes of sepsis: a
56		
57		15
58		15
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

331		systematic review and meta-analysis. BMC Anesthesiol 2017;17:118.
332	20.	Nguyen AT, Tsai CL, Hwang LY, et al. Obesity and Mortality, Length of Stay and Hospital
333		Cost among Patients with Sepsis: A Nationwide Inpatient Retrospective Cohort Study. PLoS
334		One 2016; 11:e0154599.
335	21.	Stapleton RD, Dixon AE, Parsons PE, et al. The association between BMI and plasma
336		cytokine levels in patients with acute lung injury. Chest 2010;138:568-77.
337	22.	Stapleton RD, Suratt BT. Obesity and nutrition in acute respiratory distress syndrome. <i>Clin</i>
338		Chest Med 2014;35:655-71.
339	23.	Zampieri FG, Jacob V, Barbeiro HV, et al. Influence of Body Mass Index on Inflammatory
340		Profile at Admission in Critically III Septic Patients. Int J Inflam 2015; 2015:734857.
341	24.	Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the acute
342		respiratory distress syndrome. N Engl J Med 2003;348:683-93.
343	25.	Wu A, Hinds CJ, Thiemermann C. High-density lipoproteins in sepsis and septic shock:
344		metabolism, actions, and therapeutic applications. <i>Shock</i> 2004;21:210-21.
345	26.	Murch O, Collin M, Hinds CJ, et al. Lipoproteins in inflammation and sepsis. I. Basic science.
346		Intensive Care Med 2007; 33:13-24.
347	27.	McGown C, Birerdinc A, Younossi ZM. Adipose tissue as an endocrine organ. Clin Liver
348		Dis 2014;18:41-58.
349	28.	Salgado DR, Rocco JR, Silva E, et al. Modulation of the renin-angiotensin-aldosterone
350		system in sepsis: a new therapeutic approach? Expert Opin Ther Targets 2010; 14:11-20.
351	29.	Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic
352		shock. N Engl J Med 2012;366:2055-64.
		16

1		
2 3		
4	353	30. Scheer CS, Fuchs C, Kuhn SO, et al. Quality Improvement Initiative for Severe
5	254	Granic and Gradie Should Ded are 00 De Martalia A 7.5 Marc Olares at and State Chia
6 7	354	Sepsis and Septic Shock Reduces 90-Day Mortality: A 7.5-Year Observational Study. Crit
8	255	Cano Mad 2017: 15:241 52
9	355	<i>Care Med</i> 2017;45:241-52.
10	356	31. O'Brien JM Jr, Philips GS, Ali NA, et al. The association between body mass index, processes
11 12	550	51. O Brien JM JI, Filmps GS, All NA, et al. The association between body mass muex, processes
13	357	of care, and outcomes from mechanical ventilation: a prospective cohort study.
14	337	of care, and outcomes non-meenanical ventilation. a prospective conort study.
15	358	<i>Crit Care Med</i> 2012;40:1456-63.
16 17	550	<i>Chil Cure Med</i> 2012,40.1450-05.
18	359	
19	555	
20	360	
21 22	500	
23	361	
24	001	
25	362	
26 27		
28	363	
29		
30	364	
31 32		Crit Care Med 2012;40:1456-63.
33	365	
34		
35	366	
36 37		
38	367	
39		
40	368	
41 42		
43	369	
44		
45	370	
46 47		
48	371	
49		
50	372	
51 52		
53	373	
54		
55	374	
56 57		
58		17
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

375 Table 1.Comparison of demographics and clinical data between groups defined by clinical

376 outcome in 178 patients with sepsis

	Survivors	Non survivors	
Characteristics	(n=104)	(n=74)	p value
Age (year)	78.0 (60.0-84.0)	78.0 (69.0-84.0)	0.291
Males	67 (64.4)	49 (66.2)	0.805
Body mass index (kg/m ²)	23.2 (20.4-26.1)	21.7 (18.4-24.2)	0.006
Comorbidities			
COPD	23 (22.1)	9 (12.2)	0.088
Diabetes mellitus	26 (25.0)	21 (28.4)	0.614
Hypertension	47 (45.2)	31 (41.9)	0.662
Cerebrovascular disease	30 (28.8)	15 (20.3)	0.194
Neoplasm	18 (17.3)	12 (16.2)	0.848
Liver disease	5 (4.8)	4 (5.4)	1.000
Heart failure	20 (19.2)	14 (18.9)	0.958
Chronic renal failure	18 (17.3)	11 (14.9)	0.664
Smoking (pack years)	0 (0-30.0)	0 (0-16.3)	0.509
Primary site of infection			
Lung	77 (74.0)	54 (73.0)	0.874
Abdomen	10 (9.6)	5 (6.8)	0.499
Urinary tract	7 (6.7)	6 (8.1)	0.728
Gastrointestinal tract	7 (6.7)	5 (6.8)	1.000

Page 19 of 26

BMJ Open

Other site	3 (2.9)	4 (5.4)	0.452
Community-acquired infection	85 (81.7)	50 (67.6)	0.030
Hypotension	22 (21.2)	41 (55.4)	<0.001
Lactate level (mmol/L)	1.8 (1.0-3.4)	2.7 (1.5-5.7)	0.001
Oliguria	8 (7.7)	16 (21.6)	0.007
PaO ₂ /FiO ₂ (mmHg)	198.5 (119.3-287.5)	152.5 (99.6-210.3)	0.006
Serum Creatinine (µmol/L)	97.0 (68.3-176.3)	108.5 (64.0-194.3)	0.868
Total bilirubin (µmol/mL)	13.1 (9.9-22.3)	18.0 (12.5-32.8)	0.015
Platelets (×10 ⁹ /L)	161.0 (95.8-232.5)	123.0 (75.0-204.3)	0.067
INR	1.2 (1.0-1.4)	1.3 (1.1-1.6)	0.015
Glasgow coma scale	15.0 (10.0-15.0)	13.0 (10.0-15.0)	0.117
SOFA score	5.0 (4.0-7.0)	9.0 (7.0-11.0)	< 0.001
APACHE II score	16.0 (12.0-22.0)	21.0 (17.0-30.0)	< 0.001
Septic shock	21 (20.2)	38 (51.4)	< 0.001
Non-invasive ventilation	28 (26.9)	24 (32.4)	0.426
Intubated	36 (34.6)	43 (58.1)	0.002
Positive blood culture	19 (18.3)	19 (25.7)	0.235
Length of ICU stay (days)	12.0 (6.0-22.0)	12.0 (3.0-25.0)	0.521
Length of hospital stay (days)	18.0 (10.0-30.0)	13.0 (3.0-25.0)	0.009

378 normalized ratio; SOFA: Sequential organ failure assessment; APACHE: Acute physiology and chronic health evaluation.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

380 Table 2. Risk factors for 90-day mortality of patients with sepsis or septic shock by Cox

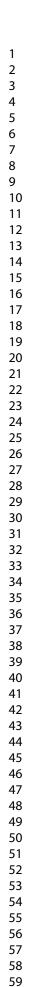
381 regression analysis

	Variables	Hazard ratio (95% Confidence interval)	p value		
	Body mass index (kg/m ²)	0.940 (0.889-0.994)	0.029		
	Hypotension	0.781 (0.229-2.670)	0.694		
	Lactate level (mmol/L)	1.018 (0.943-1.098)	0.648		
	Oliguria	1.288 (0.715-2.321)	0.399		
	PaO ₂ /FiO ₂ (mmHg)	1.000 (0.997-1.002)	0.933		
	Septic shock	1.075 (0.320-3.615)	0.907		
	SOFA score	1.229 (1.123-1.345)	<0.001		
	APACHE II score	1.050 (1.022-1.080)	<0.001		
	Intubated	1.511 (0.931-2.452)	0.095		
382	SOFA: Sequential organ failure assessment; APACHE: Acute physiology and chronic health evaluation.				
383					
384					
385					
386					
387					
388					
389					
390					
391					

4
5
6
7
, 8
9
-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
40 49
50
51
52
53
54
55
56
57
58
59
60

392 Table 3. Comparison of demographics and clinical data among groups defined by body mass

393 index in patients with sepsis


Characterist'	Underweight	Normal	Overweight	Obese		
Characteristics	(n=33)	(n=98)	(n=36)	(n=11)	p value	
Age (years)	79.0 (69.0-86.0)	78.0 (67.0-84.0)	73.0 (57.0-83.0)	77.0 (71.0-86.0)	0.162	
Males	24 (72.7)	70 (71.4)	20 (55.6)	2 (18.2)	0.002	
Comorbidities						
COPD	8(24.2)	21 (21.4)	0	3 (27.3)	0.017	
Diabetes mellitus	8 (24.2)	25 (25.5)	9 (25.0)	5 (45.5)	0.530	
Hypertension	14 (42.4)	38 (38.8)	19 (52.8)	7 (63.6)	0.265	
Cerebrovascular disease	10 (30.3)	24 (24.5)	11 (30.6)	0	0.193	
Neoplasm	7 (21.2)	14 (14.3)	8 (22.2)	1 (9.1)	0.547	
Liver disease	2 (6.1)	5 (5.1)	2 (5.6)	0	0.879	
Heart failure	8 (24.2)	17 (17.3)	5 (13.9)	4 (36.4)	0.319	
Chronic renal failure	5 (15.2)	14 (14.3)	7 (19.4)	3 (27.3)	0.669	
Smoking (pack-years)	0 (0-20.5)	0 (0-30.0)	0 (0-3.0)	0 (0-30.0)	0.561	
Primary site of infection						
Lung	27 (81.8)	69 (70.4)	27 (75.0)	8 (72.7)	0.637	
Abdomen	2 (6.1)	9 (9.2)	3 (8.3)	1 (9.1)	0.956	
Urinary tract	1 (3.0)	9 (9.2)	2 (5.6)	1 (9.1)	0.656	
Gastrointestinal tract	2 (6.1)	6 (6.1)	3 (8.3)	1 (9.1)	0.955	
Other site	1 (3.0)	5 (5.1)	1 (2.8)	0	0.800	

Community-acquired infection	25 (75.8)	76 (77.6)	26 (72.2)	8 (72.7)	0.925
Hypotension	19 (57.6)	34 (34.7)	9 (25.0)	1 (9.1)	0.007
Lactate level (mmol/L)	2.4 (1.6-7.2)	2.1 (1.0-4.3)	1.6 (1.2-3.3)	1.9 (0.6-2.9)	0.201
Oliguria	8 (24.2)	13 (13.3)	3 (8.3)	0	0.121
PaO ₂ /FiO ₂ (mmHg)	180.0(113.5-251.0)	164.5(102.3-240.5)	188.0(140.5-268.5)	215.0(153.0-300.0)	0.340
Serum Creatinine (µmol/L)	89.0 (57.0-127.0)	118.5 (72.5-190.5)	91.0 (60.0-212.5)	86.0 (56.0-112.0)	0.136
Total bilirubin (μmol/mL)	18.0 (10.1-33.1)	14.4 (10.1-28.4)	17.2 (12.2-26.3)	15.2 (11.3-20.0)	0.819
Platelets (×10 ⁹ /L)	139.0 (75.0-213.0)	147.0 (86.0-209.8)	182.5 (128.3-253.8)	115.0 (49.0-144.0)	0.056
INR	1.3 (1.1-1.6)	1.2 (1.0-1.5)	1.2 (1.1-1.3)	1.1 (1.0-1.2)	0.269
Glasgow coma scale	13.0 (10.0-15.0)	15.0 (12.0-15.0)	15.0 (11.0-15.0)	13.0 (10.0-15.0)	0.761
SOFA score	8.0 (5.0-11.0)	7.0 (5.0-9.0)	6.0 (4.0-8.0)	5.0 (5.0-8.0)	0.382
APACHE II score	18.0 (16.0-24.0)	19.0 (13.0-25.0)	18.0 (13.0-22.0)	14.0 (9.0-17.0)	0.060
Septic shock	19 (57.6)	30 (30.6)	9 (25.0)	1(9.1)	0.004
Non-invasive ventilation	7 (21.2)	30 (30.6)	10 (27.8)	5 (45.5)	0.466
Intubated	19 (57.6)	43 (43.9)	13 (36.1)	4 (36.4)	0.305
Positive blood culture	7 (21.2)	24 (24.5)	4 (11.1)	3 (27.3)	0.383
Length of ICU stay (days)	10.0 (4.0-25.0)	13.0 (7.0-25.0)	11.0 (4.0-19.0)	9.0(6.0-13.0)	0.461
Length of hospital stay (days)	13.0 (4.0-29.0)	16.0 (10.0-28.0)	16.0 (8.0-32.0)	13.0(8.0-20.0)	0.813
In-hospital mortality	20 (60.6)	41 (41.8)	11 (30.6)	2 (18.2)	0.027
90-day mortality	22 (66.7)	47 (48.0)	13 (36.1)	2 (18.2)	0.015

394 Data are presented as n (%) or median (interquartile range). COPD: Chronic obstructive pulmonary disease; INR: International normalized ratio; SOFA:

395 Sequential organ failure assessment; APACHE: Acute physiology and chronic health evaluation.

1		
2		
3	396	
4	350	
5		
6 7	397	Fig 1. Kaplan-Meier survival plot for 90-day survival of underweight, normal weight,
8		
9	398	overweight, and obese patients with sepsis.
10		
11	399	
12		
13		
14		
15		
16 17		
17		
19		
20		
21		
22		
23		
24 25		
26		
27		
28		
29		
30		
31 32		
33		
34		
35		
36		
37		
38 39		
40		
41		
42		
43		
44		
45 46		
40		
48		
49		
50		
51		
52 53		
55 54		
55		
56		
57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		the second s

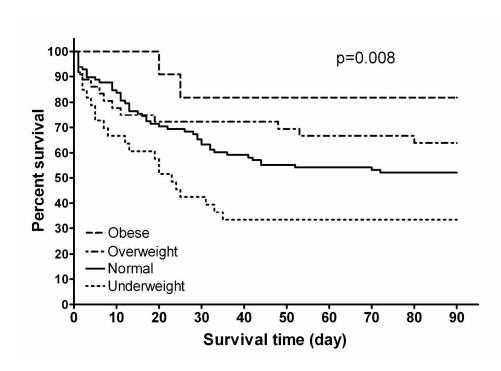


Fig 1. Kaplan-Meier survival plot for 90-day survival of underweight, normal weight, overweight, and obese patients with sepsis.

246x167mm (300 x 300 DPI)

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2,3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5,6
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5,6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6,7
Bias	9	Describe any efforts to address potential sources of bias	N/A
Study size	10	Explain how the study size was arrived at	N/A
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6,7
		(b) Describe any methods used to examine subgroups and interactions	6,7
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(e) Describe any sensitivity analyses	N/A

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 2	26 of	26
--------	-------	----

Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	13
Other information			10
Generalisability	21	Discuss the generalisability (external validity) of the study results	12
		similar studies, and other relevant evidence	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	12
Limitations	10		5 II
Key results	18	Summarise key results with reference to study objectives	9-11
Discussion			
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
		(b) Report category boundaries when continuous variables were categorized	6
	10	interval). Make clear which confounders were adjusted for and why they were included	0,10 22
Main results	15	Report numbers of outcome events or summary measures over time (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	7 8.18-22
Outcome data	15*	(c) Summarise follow-up time (eg, average and total amount)	7
		(b) Indicate number of participants with missing data for each variable of interest	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7
D	*	(c) Consider use of a flow diagram	N/A
		(b) Give reasons for non-participation at each stage	N/A
		eligible, included in the study, completing follow-up, and analysed	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	7

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

The impact of body mass index on survival of medical patients with sepsis: a prospective cohort study in a university hospital in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-021979.R1
Article Type:	Research
Date Submitted by the Author:	12-Apr-2018
Complete List of Authors:	Zhou, Qingtao; Peking University Third Hospital, Department of respiratory and critical care medicine Wang, Meng; Peking University Third Hospital, Department of respiratory and critical care medicine Li, Shuo; Peking University Third Hospital, Emergency Department Zhang, Jing; Peking University Third Hospital, Department of respiratory and critical care medicine Ma, Qingbian; Peking University Third Hospital, Emergency Department Ding, Yanling; Peking University Third Hospital, Emergency Department Ge, Hongxia; Peking University Third Hospital, Emergency Department Shen, Ning; Peking University Third Hospital, Department of respiratory and critical care medicine Ge, Hongxia; Peking University Third Hospital, Department of respiratory and critical care medicine Zheng, Yaan; Peking University Third Hospital, Emergency Department Sun, Yongchang; Peking University Third Hospital, Emergency Department of respiratory and critical care medicine
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Infectious diseases
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, INFECTIOUS DISEASES, THORACIC MEDICINE

SCHOLARONE[™] Manuscripts

BMJ Open

2		
3	1	The impact of body mass index on survival of medical patients with sepsis: a
4	T	The impact of body mass much on survival of medical patients with sepsis: a
5		
6	2	prospective cohort study in a university hospital in China
7		
8	3	
9	_	
10	4	Qingtao Zhou ¹ , Meng Wang ¹ , Shuo Li ² , Jing Zhang ¹ , Qingbian Ma ² , Yanling Ding ¹ ,
11	4	Qingtao Zhou, Meng Wang, Shuo Li, Jing Zhang, Qingolan Ma, Tahing Ding,
12		
13 14	5	Hongxia Ge ² , Ning Shen ¹ , Yaan Zheng ² , Yongchang Sun ^{1*}
15		
16	6	
17	Ū	
18	-	¹ Department of Respiratory and Critical Care Medicine, Peking University Third
19	7	Department of Respiratory and Critical Care Medicine, Peking University Third
20		
21	8	Hospital, Beijing, China.
22		
23	9	² Emergency Department, Peking University Third Hospital, Beijing, China.
24	5	Emergency Department, i eking emversity Time Hospital, Deging, emita.
25		
26	10	
27		
28	11	*Corresponding author: Yongchang Sun, Department of Respiratory and Critical
29		
30	12	Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian
31	12	Care Medicine, Teking Oniversity Third Hospital, 49 North Garden Road, Hardian
32		
33	13	District, Beijing 100191, China. Email: suny@bjmu.edu.cn
34		
35	14	
36		
37	45	
38	15	
39		
40	16	
41		
42	17	
43 44		
44 45	40	
45 46	18	
40 47		
48	19	
49		
50	20	
51	20	
52		
53	21	
54		
55	22	
56		
57		1
58		1
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

23	Abstract
24	Objective To evaluate the impact of body mass index (BMI) on survival of a Chinese
25	cohort of medical patients with sepsis.
26	Design A single-center prospective cohort study conducted from May 2015 to April
27	2017.
28	Setting A tertiary care university hospital in China.
29	Participants 178 patients with sepsis admitted to the medical ICU were included.
30	Main outcome measures The primary outcome was 90-day mortality. The secondary
31	outcomes were in-hospital mortality, length of ICU stay, and length of hospital stay.
32	Results The median age (interquartile range) of the patients was 78 (66-84) years.
33	The 90-day mortality was 47.2%. The in-hospital mortality was 41.6%, and the length
34	of ICU stay and hospital stay were 12 (5-22) and 15 (9-28) days, respectively. Cox
35	proportional hazard regression analysis identified that sequential organ failure
36	assessment (SOFA) score (HR = 1.229, $p < 0.001$), APACHE II score (HR = 1.050, p
37	< 0.001) and BMI (HR = 0.940, p = 0.029) were all independent predictors of the
38	90-day mortality. Patients were divided into four groups based on BMI [underweight
39	33 (18.5%), normal 98 (55.1%), overweight 36 (20.2%), and obese 11 (6.2%)]. The
40	percentage of males (72.7%, 71.4%, 55.6%, and 18.2%, p = 0.002), chronic
41	obstructive pulmonary disease (24.2%, 21.4%, 0, and 27.3%, $p = 0.017$), hypotension
42	(57.6%, 34.7%, 25.0%, and 9.1%, p = 0.007), septic shock (57.6%, 30.6%, 25.0%,
43	and 9.1%, p = 0.004), in-hospital mortality (60.6%, 41.8%, 30.6%, and 18.2%, p =
44	0.027) and 90-day mortality (66.7%, 48.0%, 36.1%, and 18.2%, p = 0.015) were

Page 3 of 29		BMJ Open
1		
1 2		
3 4	45	statistically different among the four groups. Differences in survival among the four
5 6 7	46	groups were demonstrated by Kaplan-Meier survival analysis ($p = 0.008$).
8 9	47	Conclusions BMI was an independent factor associated with survival in a Chinese
10 11 12	48	cohort of medical patients with sepsis, patients with lower BMI having a higher risk
13 14	49	of death.
15 16 17	50	
18 19	51	Key words: Sepsis; Septic shock; Body mass index; Critical care; Mortality
20 21 22	52	
23 24	53	Strengths and limitations of this study
25 26 27	54	Our prospective observational cohort study was focused on medical patients with
28 29	55	sepsis and conducted at a university hospital in China.
30 31 32	56	The impact of BMI on 90-day survival of medical patients with sepsis was evaluated
33 34	57	by Cox proportional hazard regression analysis and Kaplan-Meier survival analysis.
35 36 37	58	Our analyses were limited by the use of weight ascertained at ICU admission, rather
38 39	59	than the patient's true outpatient weight.
40 41 42	60	
43 44	61	
45 46 47	62	
47 48 49	63	
50 51 52	64	
52 53 54	65	
55 56	66	
57 58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2
2
4
5
6
7 8
o 9
10
11
12
13
14 15
16
17
18
19 20
20 21
21
23
24
25
26 27
27
29
30
31
32 33
33 34
35
36
37
38 39
39 40
41
42
43
44 45
45 46
47
48
49
50
51 52
53
54
55
56 57
57 58
59
60

67 Introduction

68	Sepsis is a major cause of morbidity and mortality worldwide ^[1] . Of these
69	patients, half are treated in the intensive care unit (ICU) ^[2] . In a national
70	population-based study of sepsis in Spain, medical diagnostic categories were the
71	majority of causes in patients who developed sepsis, while only 26% of surgical
72	patients developed sepsis ^[3] .
73	Body mass index (BMI) is a simple index of weight-for-height that is commonly
74	used to classify whether adults are underweight, overweight and obese ^[4] . Several
75	studies have examined the effects of BMI on mortality with conflicting conclusions.
76	Lower mortality in the obese has been observed in some studies ^[5-9] , but some
77	researchers believe that the true paradox may lie in the variations in sepsis
78	interventions, such as the administration of resuscitation fluids and antimicrobial
79	therapy ^[6] . In other studies, morbidly obese and underweight patients have been
80	shown to be associated with higher mortality ^[10,11] . Thus, the impact of BMI on
81	survival of patients with sepsis is still controversial ^[12, 13] .
82	As the relationship between BMI and clinical outcomes of sepsis is complex,
83	which may be related partly to differences in patient characteristics, we therefore set
84	out to evaluate prospectively the impact of BMI on survival in a cohort of medical
85	patients with sepsis admitted to the medical ICU in a university hospital.
86	
87	Patients and Methods
88	Design
	4

1	
2	
3	
4	
5	
6 7 8	
/	
8 9	
9 10	
11	
12	
13	
14	
15	
16	
12 13 14 15 16 17 18	
18	
19 20	
20	
21	
22	
23	
22 23 24 25	
25	
26 27	
27 28	
28 29	
30	
31	
31 32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40 47	
47	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

89	This was a prospective cohort study, which was conducted in the medical ICU of
90	a university-affiliated urban teaching hospital in China from May 2015 to April 2017.
91	Subjects

92	Sepsis was defined as the presence (probable or documented) of infection
93	together with systemic manifestations of infection ^[14] . Hospitalized patients admitted
94	to the medical ICU with sepsis acquired in the community or in a hospital were
95	eligible for the study if they met any of the following criteria of severe sepsis ^[14] : (1)
96	sepsis-induced hypotension, (2) lactate above upper laboratory level limits
97	(1.5mmol/L in this study), (3) urine output $<0.5 \text{ mL Kg}^{-1} \text{ h}^{-1}$ for more than 2 h despite
98	adequate fluid resuscitation, (4) acute lung injury with Pao ₂ /Fio ₂ <250 in the absence
99	of pneumonia as infection source, (5) acute lung injury with $Pao_2/Fio_2 < 200$ in the
100	presence of pneumonia as infection source, (6) creatinine >2.0 mg/dL (176.8 µmol/L),
101	(7) bilirubin >2mg/dL (34.2 μ mol/L), (8) platelet count <100,000 μ L, and (9)
102	coagulopathy (international normalized ratio >1.5).
103	Patients were excluded from the study if they met one of the following criteria: (1)

Patients were excluded from the study if they met one of the following criteria: (1) the patient had sepsis that required surgical treatment, or was caused by a surgical procedure related infection, (2) age <18 years, (3) the patient had a positive HIV antibody titer or had known/suspected tuberculosis at baseline, (4) expected lifespan <3 months due to severe pre-existing comorbidities, (5) active Do Not Resuscitate or Do Not Intubate order, and (6) pregnant.

109 All patients accepted treatment according to the international guidelines for 110 management of sepsis and septic shock ^[14,15]. We collected the following

2	
3 4	
5	
6 7	
8	
9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
33 34	
35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	
40 47	
48	
49 50	
51	
52 53	
54	
55 56	
57	
58 59	
59 60	

1

111	demographic and clinical data: patient's gender, age, weight, height, primary site of
112	infection, community-acquired or hospital-acquired infection, hypotension, lactate
113	level, oliguria, PaO ₂ /FiO ₂ , serum creatinine, total bilirubin, platelets, international
114	normalized ratio (INR), Glasgow coma scale, SOFA score, acute physiology and
115	chronic health evaluation (APACHE) II score, septic shock, non-invasive ventilation,
116	intubation, positive blood culture, length of ICU stay, and length of hospital stay.
117	Those who survived to discharge were followed for at least 90 days.
118	BMI is defined as the weight in kilograms divided by the square of the height in
119	meters (kg/m ²). Using the World Health Organization (WHO) criteria for designation
120	of BMI ^[4] , patients were classified as underweight (BMI < 18.50 kg/m^2), normal
121	weight (BMI = 18.50 to 24.99 kg/m ²), overweight (BMI = 25.0 to 29.99 kg/m ²), and
122	obese (BMI \geq 30.0 kg/m ²).
123	obese (BMI \geq 30.0 kg/m ²). Outcomes
124	The primary outcome was 90-day mortality, while the secondary outcomes were
125	in-hospital mortality, length of ICU stay, and length of hospital stay.
126	Statistical analysis
127	Continuous variables were expressed as median (interquartile range) and
128	categorical variables as numbers (%). Clinical data were compared among the
129	in-hospital survivors and non-survivors. Continuous variables were compared using
130	the non-parametric Mann-Whitney U test, and categorical variables were compared
131	using the Chi squared test. Cox proportional hazard regression analysis was
132	undertaken to assess the factors associated with 90-day mortality. The variables

Page 7 of 29		BMJ Open
1 2		
3 4	133	significantly associated with 90-day non-survival in the univariate analysis were used
5 6 7	134	in the Cox proportional hazard regression analysis.
8 9	135	Patients were divided into four groups based on BMI (underweight, normal,
10 11 12	136	overweight, and obese). Clinical data were compared between the four groups, where
13 14	137	continuous variables were compared using the non-parametric Kruskal-Wallis H test,
15 16 17	138	and categorical variables were compared using the Chi squared test. Kaplan-Meier
18 19	139	survival curves were constructed to show the survival probabilities at day-90
20 21 22	140	according to BMI classification, and compared using the log rank test.
23 24	141	All analyses were conducted using SPSS, version 22.0 (IBM, Armonk, NY,
25 26 27	142	USA). A p value <0.05 was considered significant.
28 29	143	Patient involvement
30 31	144	No patients were involved in developing the hypothesis, the specific aims or the
32 33 34	145	research questions, nor were they involved in the design or implementation of this
35 36	146	study. No patients were involved in the interpretation of study results or write up of
37 38 39	147	the manuscript. There are no plans to involve patients in the dissemination of results.
40 41	148	
42 43 44	149	Results
45 46	150	Figure 1 shows the patient-selection process. In total, 178 medical patients with
47 48 49	151	sepsis were included in this study, with male patients accounting for 65.2% (n=116).
50 51	152	The median age (interquartile range) was 78 (66-84) years, and most patients were at
52 53	153	least 65 years old (137/178 cases, 77.0%). The most common primary site of infection
54 55 56	154	was the lung (131 cases, 73.6%), followed by abdomen (15 cases, 8.4%), urinary tract
57 58		7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
22 23	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
40 47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

(13 cases, 7.3%), gastrointestinal tract (12 cases, 6.7%) and other sites (7 cases, 3.9%).
Septic shock patients accounted for 33.1% (59 cases). Blood culture was positive in
38 patients (21.3%). The 90-day mortality was 47.2% (84/178 cases), and the
in-hospital mortality was 41.6% (74/178 cases). The length of ICU stay and the length
of hospital stay were 12 (5-22) and 15 (9-28) days, respectively.

160 Compared with in-hospital survivors, non-survivors had significantly lower BMI 161 and PaO₂/FiO₂ (both p < 0.05), higher lactate, bilirubin, INR, SOFA score and 162 APACHE II score (all p < 0.05). Meanwhile, more patients died with 163 healthcare-acquired infections, hypotension, oliguria, septic shock, and intubation (all 164 p < 0.05) (table 1).

165 Cox proportional hazard regression analysis was conducted and the independent 166 factors for 90-day death were identified as SOFA score (HR = 1.220, p < 0.001), 167 APACHE II score (HR = 1.050, p < 0.001) and BMI (HR = 0.940, p = 0.029) (table 168 2).

169 Patients were divided into four groups based on BMI [underweight 33 (18.5%), normal 98 (55.1%), overweight 36 (20.2%), and obese 11 (6.2%)]. The percentage of 170 males (72.7%, 71.4%, 55.6%, and 18.2%, p = 0.002), 171 chronic obstructive 172 pulmonary disease (24.2%, 21.4%, 0, and 27.3%, p=0.017), hypotension (57.6%, 173 34.7%, 25.0%, and 9.1%, p = 0.007), septic shock (57.6%, 30.6%, 25.0%, and 9.1%, p = 0.004), in-hospital mortality (60.6%, 41.8%, 30.6%, and 18.2%, p = 0.027) and 174 90-day mortality (66.7%, 48.0%, 36.1%, and 18.2%, p = 0.015) were statistically 175 different among the four groups (table 3). 176

Page 9 of 29

1

BMJ Open

2
3
4
5
6
0 7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
∠ I วว
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
53 54
55
56
57
58
59
60

Kaplan-Meier survival curves were constructed to show the survival probabilities
at day-90 according to BMI classification and these were compared using the log rank
test, which also showed that higher BMI was associated with better prognosis
(p=0.008) (figure 2).

181

182 Discussion

183 This prospective observational cohort study was focused on medical patients with 184 sepsis admitted to the ICU, and the results showed that, besides SOFA score and APACHE II score, BMI was identified as an independent factor for 90-day mortality 185 by Cox regression analysis. The association of SOFA and APACHE II score with 186 mortality in this cohort was consistent with previous studies^[16-18]. However, BMI was 187 also found to be an independent predictor of survival, where 90-day mortality 188 decreased with an increase in BMI. While studies examining the risk factors 189 associated with outcomes in sepsis reached inconsistent conclusions on the 190 association of BMI with mortality, our results confirmed that BMI was an 191 192 independent predictor of mortality in patients with sepsis caused by medical conditions. 193

Globally, the prevalence of obesity has reached epidemic proportions, especially in developed countries ^[19]. BMI is still a useful proxy of overall health because it is highly correlated with body surface area, which is commonly used as a surrogate measure in obesity classification. Even though it is widely accepted that obesity is a risk factor for diabetes mellitus, hypertension, and cardiovascular diseases, the present

199	study and several other studies have indicated that overweight and obese patients with
200	sepsis tend to experience lower mortality. This has been called the "obesity paradox"
201	^[5-9,20] . Although some researchers have expressed doubt that the true paradox may lie
202	in the variations in sepsis interventions [6,21], a meta-analysis concluded that
203	individuals who are considered overweight or obese have a reduced adjusted mortality
204	when admitted to the ICU with sepsis or septic shock [8]. Recently another
205	meta-analysis also concluded that being overweight was associated with lower
206	mortality (OR 0.87, 95% CI 0.77-0.97, p = 0.02) compared with obese (OR 0.89, 95%
207	CI 0.72-1.10, p = 0.29) and morbidly obese (OR 0.64, 95% CI 0.38-1.08, p = 0.09)
208	patients who did not exhibit significantly reduced mortality compared with normal
209	weight patients ^[12] . In a large and nationally representative sample of over 1,000
210	hospitals in the US, obesity was found to be significantly associated with a 16%
211	decrease in the odds of dying among sepsis patients who were hospitalized ^[22] .
212	Underweight patients with sepsis may be more common in developing countries
213	than developed countries. In the present study, the percentages of underweight,
214	normal weight, overweight and obese patients were 18.4%, 55.3%, 20.1%, and 6.1%,
215	respectively, while those with sepsis in a study in Canada and the US represented
216	6.8%, 35.3%, 28.3%, and 29.0% $^{[6]}$. Being underweight was found to be one of the
217	independent risk factors of mortality in a study on the correlation between surgical
218	site infection and mortality ^[10] . Furthermore, Lee et al ^[11] also reported that being
219	underweight was associated with mortality in patients with severe sepsis and septic
220	shock.

Page 11 of 29

BMJ Open

1 2 3
4 5 6 7
8 9 10 11
12 13 14
15 16 17 18
19 20 21
22 23 24 25
26 27 28 29
30 31 32
34 35 36
37 38 39 40
41 42 43
44 45 46 47
48 49 50 51
52 53 54
55 56 57 58
59 60

221	Consequently, previous studies on sepsis have shown that overweight and obese
222	patients have a decreased risk for mortality ^[5-9,20,22] , and underweight patients may
223	have a higher mortality ^[10,11] . However, BMI has not been shown to be an independent
224	factor for clinical outcomes by multivariable analyses. In our cohort of medical
225	patients with sepsis, which mainly included the elderly and less obese patients, BMI
226	was identified as an independent factor for survival. The mechanism of the correlation
227	between BMI and mortality of sepsis is unclear. There are several potential reasons
228	that could explain this. First, higher BMI resulted in more fat reserves, and patients
229	could have a greater capacity to cope with the inflammatory response during sepsis
230	and sepsis-associated acute lung injury ^[23-25] . Furthermore, they may be able to
231	tolerate extensive weight loss and dysfunction associated with critical illness [26].
232	Secondly, a higher BMI can lead to an increased level of lipoproteins. High-density
233	lipoproteins may not only bind and inactivate lipopolysaccharide (LPS) or other
234	harmful bacterial products released during sepsis ^[27] , but also modulate adhesion
235	molecule expression, upregulate endothelial nitric oxide synthase, and counteract
236	oxidative stress ^[28] . Thirdly, higher BMI can lead to increased adipose tissue
237	deposition. Adipose tissue is increasingly being considered as a functional endocrine
238	organ and associated with increased renin-angiotensin system activity ^[29] . It appears
239	to have protective hemodynamic effects during sepsis and may decrease the need for
240	fluid or vasopressor support ^[21,30] .
244	In comment, you have not been found to be on indemendent medictor for survival in

In general, sex has not been found to be an independent predictor for survival in patients with sepsis, which is the same as the results of our current study. But in some

2
3
4
5
6
7
8
9
10
11
12
13
14
14
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
32 33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
54
55
56
57
58
59
60

1 2

special population, for example in liver cirrhosis patients with bloodstream infection,

244 male sex may be an independent risk factor for mortality^[31].

245 As the relationship between BMI and clinical outcomes of sepsis may be related partly to differences in patient characteristics, we therefore set out to evaluate the 246 impact of BMI on survival in a cohort of medical patients with sepsis, which is 247 different from surgical septic patients. Ranieri et al ^[32] reported that the primary sites 248 of infection in adults with septic shock were lung (43.9%), abdomen (30.0%), urinary 249 tract (12.3%), skin (5.5%) and other sites (8.3%). Scheer et al ^[33] found that the most 250 common primary site of infection was different between medical and surgical patients. 251 252 In medical patients, lung was the most common primary site (42.0%-56.7%), while it was abdomen (48.4%-64.4%) in surgical patients. It should be noted that in the 253 majority of our patients (73.6%) sepsis was associated with pulmonary infection, a 254 much higher percentage as compared to other studies. He et al^[34] reported that 255 pulmonary-sepsis showed worse outcome than abdominal-sepsis, and pulmonary 256 infection is a risk factor for one-year mortality and quality of life after sepsis. 257

There were several limitations to our study. Firstly, the BMI of our patients ranged from 12.11 to 32.46. There was no morbidly obese patient in the current study. In fact, morbidly obese people are rare in this country. Secondly, the present study used weight ascertained at ICU admission, rather than the patient's true outpatient weight. This practice may misclassify the BMI category in as many as 21.9% of patients due to lack of fluid balance adjustment ^[35]. Thirdly, BMI was used to determine the nutritional status of patients in this study. BMI is a simple index and

Page 13 of 29		BMJ Open
1		
2 3 4	265	widely used in clinical practice, but other indices such as percent body fat might
5 6 7	266	better reflect body composition ^[36] . Lastly, it was a single-center study with 178
8 9	267	participants, and a large proportion of our patients were older than 65 years, which
10 11 12	268	may have led to a sample-related bias.
13 14	269	Conclusions
15 16 17	270	To our knowledge, this is the first prospective cohort study that focused on
18 19	271	medical patients with sepsis, showing that BMI was an independent predictor of
20 21 22	272	survival, patients with lower BMI having a higher risk of death.
23 24 25	273	
26 27	274	Acknowledgements
28 29	275	Not applicable.
30 31	276	
32 33 34	277	Authors' contributions
35 36 37	278	QTZ, YCS, YAZ designed the study. QTZ, YCS, NS, YAZ, and QBM coordinated the
38 39	279	study. MW, JZ, YLD, SL, and HXG were responsible for patient screening,
40 41	280	enrollment, and follow-up. QTZ, MW, and YCS analyzed the data. QTZ drafted the
42 43 44	281	manuscript. YCS critically revised the manuscript. All authors had full access to all
45 46	282	study data, read and approved the final version of the manuscript.
47 48 49	283	
50 51	284	Funding
52 53 54	285	None.
55 56 57	286	
57 58 59		13
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
5
6
7
/ 8
9
10
11
12
13
14
15
16
16 17
18
18
19
20
21
22
23
24
25
26
27
27
28
29
30
31
32
33
34
35
36 37 38
3/
39
40
41
42
43
44
45
45 46
47
48
49
50
51
52
53
55 54
55
56
57
58
59
60

Competing interests

288	None declared.
289	
290	Ethics approval and consent to participate
291	The study protocol was approved (approval number M2015021) by the ethics
292	committee of Peking University Third Hospital, Beijing, China. All patients or their
293	legally authorized representatives provided written informed consent to participate in
294	the study.
295	
296	Data sharing statement
297	The authors declare that all data supporting the findings of this study are available
298	within the article.
299	
300	References
301	1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus
302	Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315:801-10.
303	2. Angus DC, van der Poll T. Severe sepsis and septic shock. <i>N Engl J Med</i> 2013;369:2063.
304	3. Bouza C, López-Cuadrado T, Saz-Parkinson Z, et al. Epidemiology and recent trends of
305	severe sepsis in Spain: a nationwide population-based analysis (2006-2011). BMC Infect Dis
306	2014; 14:3863.
307	4. WHO classification of body mass index (BMI). [http://apps.who.int/bmi/index.jsp?introPage=
308	intro_3.html] Accessed on 2 March 2015.

BMJ Open

3	309	5.	Wurzinger B, Dünser MW, Wohlmuth C, et al. The association between body-mass index and
5 6 7	310		patient outcome in septic shock: a retrospective cohort study. Wien Klin Wochenschr 2010;122:
8 9	311		31-6.
10 11	312	6.	Arabi YM, Dara SI, Tamim HM, et al. Clinical characteristics, sepsis interventions and
12 13 14	313		outcomes in the obese patients with septic shock:an international multicenter cohort study.
15 16	314		<i>Crit Care</i> 2013;17:R72.
17 18 19	315	7.	Prescott HC, Chang VW, O'Brien JM Jr, et al. Obesity and 1-year outcomes in older
20 21	316		Americans with severe sepsis. Crit Care Med 2014;42:1766-74.
22 23 24	317	8.	Pepper DJ, Sun J, Welsh J, et al. Increased body mass index and adjusted mortality in ICU
25 26	318		patients with sepsis or septic shock: a systematic review and meta-analysis. Crit Care
27 28 29	319		2016;20:181.
30 31	320	9.	Gaulton TG, Marshall MacNabb C, Mikkelsen ME, et al. A retrospective cohort study
32 33 34	321		examining the association between body mass index and mortality in severe sepsis. Intern
35 36	322		Emerg Med 2015;10:471-9.
37 38	323	10.	Giles KA, Hamdan AD, Pomposelli FB, et al. Body mass index:surgical site infections and
39 40 41	324		mortality after lower extremity bypass from the National Surgical Quality Improvement
42 43	325		Program 2005-2007. Ann Vasc Surg 2010;24:48-56.
44 45 46	326	11.	Lee SM, Kang JW, Jo YH, et al. Underweight is associated with mortality in patients with
47 48	327		severe sepsis and septic shock. Intensive Care Med Exp 2015; 3:A876.
49 50 51	328	12.	Wang S, Liu X, Chen Q, et al. The role of increased body mass index in outcomes of sepsis: a
52 53	329		systematic review and meta-analysis. BMC Anesthesiol 2017;17:118.
54 55 56	330	13.	Ng PY, Eikermann M. The obesity conundrum in sepsis. BMC Anesthesiol 2017;17:147.
57 58			15
59			

331	14.	Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines	
332		for management of severe sepsis and septic shock: 2012. Crit Care Med 2013;41:580-637.	
333	15.	Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International	
334		Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017;	
335		43:304-77.	
336	16.	de Carvalho MA, Freitas FG, Silva Junior HT, et al. Mortality predictors in renal transplant	
337		recipients with severe sepsis and septic shock. PLoS One 2014;9:e111610.	
338	17.	Innocenti F, Tozzi C, Donnini C, et al. SOFA score in septic patients: incremental prognostic	
339		value over age, comorbidities, and parameters of sepsis severity. Intern Emerg	
340		Med 2018;13:405-12.	
341	18.	Song JE, Kim MH, Jeong WY, et al. Mortality Risk Factors for Patients with Septic	
342		Shock after Implementation of the Surviving Sepsis Campaign Bundles. Infect	
343		<i>Chemother</i> 2016;48:199-208.	
344	19.	GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, et al. Health Effects o	f
345		Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med 2017;377:13-27.	
346	20.	Atamna A, Elis A, Gilady E, et al. How obesity impacts outcomes of infectious diseases. Eur	
347		J Clin Microbiol Infect Dis 2017; 36:585-91.	
348	21.	Taylor SP, Karvetski CH, Templin MA, et al. Initial fluid resuscitation following adjusted	
349		body weight dosing is associated with improved mortality in obese patients with suspected	
350		septic shock. J Crit Care 2018;43:7-12.	
351	22.	Nguyen AT, Tsai CL, Hwang LY, et al. Obesity and Mortality, Length of Stay and Hospital	
352		Cost among Patients with Sepsis: A Nationwide Inpatient Retrospective Cohort Study. PLoS	
		10	5
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

3	53	<i>One</i> 2016; 11:e0154599.
3	54 23.	Stapleton RD, Dixon AE, Parsons PE, et al. The association between BMI and plasma
3!	55	cytokine levels in patients with acute lung injury. Chest 2010;138:568-77.
3	56 24.	Stapleton RD, Suratt BT. Obesity and nutrition in acute respiratory distress syndrome. Clin
3!	57	<i>Chest Med</i> 2014;35:655-71.
3!	58 25.	Zampieri FG, Jacob V, Barbeiro HV, et al. Influence of Body Mass Index on Inflammatory
3!	59	Profile at Admission in Critically Ill Septic Patients. Int J Inflam 2015; 2015:734857.
30	60 26.	Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the acute
30	61	respiratory distress syndrome. N Engl J Med 2003;348:683-93.
30	62 27.	Wu A, Hinds CJ, Thiemermann C. High-density lipoproteins in sepsis and septic shock:
30	63	metabolism, actions, and therapeutic applications. Shock 2004;21:210-21.
30	64 28.	Murch O, Collin M, Hinds CJ, et al. Lipoproteins in inflammation and sepsis. I. Basic science.
30	65	Intensive Care Med 2007; 33:13-24.
30	66 29.	McGown C, Birerdinc A, Younossi ZM. Adipose tissue as an endocrine organ. Clin Liver
30	67	Dis 2014;18:41-58.
30	68 30.	Salgado DR, Rocco JR, Silva E, et al. Modulation of the renin-angiotensin-aldosterone
30	69	system in sepsis: a new therapeutic approach? Expert Opin Ther Targets 2010; 14:11-20.
3	70 31.	Zhao H, Gu X, Zhao R, et al. Evaluation of prognostic scoring systems in liver cirrhosis
3	71	patients with bloodstream infection. Medicine (Baltimore) 2017;96(50):e8844.
33	72 32.	Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic
37	73	shock. N Engl J Med 2012;366:2055-64.
33	74 33.	Scheer CS, Fuchs C, Kuhn SO, et al. Quality Improvement Initiative for Severe
		17

375	Sepsis and Septic Shock Reduces 90-Day Mortality: A 7.5-Year Observational Study. Crit	
376	<i>Care Med</i> 2017;45:241-52.	
377 34	4. He XL, Liao XL, Xie ZC, et al. Pulmonary Infection Is an Independent Risk Factor for	
378	Long-Term Mortality and Quality of Life for Sepsis Patients. Biomed Res Int 2016;	
379	2016:4213712.	
380 3	5. O'Brien JM Jr, Philips GS, Ali NA, et al. The association between body mass index, processe	S
381	of care, and outcomes from mechanical ventilation: a prospective cohort study.	
382	<i>Crit Care Med</i> 2012;40:1456-63.	
383 3	6. Waisbren E, Rosen H, Bader AM, et al. Percent body fat and prediction of surgical site	
384	infection. J Am Coll Surg 2010;210:381-9.	
385		
386		
387	infection. J Am Coll Surg 2010;210:381-9.	
388		
389		
390		
391		
392		
393		
394		
395		
396		
	1	18
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

397 Table 1.Comparison of demographics and clinical data between groups defined by clinical

398 outcome in 178 patients with sepsis

Characteristics	Survivors	Non survivors	
Characteristics	(n=104)	(n=74)	p value
Age (year)	78.0 (60.0-84.0)	78.0 (69.0-84.0)	0.291
Males	67 (64.4)	49 (66.2)	0.805
Body mass index (kg/m ²)	23.2 (20.4-26.1)	21.7 (18.4-24.2)	0.006
Comorbidities			
СОРД	23 (22.1)	9 (12.2)	0.088
Diabetes mellitus	26 (25.0)	21 (28.4)	0.614
Hypertension	47 (45.2)	31 (41.9)	0.662
Cerebrovascular disease	30 (28.8)	15 (20.3)	0.194
Neoplasm	18 (17.3)	12 (16.2)	0.848
Liver disease	5 (4.8)	4 (5.4)	1.000
Heart failure	20 (19.2)	14 (18.9)	0.958
Chronic renal failure	18 (17.3)	11 (14.9)	0.664
Smoking (pack years)	0 (0-30.0)	0 (0-16.3)	0.509
Primary site of infection			
Lung	77 (74.0)	54 (73.0)	0.874
Abdomen	10 (9.6)	5 (6.8)	0.499
Urinary tract	7 (6.7)	6 (8.1)	0.728
Gastrointestinal tract	7 (6.7)	5 (6.8)	1.000

Other site	3 (2.9)	4 (5.4)	0.452
Community-acquired infection	85 (81.7)	50 (67.6)	0.030
Hypotension	22 (21.2)	41 (55.4)	<0.001
Lactate level (mmol/L)	1.8 (1.0-3.4)	2.7 (1.5-5.7)	0.001
Oliguria	8 (7.7)	16 (21.6)	0.007
PaO ₂ /FiO ₂ (mmHg)	198.5 (119.3-287.5)	152.5 (99.6-210.3)	0.006
Serum Creatinine (µmol/L)	97.0 (68.3-176.3)	108.5 (64.0-194.3)	0.868
Total bilirubin (µmol/mL)	13.1 (9.9-22.3)	18.0 (12.5-32.8)	0.015
Platelets (×10 ⁹ /L)	161.0 (95.8-232.5)	123.0 (75.0-204.3)	0.067
INR	1.2 (1.0-1.4)	1.3 (1.1-1.6)	0.015
Glasgow coma scale	15.0 (10.0-15.0)	13.0 (10.0-15.0)	0.117
SOFA score	5.0 (4.0-7.0)	9.0 (7.0-11.0)	<0.001
APACHE II score	16.0 (12.0-22.0)	21.0 (17.0-30.0)	<0.001
Septic shock	21 (20.2)	38 (51.4)	<0.001
Non-invasive ventilation	28 (26.9)	24 (32.4)	0.426
Intubated	36 (34.6)	43 (58.1)	0.002
Positive blood culture	19 (18.3)	19 (25.7)	0.235
Length of ICU stay (days)	12.0 (6.0-22.0)	12.0 (3.0-25.0)	0.521
Length of hospital stay (days)	18.0 (10.0-30.0)	13.0 (3.0-25.0)	0.009

Data are presented as n (%) or median (interquartile range) unless stated otherwise. COPD: Chronic obstructive pulmonary disease; INR: International

400 normalized ratio; SOFA: Sequential organ failure assessment; APACHE: Acute physiology and chronic health evaluation.

1				
2 3	402	Table 2 Disk factors for 00 d	ay mortality of patients with sepsis or septic sh	ook hy Coy
4 5	402	Table 2. Risk factors for 90-u	ay mortanty of patients with sepsis or septic sh	OCK DY COX
6	403	regression analysis		
7 8				
9		Variables	Hazard ratio (95% Confidence interval)	p value
10 11		Body mass index (kg/m ²)	0.940 (0.889-0.994)	0.029
12 13				
14		Hypotension	0.781 (0.229-2.670)	0.694
15 16 17		Lactate level (mmol/L)	1.018 (0.943-1.098)	0.648
18 19		Oliguria	1.288 (0.715-2.321)	0.399
20 21 22		Oliguria PaO ₂ /FiO ₂ (mmHg) Septic shock SOFA score	1.000 (0.997-1.002)	0.933
22 23 24		Septic shock	1.075 (0.320-3.615)	0.907
25 26		SOFA score	1.229 (1.123-1.345)	<0.001
27 28 29		APACHE II score	1.050 (1.022-1.080)	<0.001
30 31		Intubated	1.511 (0.931-2.452)	0.095
32 33	404			
34	404	SOFA: Sequential organ failure assessment; APACHI	E: Acute physiology and chronic health evaluation.	
35	405			
36 37	405			
38	406			
39 40				
40 41	407			
42				
43 44	408			
45				
46	409			
47	44.0			
48 49	410			
50 51	411			
52 53	412			
54				
55 56	413			
57				21
58				21
59 60		For peer review only -	http://bmjopen.bmj.com/site/about/guidelines.xh	tml
00			, , , , ,	

414 Table 3. Comparison of demographics and clinical data among groups defined by body mass

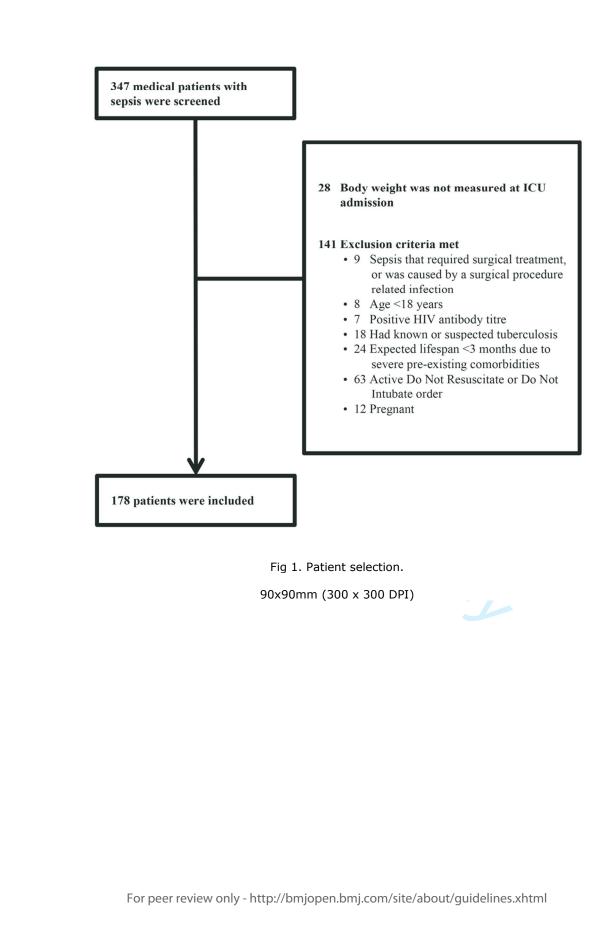
415 index in patients with sepsis

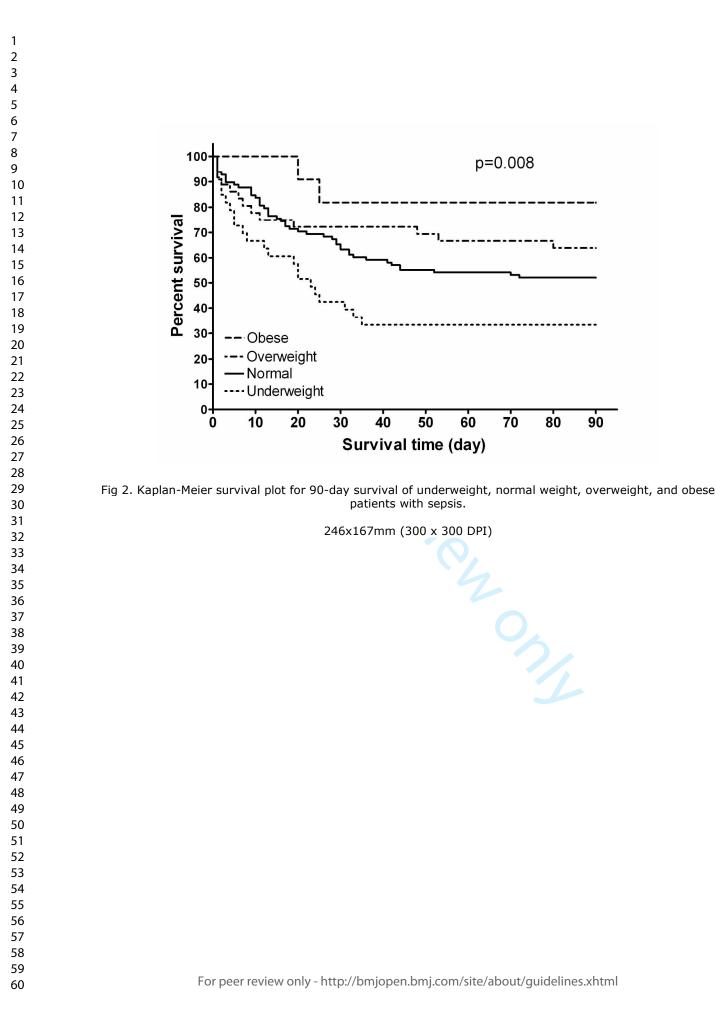
Characterist'	Underweight	Normal	Overweight	Obese		
Characteristics	(n=33)	(n=98)	(n=36)	(n=11)	p value	
Age (years)	79.0 (69.0-86.0)	78.0 (67.0-84.0)	73.0 (57.0-83.0)	77.0 (71.0-86.0)	0.162	
Males	24 (72.7)	70 (71.4)	20 (55.6)	2 (18.2)	0.002	
Comorbidities						
COPD	8(24.2)	21 (21.4)	0	3 (27.3)	0.017	
Diabetes mellitus	8 (24.2)	25 (25.5)	9 (25.0)	5 (45.5)	0.530	
Hypertension	14 (42.4)	38 (38.8)	19 (52.8)	7 (63.6)	0.265	
Cerebrovascular disease	10 (30.3)	24 (24.5)	11 (30.6)	0	0.193	
Neoplasm	7 (21.2)	14 (14.3)	8 (22.2)	1 (9.1)	0.547	
Liver disease	2 (6.1)	5 (5.1)	2 (5.6)	0	0.879	
Heart failure	8 (24.2)	17 (17.3)	5 (13.9)	4 (36.4)	0.319	
Chronic renal failure	5 (15.2)	14 (14.3)	7 (19.4)	3 (27.3)	0.669	
Smoking (pack-years)	0 (0-20.5)	0 (0-30.0)	0 (0-3.0)	0 (0-30.0)	0.561	
Primary site of infection						
Lung	27 (81.8)	69 (70.4)	27 (75.0)	8 (72.7)	0.637	
Abdomen	2 (6.1)	9 (9.2)	3 (8.3)	1 (9.1)	0.956	
Urinary tract	1 (3.0)	9 (9.2)	2 (5.6)	1 (9.1)	0.656	
Gastrointestinal tract	2 (6.1)	6 (6.1)	3 (8.3)	1 (9.1)	0.955	
Other site	1 (3.0)	5 (5.1)	1 (2.8)	0	0.800	

Page 23 of 29

BMJ Open

Community-acquired infection	25 (75.8)	76 (77.6)	26 (72.2)	8 (72.7)	
Hypotension	19 (57.6)	34 (34.7)	9 (25.0)	1 (9.1)	
Lactate level (mmol/L)	2.4 (1.6-7.2)	2.1 (1.0-4.3)	1.6 (1.2-3.3)	1.9 (0.6-2.9)	
Oliguria	8 (24.2)	13 (13.3)	3 (8.3)	0	
PaO ₂ /FiO ₂ (mmHg)	180.0(113.5-251.0)	164.5(102.3-240.5)	188.0(140.5-268.5)	215.0(153.0-300.0)	
Serum Creatinine (µmol/L)	89.0 (57.0-127.0)	118.5 (72.5-190.5)	91.0 (60.0-212.5)	86.0 (56.0-112.0)	
Total bilirubin (µmol/mL)	18.0 (10.1-33.1)	14.4 (10.1-28.4)	17.2 (12.2-26.3)	15.2 (11.3-20.0)	
Platelets (×10 ⁹ /L)	139.0 (75.0-213.0)	147.0 (86.0-209.8)	182.5 (128.3-253.8)	115.0 (49.0-144.0)	
INR	1.3 (1.1-1.6)	1.2 (1.0-1.5)	1.2 (1.1-1.3)	1.1 (1.0-1.2)	
Glasgow coma scale	13.0 (10.0-15.0)	15.0 (12.0-15.0)	15.0 (11.0-15.0)	13.0 (10.0-15.0)	
SOFA score	8.0 (5.0-11.0)	7.0 (5.0-9.0)	6.0 (4.0-8.0)	5.0 (5.0-8.0)	
APACHE [] score	18.0 (16.0-24.0)	19.0 (13.0-25.0)	18.0 (13.0-22.0)	14.0 (9.0-17.0)	
Septic shock	19 (57.6)	30 (30.6)	9 (25.0)	1(9.1)	
Non-invasive ventilation	7 (21.2)	30 (30.6)	10 (27.8)	5 (45.5)	
Intubated	19 (57.6)	43 (43.9)	13 (36.1)	4 (36.4)	
Positive blood culture	7 (21.2)	24 (24.5)	4 (11.1)	3 (27.3)	
Length of ICU stay (days)	10.0 (4.0-25.0)	13.0 (7.0-25.0)	11.0 (4.0-19.0)	9.0(6.0-13.0)	
Length of hospital stay (days)	13.0 (4.0-29.0)	16.0 (10.0-28.0)	16.0 (8.0-32.0)	13.0(8.0-20.0)	
In-hospital mortality	20 (60.6)	41 (41.8)	11 (30.6)	2 (18.2)	
90-day mortality	22 (66.7)	47 (48.0)	13 (36.1)	2 (18.2)	


417 Sequential organ failure assessment; APACHE: Acute physiology and chronic health evaluation.


1 2	
3	
4	
5	
6	
7 8	
9	
10	
11	
12 13	
14	
15	
16	
17	
18 19	
20	
21	
22	
23 24	
25	
26	
27	
28 29	
30	
31	
32	
33 34	
35	
36	
37	
38 39	
40	
41	
42 43	
43 44	
45	
46	
47	
48 49	
50	
51	
52 53	
53 54	
55	
56	
57 50	
58 59	
60	

1

418	Fig 1. Patient selection.
419	
420	
421	
422	
423	
424	
425	
426	
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	
437	
438	
439	

1		
2		
3 4	440	Fig 2. Kaplan-Meier survival plot for 90-day survival of underweight, normal weight,
5		
6	441	overweight, and obese patients with sepsis.
7	441	over weight, and obese patients with sepsis.
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30 31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
53 54		
54 55		
56		
57		
58		25
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2,3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe 6,7 omparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	N/A
Study size	10	Explain how the study size was arrived at	N/A
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and 6,7 why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6,7
		(b) Describe any methods used to examine subgroups and interactions	6,7
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(e) Describe any sensitivity analyses	N/A

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	7,8
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	7,8
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N/A
		(c) Summarise follow-up time (eg, average and total amount)	8
Outcome data	15*	Report numbers of outcome events or summary measures over time	8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	8,19-23
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	6
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	9-12
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	12,13
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	13
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

The impact of body mass index on survival of medical patients with sepsis: a prospective cohort study in a university hospital in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-021979.R2
Article Type:	Research
Date Submitted by the Author:	23-May-2018
Complete List of Authors:	Zhou, Qingtao; Peking University Third Hospital, Department of respiratory and critical care medicine Wang, Meng; Peking University Third Hospital, Department of respiratory and critical care medicine Li, Shuo; Peking University Third Hospital, Emergency Department Zhang, Jing; Peking University Third Hospital, Department of respiratory and critical care medicine Ma, Qingbian; Peking University Third Hospital, Emergency Department Ding, Yanling; Peking University Third Hospital, Emergency Department Ge, Hongxia; Peking University Third Hospital, Emergency Department Shen, Ning; Peking University Third Hospital, Emergency Department Shen, Ning; Peking University Third Hospital, Department of respiratory and critical care medicine Zheng, Yaan; Peking University Third Hospital, Emergency Department Sun, Yongchang; Peking University Third Hospital, Emergency Department Sun, Yongchang; Peking University Third Hospital, Emergency Department of respiratory and critical care medicine
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Infectious diseases
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, INFECTIOUS DISEASES, THORACIC MEDICINE

SCHOLARONE[™] Manuscripts

BMJ Open

2		
3	1	The impact of body mass index on survival of medical patients with sepsis: a
4	T	The impact of body mass much on survival of medical patients with sepsis: a
5		
6	2	prospective cohort study in a university hospital in China
7		
8	3	
9	_	
10	4	Qingtao Zhou ¹ , Meng Wang ¹ , Shuo Li ² , Jing Zhang ¹ , Qingbian Ma ² , Yanling Ding ¹ ,
11	4	Qingtao Zhou, Meng Wang, Shuo Li, Jing Zhang, Qingolan Ma, Tahing Ding,
12		
13 14	5	Hongxia Ge ² , Ning Shen ¹ , Yaan Zheng ² , Yongchang Sun ^{1*}
15		
16	6	
17	Ū	
18	-	¹ Department of Respiratory and Critical Care Medicine, Peking University Third
19	7	Department of Respiratory and Critical Care Medicine, Peking University Third
20		
21	8	Hospital, Beijing, China.
22		
23	9	² Emergency Department, Peking University Third Hospital, Beijing, China.
24	5	Emergency Department, i eking emversity Time Hospital, Deging, enna.
25		
26	10	
27		
28	11	*Corresponding author: Yongchang Sun, Department of Respiratory and Critical
29		
30	12	Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian
31	12	Care Medicine, Teking Oniversity Third Hospital, 49 North Garden Road, Hardian
32		
33	13	District, Beijing 100191, China. Email: suny@bjmu.edu.cn
34		
35	14	
36		
37	45	
38	15	
39		
40	16	
41		
42	17	
43 44		
44 45	40	
45 46	18	
40 47		
48	19	
49		
50	20	
51	20	
52		
53	21	
54		
55	22	
56		
57		1
58		1
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract **Objective** To evaluate the impact of body mass index (BMI) on survival of a Chinese cohort of medical patients with sepsis. Design A single-center prospective cohort study conducted from May 2015 to April 2017. **Setting** A tertiary care university hospital in China. **Participants** 178 patients with sepsis admitted to the medical intensive care unit (ICU) were included. Main outcome measures The primary outcome was 90-day mortality. The secondary outcomes were in-hospital mortality, length of ICU stay, and length of hospital stay. **Results** The median age (interguartile range) was 78 (66-84) years and the majority of patients (77.0%) were older than 65 years. The 90-day mortality was 47.2%. The in-hospital mortality was 41.6%, and the length of ICU stay and hospital stay were 12 (5-22) and 15 (9-28) days, respectively. Cox proportional hazard regression analysis identified that sequential organ failure assessment (SOFA) score (HR = 1.229, p < 0.001), APACHE II score (HR = 1.050, p < 0.001) and BMI (HR = 0.940, p = 0.029) were all independently associated with the 90-day mortality. Patients were divided into four groups based on BMI [underweight 33 (18.5%), normal 98 (55.1%), overweight 36 (20.2%), and obese 11 (6.2%)]. The 90-day mortality (66.7%, 48.0%, 36.1%, and 18.2%, p = 0.015) and in-hospital mortality (60.6\%, 41.8\%, 30.6\%, and 18.2%, p = 0.027) were statistically different among the four groups. Differences in survival among the four groups were demonstrated by Kaplan-Meier survival analysis

BMJ Open

45	(p = 0.008), with the underweight patients showing a lower survival rate.
46	Conclusions BMI was an independent factor associated with survival in a Chinese
47	cohort of medical patients with sepsis, patients with lower BMI having a higher risk
48	of death.
49	
50	Key words: Sepsis; Septic shock; Body mass index; Critical care; Mortality
51	
52	Strengths and limitations of this study
53	Our prospective observational cohort study was focused on medical patients with
54	sepsis and conducted at a university hospital in China.
55	The impact of BMI on 90-day survival of medical patients with sepsis was evaluated
56	by Cox proportional hazard regression analysis and Kaplan-Meier survival analysis.
57	Our analyses were limited by the use of weight ascertained at ICU admission, rather
58	than the patient's true outpatient weight.
59	
60	
61	
62	
63	
64	
65	
66	
	3
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4 5 6 7	
8 9 10 11 12	
13 14 15 16 17	
18 19 20 21 22 23	
20 21 22 23 24 25 26 27 28 20	
29 30 31 32 33 34	
35 36 37 38 39	
40 41 42 43 44 45	
46 47 48 49 50	
51 52 53 54 55	
56 57 58 59 60	

67 Introduction

68	Sepsis is a major cause of morbidity and mortality worldwide ^[1] . Of these
69	patients, half are treated in the intensive care unit (ICU) ^[2] . In a national
70	population-based study of sepsis in Spain, medical diagnostic categories were the
71	majority of causes in patients who developed sepsis, while surgical diagnoses were
72	identified in only 26% of cases ^[3] .
73	Body mass index (BMI) is a simple index of weight-for-height that is commonly
74	used to classify whether adults are underweight, overweight and obese ^[4] . Several
75	studies have examined the effects of BMI on mortality with conflicting conclusions.
76	Lower mortality in the obese has been observed in some studies ^[5-9] , but some
77	researchers believe that the true paradox may lie in the variations in sepsis
78	interventions, such as the administration of resuscitation fluids and antimicrobial
79	therapy ^[6] . In other studies, morbidly obese and underweight patients have been
80	shown to be associated with higher mortality ^[10,11] . Thus, the impact of BMI on
81	survival of patients with sepsis is still controversial ^[12, 13] .
82	As the relationship between BMI and clinical outcomes of sepsis is complex, we
83	therefore set out to evaluate prospectively the impact of BMI on survival in a cohort
84	of medical patients with sepsis admitted to the medical ICU in a university hospital.
85	
86	Patients and Methods
87	Design
88	This was a prospective cohort study, which was conducted in the medical ICU of
	4

Subjects

BMJ Open

89	a university-affiliated urban	teaching hospital in	n China from Ma	av 2015 to April 2017.
		0		

91	Sepsis was defined as the presence (probable or documented) of infection
92	together with systemic manifestations of infection ^[14] . Hospitalized patients admitted
93	to the medical ICU with sepsis acquired in the community or in a hospital were
94	eligible for the study if they met any of the following criteria of severe sepsis ^[14] : (1)
95	sepsis-induced hypotension, (2) lactate above upper laboratory level limits
96	(1.5mmol/L in this study), (3) urine output $<0.5 \text{ mL Kg}^{-1} \text{ h}^{-1}$ for more than 2 h despite
97	adequate fluid resuscitation, (4) acute lung injury with Pao ₂ /Fio ₂ <250 in the absence
98	of pneumonia as infection source, (5) acute lung injury with $Pao_2/Fio_2 < 200$ in the
99	presence of pneumonia as infection source, (6) creatinine >2.0 mg/dL (176.8 μ mol/L),
100	(7) bilirubin >2mg/dL (34.2 μ mol/L), (8) platelet count <100,000 μ L, and (9)
101	coagulopathy (international normalized ratio >1.5).
102	Patients were excluded from the study if they met one of the following criteria: (1)
103	the patient had sepsis that required surgical treatment, or was caused by a surgical
104	procedure related infection, (2) age <18 years, (3) the patient had a positive HIV
105	antibody titer or had known/suspected tuberculosis at baseline, (4) expected lifespan
106	<3 months due to severe pre-existing comorbidities, (5) active Do Not Resuscitate or
107	Do Not Intubate order, and (6) pregnant.
108	All patients accepted treatment according to the international guidelines for

108 All patients accepted treatment according to the international guidelines for 109 management of sepsis and septic shock ^[14,15]. We collected the following 110 demographic and clinical data: patient's gender, age, weight, height, primary site of

	BMJ Open
111	infection, community-acquired or hospital-acquired infection, blood pressure, lactate
112	level, urine output, PaO ₂ /FiO ₂ , serum creatinine, total bilirubin, platelets, international
113	normalized ratio (INR), Glasgow coma scale, SOFA score, acute physiology and
114	chronic health evaluation (APACHE) II score, non-invasive ventilation, intubation,
115	positive blood culture, length of ICU stay, and length of hospital stay. Those who
116	survived to discharge were followed for at least 90 days.
117	BMI is defined as the weight in kilograms divided by the square of the height in
118	meters (kg/m ²). Using the World Health Organization (WHO) criteria for designation
119	of BMI ^[4] , patients were classified as underweight (BMI < 18.50 kg/m^2), normal
120	weight (BMI = 18.50 to 24.99 kg/m ²), overweight (BMI = 25.0 to 29.99 kg/m ²), and
121	obese (BMI \geq 30.0 kg/m ²).
122	Outcomes
123	The primary outcome was 90-day mortality, while the secondary outcomes were
124	in-hospital mortality, length of ICU stay, and length of hospital stay.
125	Statistical analysis
126	Continuous variables were expressed as median (interquartile range) and
127	categorical variables as numbers (%). Clinical data were compared between the
128	in-hospital survivors and non-survivors. Continuous variables were compared using
129	the non-parametric Mann-Whitney U test, and categorical variables were compared
130	using the Chi squared test. Cox proportional hazard regression analysis was
131	undertaken to assess the factors associated with 90-day mortality. The variables
132	significantly associated with 90-day non-survival in the univariate analysis were used
	6
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 29		BMJ Open	
1 2			
3 4	133	in the Cox proportional hazard regression analysis.	
5 6 7	134	Patients were divided into four groups based on BMI (underweight, normal,	
8 9	135	overweight, and obese). Clinical data were compared among the four groups, where	
10 11	136	continuous variables were compared using the non-parametric Kruskal-Wallis H test,	
12 13 14	137	and categorical variables were compared using the Chi squared test. Kaplan-Meier	
15 16	138	survival curves were constructed to show the survival probabilities at day-90	
17 18 19	139	according to BMI classification, and compared using the log rank test.	
20 21	140	All analyses were conducted using SPSS, version 22.0 (IBM, Armonk, NY,	
22 23 24	141	USA). A p value <0.05 was considered significant.	
25 26	142	Patient involvement	
27 28	143	No patients were involved in developing the hypothesis, the specific aims or the	
29 30 31	144	research questions, nor were they involved in the design or implementation of this	
32 33	145	study. No patients were involved in the interpretation of study results or write-up of	
34 35 36	146	the manuscript. There are no plans to involve patients in the dissemination of results.	
37 38	147		
39 40 41	148	Results	
42 43	149	Figure 1 shows the patient-selection process. In total, 178 medical patients with	
44 45	150	sepsis were included in this study, with male patients accounting for 65.2% (n=116).	
46 47 48	151	The median age (interquartile range) was 78 (66-84) years, and most patients were at	
49 50	152	least 65 years old (137/178 cases, 77.0%). The most common primary site of infection	
51 52 53	153	was the lung (131 cases, 73.6%), followed by abdomen (15 cases, 8.4%), urinary tract	
54 55	154	(13 cases, 7.3%), gastrointestinal tract (12 cases, 6.7%) and other sites (7 cases, 3.9%).	
56 57 58		7	

2 3	
4	
5 6	
6 7	
8 9	
9 10 11	
12 13	
14	
15 16	
12 13 14 15 16 17 18	
19	
20 21 22	
22 23	
24	
25 26 27	
27 28	
29 30	
31	
32 33	
34	
35 36 37	
37 38	
39 40	
41 42	
43	
44 45	
46 47	
48	
49 50	
51 52	
53 54	
55	
56 57	
58 59	
60	

155	Septic shock patients accounted for 33.1% (59 cases). Blood culture was positive in
156	38 patients (21.3%). The 90-day mortality was 47.2% (84/178 cases), and the
157	in-hospital mortality was 41.6% (74/178 cases). The length of ICU stay and the length
158	of hospital stay were 12 (5-22) and 15 (9-28) days, respectively.
159	Compared with in-hospital survivors, non-survivors had significantly lower BMI
160	and PaO_2/FiO_2 (both p < 0.05), higher lactate, bilirubin, INR, SOFA score and
161	APACHE II score (all $p < 0.05$). Meanwhile, more patients died with
162	healthcare-acquired infections, hypotension, oliguria, septic shock, and intubation (all
163	p < 0.05) (table 1).
164	Cox proportional hazard regression analysis was conducted and the independent
165	factors for 90-day death were identified as SOFA score (HR = 1.220 , p < 0.001),
166	APACHE II score (HR = 1.050, $p < 0.001$) and BMI (HR = 0.940, $p = 0.029$) (table
167	2).
168	Patients were divided into four groups based on BMI [underweight 33 (18.5%),
169	normal 98 (55.1%), overweight 36 (20.2%), and obese 11 (6.2%)]. The percentage of
170	males (72.7%, 71.4%, 55.6%, and 18.2%, p = 0.002), chronic obstructive
171	pulmonary disease (24.2%, 21.4%, 0, and 27.3%, p=0.017), hypotension (57.6%,
172	34.7%, 25.0%, and 9.1%, p = 0.007), septic shock (57.6%, 30.6%, 25.0%, and 9.1%,
173	p = 0.004), in-hospital mortality (60.6%, 41.8%, 30.6%, and 18.2%, $p = 0.027$) and
174	90-day mortality (66.7%, 48.0%, 36.1%, and 18.2%, p = 0.015) were statistically
175	different among the four groups (table 3).
176	

BMJ Open

י ר
2
3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
40
42
43
44
45
46
47
48
49
50
50
52
53
54
55
56
57
58
59

60

at day-90 according to BMI classification and these were compared using the log rank
test, which also showed that higher BMI was associated with better prognosis
(p=0.008) (figure 2).

180

	D'	•
181	Discu	ission

182 This prospective observational cohort study was focused on medical patients with 183 sepsis admitted to the ICU, and the results showed that besides SOFA score and 184 APACHE II score, BMI was identified as an independent factor for 90-day mortality 185 by Cox regression analysis. The association of SOFA and APACHE II score with mortality in this cohort was consistent with previous studies^[16-18]. However, BMI was 186 also found to be independently associated with survival, where 90-day mortality 187 188 decreased with an increase in BMI. While studies examining the risk factors associated with outcomes in sepsis reached inconsistent conclusions on the 189 190 association of BMI with mortality, our results confirmed that BMI was independently 191 associated with mortality in patients with sepsis caused by medical conditions.

Globally, the prevalence of obesity has reached epidemic proportions, especially in developed countries ^[19]. BMI is still a useful proxy of overall health because it is highly correlated with body surface area, which is commonly used as a surrogate measure in obesity classification. Even though it is widely accepted that obesity is a risk factor for diabetes mellitus, hypertension, and cardiovascular diseases, the present study and several other studies have indicated that overweight and obese patients with sepsis tend to experience lower mortality. This has been called the "obesity paradox"

199	^[5-9,20] . Although some researchers have expressed doubt that the true paradox may lie
200	in the variations in sepsis interventions ^[6,21] , a meta-analysis concluded that
201	individuals who were overweight or obese had a reduced adjusted mortality when
202	admitted to the ICU with sepsis or septic shock [8]. Recently another meta-analysis
203	also concluded that being overweight was associated with lower mortality (OR 0.87,
204	95% CI 0.77-0.97, p = 0.02) compared with obese (OR 0.89, 95% CI 0.72-1.10, p =
205	0.29) and morbidly obese (OR 0.64, 95% CI 0.38-1.08, $p = 0.09$) patients who did not
206	exhibit significantly reduced mortality compared with normal weight patients ^[12] . In a
207	large and nationally representative sample of over 1,000 hospitals in the US, obesity
208	was found to be significantly associated with a 16% decrease in the odds of dying
209	among sepsis patients who were hospitalized ^[22] .
210	Underweight patients with sepsis may be more common in developing countries
211	than in developed countries. In the present study, the percentages of underweight,
212	normal weight, overweight and obese patients were 18.4%, 55.3%, 20.1%, and 6.1%,
213	respectively, while those with sepsis in a study in Canada and the US represented
214	6.8%, 35.3%, 28.3%, and 29.0% ^[6] . Being underweight was found to be one of the
215	independent risk factors of mortality in a study on the correlation between surgical
216	site infection and mortality ^[10] . Furthermore, Lee et al ^[11] also reported that being
217	underweight was associated with mortality in patients with severe sepsis and septic
218	shock. However, BMI has not been shown to be an independent factor for clinical
219	outcomes by multivariable analyses. In our cohort of medical patients with sepsis,
220	which mainly included elderly and less obese patients, BMI was identified as an

BMJ Open

2		
3 4	221	independent factor for survival, patients with lower BMI having a higher risk of death.
5 6 7	222	Thus, our findings would be helpful for evaluating the clinical outcomes of medical
8 9	223	patients with sepsis, although validation in further large sample, multi-center studies
10 11 12	224	is still needed.
13 14	225	The mechanism of the correlation between BMI and mortality of sepsis is unclear.
15 16 17	226	There are several potential reasons that could explain this. First, higher BMI resulted
18 19	227	in more fat reserves, and patients could have a greater capacity to cope with the
20 21	228	inflammatory response during sepsis and sepsis-associated acute lung injury ^[23-25] .
22 23 24	229	Furthermore, they may be able to tolerate extensive weight loss and dysfunction
25 26	230	associated with critical illness ^[26] . Secondly, a higher BMI can lead to an increased
27 28 29	231	level of lipoproteins. High-density lipoproteins may not only bind and inactivate
30 31	232	lipopolysaccharide (LPS) or other harmful bacterial products released during sepsis
32 33 34	233	^[27] , but also modulate adhesion molecule expression, upregulate endothelial nitric
35 36	234	oxide synthase, and counteract oxidative stress ^[28] . Thirdly, higher BMI can lead to
37 38 39	235	increased adipose tissue deposition. Adipose tissue is increasingly being considered as
40 41	236	a functional endocrine organ and associated with increased renin-angiotensin system
42 43	237	activity ^[29] . It appears to have protective hemodynamic effects during sepsis and may
44 45 46	238	decrease the need for fluid or vasopressor support ^[21,30] .
47 48	239	In general, sex has not been found to be an independent predictor for survival in
49 50 51	240	patients with sepsis, which is the same as the results of our current study. But in some
52 53	241	special populations, for example in liver cirrhosis patients with bloodstream infection,
54 55	242	male sex may be an independent risk factor for mortality ^[31] .

243	As the relationship between BMI and clinical outcomes of sepsis may be related
244	partly to differences in patient characteristics, we therefore set out to evaluate the
245	impact of BMI on survival in a cohort of medical patients with sepsis, which is
246	different from surgical septic patients. Ranieri et al [32] reported that the primary sites
247	of infection in adults with septic shock were lung (43.9%), abdomen (30.0%), urinary
248	tract (12.3%), skin (5.5%) and other sites (8.3%). Scheer et al ^[33] found that the most
249	common primary site of infection was different between medical and surgical patients.
250	In medical patients, lung was the most common primary site (42.0%-56.7%), while it
251	was abdomen (48.4%-64.4%) in surgical patients. It should be noted that in the
252	majority of our patients (73.6%) sepsis was associated with pulmonary infection, a
253	much higher percentage as compared to other studies. He et al ^[34] reported that
254	pulmonary-sepsis showed worse outcome than abdominal-sepsis, and pulmonary
255	infection was a risk factor for one-year mortality and quality of life after sepsis.
256	There were several limitations to our study. Firstly, the BMI of our patients
257	ranged from 12.11 to 32.46. There was no morbidly obese patient in the current study.
258	In fact, morbidly obese people are rare in this country. Ten severe thinness patients
259	with BMI less than 16.0 were included in the present study, which maybe a small
260	danger that low BMIs represent a sample related bias. But the 90-day mortality and
261	in-hospital mortality of severe thinness patients were 70.0% and 60.0%, respectively,
262	which were not different from those of all 33 underweight patients (66.7% and 60.6%,
263	respectively). Secondly, the present study used weight ascertained at ICU admission,
264	rather than the patient's true outpatient weight. This practice may misclassify the BMI

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
∠⊺ วา	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	

60

category in as many as 21.9% of patients due to lack of fluid balance adjustment ^[35].
Thirdly, BMI was used to determine the nutritional status of patients in this study.
BMI is a simple index and widely used in clinical practice, but other indices such as
percent body fat might better reflect body composition^[36]. Lastly, it was a
single-center study with 178 participants, and a large proportion of our patients were
older than 65 years, which may have led to a sample-related bias.

271 Conclusions

To our knowledge, this is the first prospective cohort study that focused on medical patients with sepsis, showing that BMI was independently associated with survival, patients with lower BMI having a higher risk of death.

reliev

- 275
- 276 Acknowledgements
- 277 Not applicable.
- 278
- 279 Authors' contributions
- QTZ, YCS, YAZ designed the study. QTZ, YCS, NS, YAZ, and QBM coordinated the
 study. MW, JZ, YLD, SL, and HXG were responsible for patient screening,
 enrollment, and follow-up. QTZ, MW, and YCS analyzed the data. QTZ drafted the
 manuscript. YCS critically revised the manuscript. All authors had full access to all
 study data, read and approved the final version of the manuscript.
- 286 Funding

2
5
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30 21
24
25
22
20
27
28
29
30
31
32
32 33
27
34
35
36
34 35 36 37 38
38
39
40
40 41
42
43
44
45
46
47
48
40 49
50
51
52
53
54
55
55 56
57
58
59
60

287

None.

288	
289	Competing interests
290	None declared.
291	
292	Ethics approval and consent to participate
293	The study protocol was approved (approval number M2015021) by the ethics
294	committee of Peking University Third Hospital, Beijing, China. All patients or their
295	legally authorized representatives provided written informed consent to participate in
296	the study.
297	
298	Data sharing statement
299	The authors declare that all data supporting the findings of this study are available
300	within the article.
301	
302	References
303	1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus
304	Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315:801-10.
305	2. Angus DC, van der Poll T. Severe sepsis and septic shock. <i>N Engl J Med</i> 2013;369:2063.
306	3. Bouza C, López-Cuadrado T, Saz-Parkinson Z, et al. Epidemiology and recent trends of
307	severe sepsis in Spain: a nationwide population-based analysis (2006-2011). BMC Infect Dis
308	2014; 14:3863.

BMJ Open

309	4.	WHO classification of body mass index (BMI). [http://apps.who.int/bmi/index.jsp?introPage=
310		intro_3.html] Accessed on 2 March 2015.
311	5.	Wurzinger B, Dünser MW, Wohlmuth C, et al. The association between body-mass index and
312		patient outcome in septic shock: a retrospective cohort study. Wien Klin Wochenschr 2010;122:
313		31-6.
314	6.	Arabi YM, Dara SI, Tamim HM, et al. Clinical characteristics, sepsis interventions and
315		outcomes in the obese patients with septic shock:an international multicenter cohort study.
316		<i>Crit Care</i> 2013;17:R72.
317	7.	Prescott HC, Chang VW, O'Brien JM Jr, et al. Obesity and 1-year outcomes in older
318		Americans with severe sepsis. Crit Care Med 2014;42:1766-74.
319	8.	Pepper DJ, Sun J, Welsh J, et al. Increased body mass index and adjusted mortality in ICU
320		patients with sepsis or septic shock: a systematic review and meta-analysis. Crit Care
321		2016;20:181.
322	9.	Gaulton TG, Marshall MacNabb C, Mikkelsen ME, et al. A retrospective cohort study
323		examining the association between body mass index and mortality in severe sepsis. Intern
324		Emerg Med 2015;10:471-9.
325	10.	Giles KA, Hamdan AD, Pomposelli FB, et al. Body mass index:surgical site infections and
326		mortality after lower extremity bypass from the National Surgical Quality Improvement
327		Program 2005-2007. Ann Vasc Surg 2010;24:48-56.
328	11.	Lee SM, Kang JW, Jo YH, et al. Underweight is associated with mortality in patients with
329		severe sepsis and septic shock. Intensive Care Med Exp 2015; 3:A876.
330	12.	Wang S, Liu X, Chen Q, et al. The role of increased body mass index in outcomes of sepsis: a
		15

331	systematic review and meta-analysis. BMC Anesthesiol 2017;17:118.	
332	13. Ng PY, Eikermann M. The obesity conundrum in sepsis. BMC Anesthesiol 2017;17:147.	
333	14. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guideline	s
334	for management of severe sepsis and septic shock: 2012. Crit Care Med 2013;41:580-637.	
335	15. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International	
336	Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017;	
337	43:304-77.	
338	16. de Carvalho MA, Freitas FG, Silva Junior HT, et al. Mortality predictors in renal transplant	
339	recipients with severe sepsis and septic shock. PLoS One 2014;9:e111610.	
340	17. Innocenti F, Tozzi C, Donnini C, et al. SOFA score in septic patients: incremental prognostic	
341	value over age, comorbidities, and parameters of sepsis severity. Intern Emerg	
342	Med 2018;13:405-12.	
343	18. Song JE, Kim MH, Jeong WY, et al. Mortality Risk Factors for Patients with Septic	
344	Shock after Implementation of the Surviving Sepsis Campaign Bundles. Infect	
345	Chemother 2016;48:199-208.	
346	19. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, et al. Health Effects of	of
347	Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med 2017;377:13-27.	
348	20. Atamna A, Elis A, Gilady E, et al. How obesity impacts outcomes of infectious diseases. Eur	
349	J Clin Microbiol Infect Dis 2017; 36:585-91.	
350	21. Taylor SP, Karvetski CH, Templin MA, et al. Initial fluid resuscitation following adjusted	
351	body weight dosing is associated with improved mortality in obese patients with suspected	
352	septic shock. J Crit Care 2018;43:7-12.	
	t	16

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

353	22. Nguyen AT, Tsai CL, Hwang LY, et al. Obesity and Mortality, Length of Stay and Hospital
354	Cost among Patients with Sepsis: A Nationwide Inpatient Retrospective Cohort Study. PLoS
355	<i>One</i> 2016; 11:e0154599.
356	23. Stapleton RD, Dixon AE, Parsons PE, et al. The association between BMI and plasma
357	cytokine levels in patients with acute lung injury. Chest 2010;138:568-77.
358	24. Stapleton RD, Suratt BT. Obesity and nutrition in acute respiratory distress syndrome. Clin
359	Chest Med 2014;35:655-71.
360	25. Zampieri FG, Jacob V, Barbeiro HV, et al. Influence of Body Mass Index on Inflammatory
361	Profile at Admission in Critically Ill Septic Patients. Int J Inflam 2015; 2015:734857.
362	26. Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the acute
363	respiratory distress syndrome. N Engl J Med 2003;348:683-93.
364	27. Wu A, Hinds CJ, Thiemermann C. High-density lipoproteins in sepsis and septic shock:
365	metabolism, actions, and therapeutic applications. Shock 2004;21:210-21.
366	28. Murch O, Collin M, Hinds CJ, et al. Lipoproteins in inflammation and sepsis. I. Basic science
367	Intensive Care Med 2007; 33:13-24.
368	29. McGown C, Birerdinc A, Younossi ZM. Adipose tissue as an endocrine organ. Clin Liver
369	Dis 2014;18:41-58.
370	30. Salgado DR, Rocco JR, Silva E, et al. Modulation of the renin-angiotensin-aldosterone
371	system in sepsis: a new therapeutic approach? Expert Opin Ther Targets 2010; 14:11-20.
372	31. Zhao H, Gu X, Zhao R, et al. Evaluation of prognostic scoring systems in liver cirrhosis
373	patients with bloodstream infection. Medicine (Baltimore) 2017;96(50):e8844.
374	32. Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic
	1

375	shock. <i>N Engl J Med</i> 2012;366:2055-64.	
376	33. Scheer CS, Fuchs C, Kuhn SO, et al. Quality Improvement Initiative for Severe	
377	Sepsis and Septic Shock Reduces 90-Day Mortality: A 7.5-Year Observational Study. Crit	
378	<i>Care Med</i> 2017;45:241-52.	
379	34. He XL, Liao XL, Xie ZC, et al. Pulmonary Infection Is an Independent Risk Factor for	
380	Long-Term Mortality and Quality of Life for Sepsis Patients. Biomed Res Int 2016;	
381	2016:4213712.	
382	35. O'Brien JM Jr, Philips GS, Ali NA, et al. The association between body mass index, processe	s
383	of care, and outcomes from mechanical ventilation: a prospective cohort study.	
384	<i>Crit Care Med</i> 2012;40:1456-63.	
385	36. Waisbren E, Rosen H, Bader AM, et al. Percent body fat and prediction of surgical site	
386	infection. J Am Coll Surg 2010;210:381-9.	
387	infection. <i>J Am Coll Surg</i> 2010;210:381-9.	
388		
389		
390		
391		
392		
393		
394		
395		
396		
		18
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

8 in-hospital clinical outcome in 178	in-hospital clinical outcome in 178 patients with sepsis					
Characteristics	Survivors	Non survivors	n volu			
Characteristics	(n=104)	(n=74)	p value			
Age (year)	78.0 (60.0-84.0)	78.0 (69.0-84.0)	0.291			
Males	67 (64.4)	49 (66.2)	0.805			
Body mass index (kg/m ²)	23.2 (20.4-26.1)	21.7 (18.4-24.2)	0.006			
Comorbidities						
СОРД	23 (22.1)	9 (12.2)	0.088			
Diabetes mellitus	26 (25.0)	21 (28.4)	0.614			
Hypertension	47 (45.2)	31 (41.9)	0.662			
Cerebrovascular disease	30 (28.8)	15 (20.3)	0.194			
Neoplasm	18 (17.3)	12 (16.2)	0.848			
Liver disease	5 (4.8)	4 (5.4)	1.000			
Heart failure	20 (19.2)	14 (18.9)	0.958			
Chronic renal failure	18 (17.3)	11 (14.9)	0.664			
Smoking (pack years)	0 (0-30.0)	0 (0-16.3)	0.509			
Primary site of infection						
Lung	77 (74.0)	54 (73.0)	0.874			
Abdomen	10 (9.6)	5 (6.8)	0.499			
Urinary tract	7 (6.7)	6 (8.1)	0.728			
Gastrointestinal tract	7 (6.7)	5 (6.8)	1.000			

Other site	3 (2.9)	4 (5.4)	0.452
Community-acquired infection	85 (81.7)	50 (67.6)	0.030
Hypotension	22 (21.2)	41 (55.4)	<0.001
Lactate level (mmol/L)	1.8 (1.0-3.4)	2.7 (1.5-5.7)	0.001
Oliguria	8 (7.7)	16 (21.6)	0.007
PaO ₂ /FiO ₂ (mmHg)	198.5 (119.3-287.5)	152.5 (99.6-210.3)	0.006
Serum Creatinine (µmol/L)	97.0 (68.3-176.3)	108.5 (64.0-194.3)	0.868
Total bilirubin (µmol/mL)	13.1 (9.9-22.3)	18.0 (12.5-32.8)	0.015
Platelets (×10 ⁹ /L)	161.0 (95.8-232.5)	123.0 (75.0-204.3)	0.067
INR	1.2 (1.0-1.4)	1.3 (1.1-1.6)	0.015
Glasgow coma scale	15.0 (10.0-15.0)	13.0 (10.0-15.0)	0.117
SOFA score	5.0 (4.0-7.0)	9.0 (7.0-11.0)	<0.001
APACHE II score	16.0 (12.0-22.0)	21.0 (17.0-30.0)	<0.001
Septic shock	21 (20.2)	38 (51.4)	<0.001
Non-invasive ventilation	28 (26.9)	24 (32.4)	0.426
Intubated	36 (34.6)	43 (58.1)	0.002
Positive blood culture	19 (18.3)	19 (25.7)	0.235
Length of ICU stay (days)	12.0 (6.0-22.0)	12.0 (3.0-25.0)	0.521
Length of hospital stay (days)	18.0 (10.0-30.0)	13.0 (3.0-25.0)	0.009

Data are presented as n (%) or median (interquartile range) unless stated otherwise. COPD: Chronic obstructive pulmonary disease; INR: International

400 normalized ratio; SOFA: Sequential organ failure assessment; APACHE: Acute physiology and chronic health evaluation.

1 2 3 4	402	Table 2. Risk factors for 90-d	ay mortality of patients with sepsis or septic sl	10ck by Cox
5 6 7	403	regression analysis		
8 9		Variables	Hazard ratio (95% Confidence interval)	p value
10 11 12		Body mass index (kg/m ²)	0.940 (0.889-0.994)	0.029
13 14		Hypotension	0.781 (0.229-2.670)	0.694
15 16 17		Lactate level (mmol/L)	1.018 (0.943-1.098)	0.648
18 19		Oliguria	1.288 (0.715-2.321)	0.399
20 21 22		Oliguria PaO ₂ /FiO ₂ (mmHg) Septic shock SOFA score	1.000 (0.997-1.002)	0.933
23 24		Septic shock	1.075 (0.320-3.615)	0.907
25 26 27		SOFA score	1.229 (1.123-1.345)	< 0.001
28 29		APACHE II score	1.050 (1.022-1.080)	< 0.001
30 31 32		Intubated	1.511 (0.931-2.452)	0.095
33 34	404	SOFA: Sequential organ failure assessment; APACH	E: Acute physiology and chronic health evaluation. The variables significantly associ	ated with 90-day
35 36 37	405	non-survival in the univariate analysis were used in t	ne Cox proportional hazard regression analysis.	
38 39	406			
40 41 42	407			
43 44	408			
45 46 47	409			
47 48 49	410			
50 51	411			
52 53 54	412			
55 56	413			
57 58 59				21
60		For peer review only -	http://bmjopen.bmj.com/site/about/guidelines.xh	ntml

414 Table 3. Comparison of demographics and clinical data among groups defined by body mass

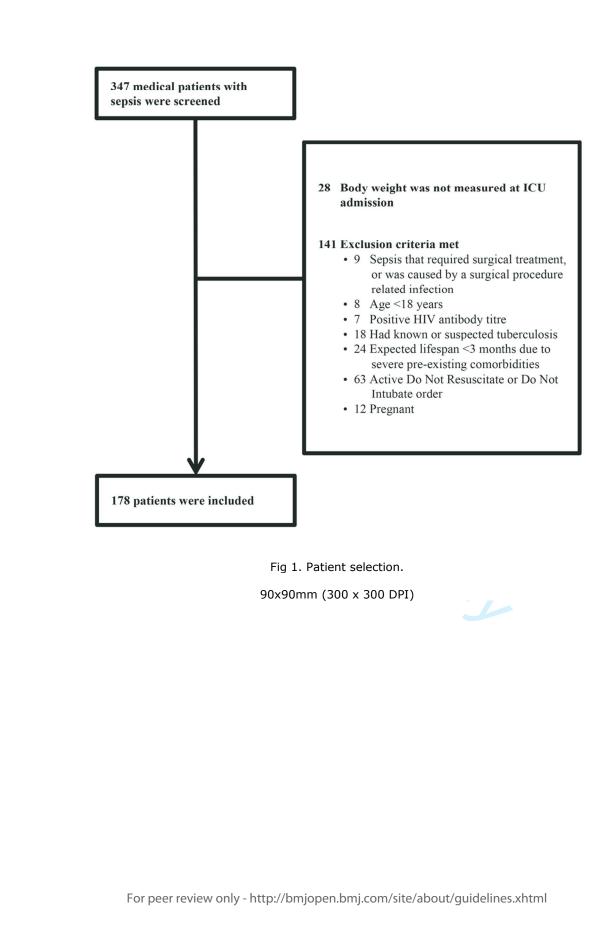
415 index in patients with sepsis

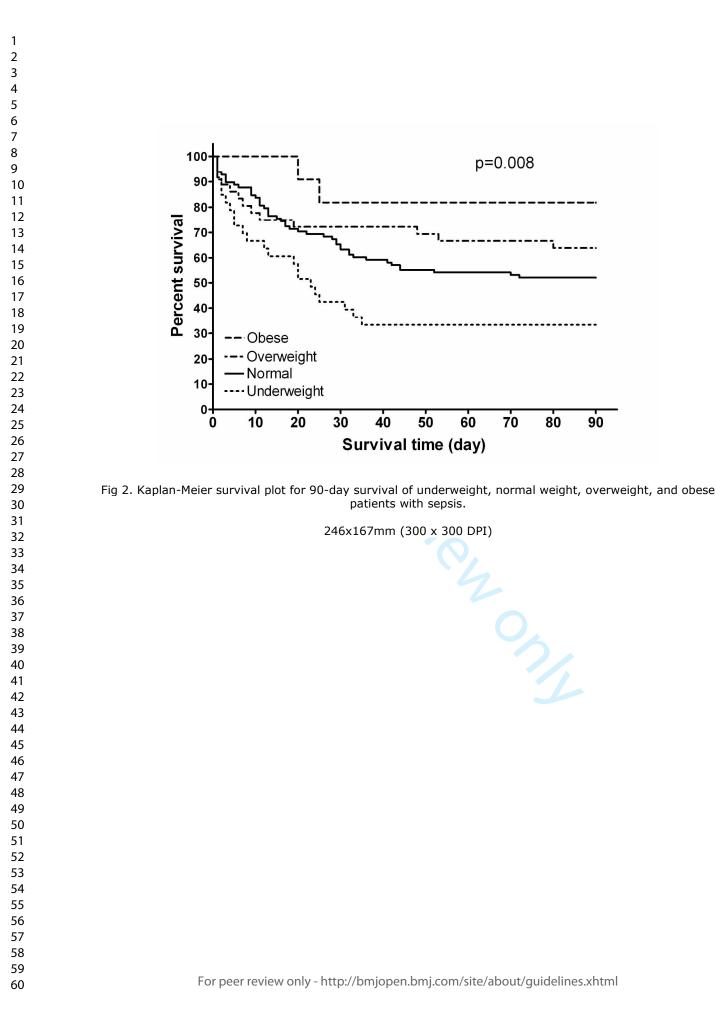
Characterist'	Underweight	Normal	Overweight	Obese	
Characteristics	(n=33)	(n=98)	(n=36)	(n=11)	p valu
Age (years)	79.0 (69.0-86.0)	78.0 (67.0-84.0)	73.0 (57.0-83.0)	77.0 (71.0-86.0)	0.162
Males	24 (72.7)	70 (71.4)	20 (55.6)	2 (18.2)	0.002
Comorbidities					
COPD	8(24.2)	21 (21.4)	0	3 (27.3)	0.017
Diabetes mellitus	8 (24.2)	25 (25.5)	9 (25.0)	5 (45.5)	0.530
Hypertension	14 (42.4)	38 (38.8)	19 (52.8)	7 (63.6)	0.265
Cerebrovascular disease	10 (30.3)	24 (24.5)	11 (30.6)	0	0.193
Neoplasm	7 (21.2)	14 (14.3)	8 (22.2)	1 (9.1)	0.547
Liver disease	2 (6.1)	5 (5.1)	2 (5.6)	0	0.879
Heart failure	Heart failure 8 (24.2) 17 (17.3) 5 (13.9)		5 (13.9)	4 (36.4)	0.319
Chronic renal failure	5 (15.2)	14 (14.3)	7 (19.4)	3 (27.3)	0.669
Smoking (pack-years)	0 (0-20.5)	0 (0-30.0)	0 (0-3.0)	0 (0-30.0)	0.561
Primary site of infection					
Lung	27 (81.8)	69 (70.4)	27 (75.0)	8 (72.7)	0.637
Abdomen	2 (6.1)	9 (9.2)	3 (8.3)	1 (9.1)	0.956
Urinary tract	1 (3.0)	9 (9.2)	2 (5.6)	1 (9.1)	0.656
Gastrointestinal tract	2 (6.1)	6 (6.1)	3 (8.3)	1 (9.1)	0.955
Other site	1 (3.0)	5 (5.1)	1 (2.8)	0	0.800

Page 23 of 29

BMJ Open

Community-acquired infection	25 (75.8)	76 (77.6)	26 (72.2)	8 (72.7)	
Hypotension	19 (57.6)	34 (34.7)	9 (25.0)	1 (9.1)	
Lactate level (mmol/L)	2.4 (1.6-7.2)	2.1 (1.0-4.3)	1.6 (1.2-3.3)	1.9 (0.6-2.9)	
Oliguria	8 (24.2)	13 (13.3)	3 (8.3)	0	
PaO ₂ /FiO ₂ (mmHg)	180.0(113.5-251.0)	164.5(102.3-240.5)	188.0(140.5-268.5)	215.0(153.0-300.0)	
Serum Creatinine (µmol/L)	89.0 (57.0-127.0)	118.5 (72.5-190.5)	91.0 (60.0-212.5)	86.0 (56.0-112.0)	
Total bilirubin (µmol/mL)	18.0 (10.1-33.1)	14.4 (10.1-28.4)	17.2 (12.2-26.3)	15.2 (11.3-20.0)	
Platelets (×10 ⁹ /L)	139.0 (75.0-213.0)	147.0 (86.0-209.8)	182.5 (128.3-253.8)	115.0 (49.0-144.0)	
INR	1.3 (1.1-1.6)	1.2 (1.0-1.5)	1.2 (1.1-1.3)	1.1 (1.0-1.2)	
Glasgow coma scale	13.0 (10.0-15.0)	15.0 (12.0-15.0)	15.0 (11.0-15.0)	13.0 (10.0-15.0)	
SOFA score	8.0 (5.0-11.0)	7.0 (5.0-9.0)	6.0 (4.0-8.0)	5.0 (5.0-8.0)	
APACHE [] score	18.0 (16.0-24.0)	19.0 (13.0-25.0)	18.0 (13.0-22.0)	14.0 (9.0-17.0)	
Septic shock	19 (57.6)	30 (30.6)	9 (25.0)	1(9.1)	
Non-invasive ventilation	7 (21.2)	30 (30.6)	10 (27.8)	5 (45.5)	
Intubated	19 (57.6)	43 (43.9)	13 (36.1)	4 (36.4)	
Positive blood culture	7 (21.2)	24 (24.5)	4 (11.1)	3 (27.3)	
Length of ICU stay (days)	10.0 (4.0-25.0)	13.0 (7.0-25.0)	11.0 (4.0-19.0)	9.0(6.0-13.0)	
Length of hospital stay (days)	13.0 (4.0-29.0)	16.0 (10.0-28.0)	16.0 (8.0-32.0)	13.0(8.0-20.0)	
In-hospital mortality	20 (60.6)	41 (41.8)	11 (30.6)	2 (18.2)	
90-day mortality	22 (66.7)	47 (48.0)	13 (36.1)	2 (18.2)	


417 Sequential organ failure assessment; APACHE: Acute physiology and chronic health evaluation.


1 2	
3	
4	
5	
6	
7 8	
9	
10	
11	
12 13	
14	
15	
16	
17	
18 19	
20	
21	
22	
23 24	
25	
26	
27	
28 29	
30	
31	
32	
33 34	
35	
36	
37	
38 39	
40	
41	
42 43	
43 44	
45	
46	
47	
48 49	
50	
51	
52 53	
53 54	
55	
56	
57 50	
58 59	
60	

1

418	Fig 1. Patient selection.
419	
420	
421	
422	
423	
424	
425	
426	
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	
437	
438	
439	

1		
2		
3 4	440	Fig 2. Kaplan-Meier survival plot for 90-day survival of underweight, normal weight,
5		
6	441	overweight, and obese patients with sepsis.
7	441	over weight, and obese patients with sepsis.
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30 31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
53 54		
54 55		
56		
57		
58		25
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2,3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4, 5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4, 5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5,6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6
Bias	9	Describe any efforts to address potential sources of bias	N/A
Study size	10	Explain how the study size was arrived at	N/A
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6,7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6,7
		(b) Describe any methods used to examine subgroups and interactions	6,7
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(e) Describe any sensitivity analyses	N/A

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	7,8
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	7,8
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N/A
		(c) Summarise follow-up time (eg, average and total amount)	8
Outcome data	15*	Report numbers of outcome events or summary measures over time	8,9
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	8,19-25
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	6
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	12,13
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	13, 14
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

The impact of body mass index on survival of medical patients with sepsis: a prospective cohort study in a university hospital in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-021979.R3
Article Type:	Research
Date Submitted by the Author:	24-Jun-2018
Complete List of Authors:	Zhou, Qingtao; Peking University Third Hospital, Department of respiratory and critical care medicine Wang, Meng; Peking University Third Hospital, Department of respiratory and critical care medicine Li, Shuo; Peking University Third Hospital, Emergency Department Zhang, Jing; Peking University Third Hospital, Department of respiratory and critical care medicine Ma, Qingbian; Peking University Third Hospital, Emergency Department Ding, Yanling; Peking University Third Hospital, Emergency Department Ge, Hongxia; Peking University Third Hospital, Emergency Department Shen, Ning; Peking University Third Hospital, Department of respiratory and critical care medicine Ge, Hongxia; Peking University Third Hospital, Department of respiratory and critical care medicine Zheng, Yaan; Peking University Third Hospital, Emergency Department Sun, Yongchang; Peking University Third Hospital, Emergency Department Sun, Yongchang; Peking University Third Hospital, Department of respiratory and critical care medicine
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Infectious diseases
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, INFECTIOUS DISEASES, THORACIC MEDICINE

SCHOLARONE[™] Manuscripts

BMJ Open

2		
3	1	The impact of body mass index on survival of medical patients with sepsis: a
4	T	The impact of body mass much on survival of medical patients with sepsis: a
5		
6	2	prospective cohort study in a university hospital in China
7		
8	3	
9	_	
10	4	Qingtao Zhou ¹ , Meng Wang ¹ , Shuo Li ² , Jing Zhang ¹ , Qingbian Ma ² , Yanling Ding ¹ ,
11	4	Qingtao Zhou, Meng Wang, Shuo Li, Jing Zhang, Qingolan Ma, Tahing Ding,
12		
13 14	5	Hongxia Ge ² , Ning Shen ¹ , Yaan Zheng ² , Yongchang Sun ^{1*}
15		
16	6	
17	Ū	
18	-	¹ Department of Respiratory and Critical Care Medicine, Peking University Third
19	7	Department of Respiratory and Critical Care Medicine, Peking University Third
20		
21	8	Hospital, Beijing, China.
22		
23	9	² Emergency Department, Peking University Third Hospital, Beijing, China.
24	5	Emergency Department, i eking emversity Time Hospital, Deging, emita.
25		
26	10	
27		
28	11	*Corresponding author: Yongchang Sun, Department of Respiratory and Critical
29		
30	12	Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian
31	12	Care Medicine, Teking Oniversity Third Hospital, 49 North Garden Road, Hardian
32		
33	13	District, Beijing 100191, China. Email: suny@bjmu.edu.cn
34		
35	14	
36		
37	45	
38	15	
39		
40	16	
41		
42	17	
43 44		
44 45	40	
45 46	18	
40 47		
48	19	
49		
50	20	
51	20	
52		
53	21	
54		
55	22	
56		
57		1
58		1
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

23 Abstract

- **Objective** To evaluate the impact of body mass index (BMI) on survival of a Chinese
- 25 cohort of medical patients with sepsis.
- **Design** A single-center prospective cohort study conducted from May 2015 to April

27 2017.

Setting A tertiary care university hospital in China.

29 Participants A total of 178 patients with sepsis admitted to the medical intensive care
30 unit (ICU) were included.

Main outcome measures The primary outcome was 90-day mortality while the secondary outcomes were in-hospital mortality, length of ICU stay, and length of hospital stay.

Results The median age (interquartile range) was 78 (66-84) years old and 77.0% patients were older than 65 years. The 90-day mortality was 47.2%. The in-hospital mortality was 41.6%, and the length of ICU stay and hospital stay were 12 (5-22) and 15 (9-28) days, respectively. Cox proportional hazard regression analysis identified that sequential organ failure assessment (SOFA) score (HR = 1.229, p < 0.001), APACHE II score (HR = 1.050, p < 0.001) and BMI (HR = 0.940, p = 0.029) were all independently associated with the 90-day mortality. Patients were divided into four groups based on BMI [underweight 33 (18.5%), normal 98 (55.1%), overweight 36 (20.2%), and obese 11 (6.2%)]. The 90-day mortality (66.7%, 48.0%, 36.1%, and 18.2%, p = 0.015) and in-hospital mortality (60.6%, 41.8%, 30.6%, and 18.2%, p = 0.027) were statistically different among the four groups. Differences in survival

BMJ Open

2	45	among the four groups were demonstrated by Kaplan-Meier survival analysis (p =
2	46	0.008), with the underweight patients showing a lower survival rate.
2	47	Conclusions BMI was an independent factor associated with 90-day survival in a
2	48	Chinese cohort of medical patients with sepsis, with patients having a lower BMI at a
2	49	higher risk of death.
Į,	50	
I.	51	Key words: Sepsis; Septic shock; Body mass index; Critical care; Mortality
Į,	52	
Į,	53	Strengths and limitations of this study
Į,	54	This prospective observational cohort study focused on medical patients with sepsis
Į,	55	and was conducted at a university hospital in China.
Į,	56	The impact of BMI on 90-day survival of medical patients with sepsis was evaluated
5	57	by Cox proportional hazard regression analysis and Kaplan-Meier survival analysis.
Į,	58	Our analyses were limited by the use of weight ascertained at ICU admission rather
Į,	59	than the patient's baseline outpatient body weight.
e	60	
6	61	
6	62	
6	63	
e	64	
6	65	
6	66	
		3
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

67 Introduction

68	Sepsis is a major cause of morbidity and mortality worldwide ^[1] . Of these
69	patients, half are treated in the intensive care unit (ICU) ^[2] . In a national
70	population-based study of sepsis in Spain, medical diagnostic categories made up the
71	majority of causes of sepsis, while surgical diagnoses were identified in only 26% of
72	cases ^[3] .
73	Body mass index (BMI) is a simple index of weight-for-height that is commonly
74	used to classify whether adults are underweight, overweight and obese ^[4] . Several
75	studies have examined the effects of BMI on mortality with conflicting conclusions.
76	Lower mortality in the obese has been observed in some studies ^[5-9] , but some
77	researchers believe that the true paradox may lie in the variations in sepsis
78	interventions, such as the administration of resuscitation fluids and antimicrobial
79	therapy ^[6] . In other studies, morbidly obese and underweight patients have been
80	shown to be associated with higher mortality ^[10,11] . Thus, the impact of BMI on
81	survival of patients with sepsis is still controversial ^[12, 13] .
82	As the relationship between BMI and clinical outcomes of sepsis is complex, we
83	therefore set out to evaluate prospectively the impact of BMI on survival in a cohort
84	of medical patients with sepsis admitted to the medical ICU in a university hospital.
85	
86	Patients and Methods
87	Design
88	This was a prospective cohort study, which was conducted in the medical ICU of
	4

Subjects

BMJ Open

a university-affiliated urban teaching hospital in China from May 2015 to April 2	2017.
---	-------

91	Sepsis was defined as the presence (probable or documented) of infection
92	together with systemic manifestations of infection ^[14] . Hospitalized patients admitted
93	to the medical ICU with sepsis acquired in the community or in a hospital were
94	eligible for the study if they met any of the following criteria of severe sepsis ^[14] : (1)
95	sepsis-induced hypotension, (2) lactate above upper laboratory level limits
96	(1.5mmol/L in this study), (3) urine output $< 0.5 \text{ mL Kg}^{-1} \text{ h}^{-1}$ for more than 2 h despite
97	adequate fluid resuscitation, (4) acute lung injury with Pao ₂ /Fio ₂ <250 in the absence
98	of pneumonia as infection source, (5) acute lung injury with Pao ₂ /Fio ₂ <200 in the
99	presence of pneumonia as infection source, (6) creatinine >2.0 mg/dL (176.8 µmol/L),
100	(7) bilirubin >2mg/dL (34.2 μ mol/L), (8) platelet count <100,000 μ L, and (9)
101	coagulopathy (international normalized ratio >1.5).
102	Patients were excluded from the study if they met one of the following criteria: (1)
103	the patient had sepsis that required surgical treatment, or was caused by a surgical
104	procedure related infection, (2) age <18 years, (3) the patient had a positive HIV
105	antibody titer or had known/suspected tuberculosis at baseline, (4) expected lifespan
106	<3 months due to severe pre-existing comorbidities, (5) active Do Not Resuscitate or
107	Do Not Intubate order, and (6) pregnant.
108	All patients accepted treatment according to the international guidelines for

108 All patients accepted treatment according to the international guidelines for 109 management of sepsis and septic shock ^[14,15]. We collected the following 110 demographic and clinical data: patient's gender, age, weight, height, primary site of

111	infection, community-acquired or hospital-acquired infection, blood pressure, lactate
112	level, urine output, PaO ₂ /FiO ₂ , serum creatinine, total bilirubin, platelets, international
113	normalized ratio (INR), Glasgow coma scale, SOFA score, acute physiology and
114	chronic health evaluation (APACHE) II score, non-invasive ventilation, intubation,
115	positive blood culture, length of ICU stay, and length of hospital stay. Those who
116	survived to discharge were followed for at least 90 days.
117	BMI is defined as the weight in kilograms divided by the square of the height in
118	meters (kg/m ²). Using the World Health Organization (WHO) criteria for designation
119	of BMI ^[4] , patients were classified as underweight (BMI < 18.50 kg/m^2), normal
120	weight (BMI = 18.50 to 24.99 kg/m ²), overweight (BMI = 25.0 to 29.99 kg/m ²), and
121	obese (BMI \geq 30.0 kg/m ²).
122	Outcomes
123	The primary outcome was 90-day mortality, while the secondary outcomes were
124	in-hospital mortality, length of ICU stay, and length of hospital stay.
125	Statistical analysis
126	Continuous variables were expressed as median (interquartile range) and
127	categorical variables as numbers (%). Clinical data were compared between the
128	in-hospital survivors and non-survivors. Continuous variables were compared using
129	the non-parametric Mann-Whitney U test, and categorical variables were compared
130	using the Chi squared test. Cox proportional hazard regression analysis was
131	undertaken to assess the factors associated with 90-day mortality. The variables
132	significantly associated with 90-day non-survival in the univariate analysis were used
	6

ge 7 of 29	BMJ Open
13	in the Cox proportional hazard regression analysis.
13	4 Patients were divided into four groups based on BMI (underweight, normal,
13	overweight, and obese). Clinical data were compared among the four groups, where
13	6 continuous variables were compared using the non-parametric Kruskal-Wallis H test,
13	and categorical variables were compared using the Chi squared test. Kaplan-Meier
13	8 survival curves were constructed to show the survival probabilities at day-90
13	according to BMI classification, and compared using the log rank test.
14	All analyses were conducted using SPSS, version 22.0 (IBM, Armonk, NY,
14	1 USA). A p value <0.05 was considered significant.
14	2 Patient involvement
14	No patients were involved in developing the hypothesis, the specific aims or the
14	4 research questions, nor were they involved in the design or implementation of this
14	5 study. No patients were involved in the interpretation of study results or write-up of
14	the manuscript. There are no plans to involve patients in the dissemination of results.
14	7
14	7 8 Results
14	
15	sepsis were included in this study, with male patients accounting for 65.2% (n=116).
15	1 The median age (interquartile range) was 78 (66-84) years, and most patients were at
15	least 65 years old (137/178, 77.0%). The most common primary site of infection was
15	the lung (131 cases, 73.6%), followed by abdomen (15 cases, 8.4%), urinary tract (13
15	cases, 7.3%), gastrointestinal tract (12 cases, 6.7%) and other sites (7 cases, 3.9%).
	7
	For poor roviow only, http://bmiopon.hmi.com/sita/about/guidalinas.yhtml

23	
4	
5 6	
7 8	
9	
10 11	
12 13	
14 15	
16	
17 18	
19 20	
21	
22 23	
24 25	
26 27	
28	
29 30	
31 32	
33 34	
35	
36 37	
38 39	
40 41	
42	
43 44	
45 46	
47	
48 49	
50 51	
52 53	
54	
55 56	
57 58	
59 60	
00	

155	Septic shock patients accounted for 33.1% (59 cases). Blood culture was positive in
156	38 patients (21.3%). The 90-day mortality was 47.2% (84/178 cases), and the
157	in-hospital mortality was 41.6% (74/178 cases). The length of ICU stay and the length
158	of hospital stay were 12 (5-22) and 15 (9-28) days, respectively.
159	Compared with in-hospital survivors, non-survivors had significantly lower BMI
160	and PaO_2/FiO_2 (both p < 0.05), higher lactate, bilirubin, INR, SOFA score and
161	APACHE II score (all $p < 0.05$). Meanwhile, more patients died with
162	healthcare-acquired infections, hypotension, oliguria, septic shock, and intubation (all
163	p < 0.05) (table 1).
164	Cox proportional hazard regression analysis was conducted and the independent
165	factors for 90-day death were identified as SOFA score (HR = 1.220 , p < 0.001),
166	APACHE II score (HR = 1.050, $p < 0.001$) and BMI (HR = 0.940, $p = 0.029$) (table
167	2).
168	Patients were divided into four groups based on BMI [underweight 33 (18.5%),
169	normal 98 (55.1%), overweight 36 (20.2%), and obese 11 (6.2%)]. The percentage of
170	males (72.7%, 71.4%, 55.6%, and 18.2%, p = 0.002), chronic obstructive
171	pulmonary disease (24.2%, 21.4%, 0, and 27.3%, p=0.017), hypotension (57.6%,
172	34.7%, 25.0%, and 9.1%, p = 0.007), septic shock (57.6%, 30.6%, 25.0%, and 9.1%,
173	p = 0.004), in-hospital mortality (60.6%, 41.8%, 30.6%, and 18.2%, p = 0.027) and
174	90-day mortality (66.7%, 48.0%, 36.1%, and 18.2%, p = 0.015) were statistically
175	different among the four groups (table 3).
176	Kaplan-Meier survival curves were constructed to show the survival probabilities

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2U 21
21
22
23 24
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55 56
50
57
58
59

60

at day-90 according to BMI classification and these were compared using the log rank
test, which also showed that higher BMI was associated with better prognosis
(p=0.008) (figure 2).

180

181 Discussion

182 This prospective observational cohort study focused on medical patients with 183 sepsis admitted to the ICU, and the results showed that besides SOFA score and 184 APACHE II score, BMI was identified as an independent factor for 90-day mortality 185 by Cox regression analysis. The association of SOFA and APACHE II score with mortality in this cohort was consistent with previous studies^[16-18]. This study adds the 186 finding that BMI was independently associated with survival, where 90-day mortality 187 188 decreased with an increase in BMI. While studies examining the risk factors associated with outcomes in sepsis reached inconsistent conclusions on the 189 190 association of BMI with mortality, our results confirmed that BMI was independently 191 associated with mortality in patients with sepsis caused by medical conditions.

192 Globally, the prevalence of obesity has reached epidemic proportions, especially 193 in developed countries ^[19]. BMI is still a useful proxy of overall health because it is 194 highly correlated with body surface area, which is commonly used as a surrogate 195 measure in obesity classification. Even though it is widely accepted that obesity is a 196 risk factor for diabetes mellitus, hypertension, and cardiovascular diseases, the present 197 study and several other studies have indicated that overweight and obese patients with 198 sepsis tend to experience lower mortality. This has been called the "obesity paradox"

199	^[5-9,20] . Although some researchers have expressed doubt that the true paradox may lie
200	in the variations in sepsis interventions ^[6,21] , a meta-analysis concluded that
201	individuals who were overweight or obese had a reduced adjusted mortality when
202	admitted to the ICU with sepsis or septic shock [8]. Recently another meta-analysis
203	also concluded that being overweight was associated with lower mortality (OR 0.87,
204	95% CI 0.77-0.97, p = 0.02) compared with obese (OR 0.89, 95% CI 0.72-1.10, p =
205	0.29) and morbidly obese (OR 0.64, 95% CI 0.38-1.08, $p = 0.09$) patients who did not
206	exhibit significantly reduced mortality compared with normal weight patients ^[12] . In a
207	large and nationally representative sample of over 1,000 hospitals in the US, obesity
208	was found to be significantly associated with a 16% decrease in the odds of dying
209	among sepsis patients who were hospitalized ^[22] .
210	Underweight patients with sepsis may be more common in developing countries
211	than in developed countries. In the present study, the percentages of underweight,
212	normal weight, overweight and obese patients were 18.4%, 55.3%, 20.1%, and 6.1%,
213	respectively, while those with sepsis in a study in Canada and the US represented
214	6.8%, 35.3%, 28.3%, and 29.0% ^[6] . Being underweight was found to be one of the
215	independent risk factors of mortality in a study on the correlation between surgical
216	site infection and mortality ^[10] . Furthermore, Lee et al ^[11] also reported that being
217	underweight was associated with mortality in patients with severe sepsis and septic
218	shock. However, BMI has not been shown to be an independent factor for clinical
219	outcomes by multivariable analyses. In our cohort of medical patients with sepsis,
220	which mainly included elderly and less obese patients, BMI was identified as an

BMJ Open

221	independent factor for survival, patients with lower BMI having a higher risk of death.
222	Thus, our findings would be helpful for evaluating the clinical outcomes of medical
223	patients with sepsis, although validation in future large sample, multi-center studies is
224	still needed.
225	The mechanism of the correlation between BMI and mortality of sepsis is unclear.
226	There are several potential reasons that could explain this. First, higher BMI resulted
227	in more fat reserves, and patients could have a greater capacity to cope with the
228	inflammatory response during sepsis and sepsis-associated acute lung injury ^[23-25] .
229	Furthermore, they may be able to tolerate extensive weight loss and dysfunction
230	associated with critical illness ^[26] . Secondly, a higher BMI can lead to an increased
231	level of lipoproteins. High-density lipoproteins may not only bind and inactivate
232	lipopolysaccharide (LPS) or other harmful bacterial products released during sepsis
233	^[27] , but also modulate adhesion molecule expression, upregulate endothelial nitric
234	oxide synthase, and counteract oxidative stress ^[28] . Thirdly, higher BMI can lead to
235	increased adipose tissue deposition. Adipose tissue is increasingly being considered as
236	a functional endocrine organ and associated with increased renin-angiotensin system
237	activity ^[29] . It appears to have protective hemodynamic effects during sepsis and may
238	decrease the need for fluid or vasopressor support ^[21,30] .
239	In general, sex has not been found to be an independent predictor for survival in
240	patients with sepsis, which is the same as the results of our current study. But in some
241	special populations, for example in liver cirrhosis patients with bloodstream infection,
242	male sex may be an independent risk factor for mortality ^[31] .

243	As the relationship between BMI and clinical outcomes of sepsis may be related
244	partly to differences in patient characteristics, we therefore set out to evaluate the
245	impact of BMI on survival in a cohort of medical patients with sepsis, which is
246	different from surgical septic patients. Ranieri et al [32] reported that the primary sites
247	of infection in adults with septic shock were lung (43.9%), abdomen (30.0%), urinary
248	tract (12.3%), skin (5.5%) and other sites (8.3%). Scheer et al ^[33] found that the most
249	common primary site of infection was different between medical and surgical patients.
250	In medical patients, the lung was the most common primary site (42.0%-56.7%),
251	while it was abdomen (48.4%-64.4%) in surgical patients. It should be noted that in
252	the majority of our patients (73.6%), sepsis was associated with pulmonary infection,
253	a much higher percentage as compared to other studies. He et al ^[34] reported that
254	pulmonary-sepsis showed worse outcome than abdominal-sepsis, and pulmonary
255	infection was a risk factor for one-year mortality and quality of life after sepsis.
256	There were several limitations to our study. Firstly, the BMI of our patients
257	ranged from 12.11 to 32.46. There was no morbidly obese patient in the current study.
258	In fact, morbidly obese people are rare in this country. 10 severely underweight
259	patients with BMI less than 16.0 were included in the present study, which introduces
260	possible sample bias in patients in the low BMI category. However, the 90-day and
261	in-hospital mortality of these 10 severely underweight patients were 70.0% and 60.0%
262	respectively, not significantly different from that of all 33 underweight patients
263	(66.7% and 60.6%, respectively). Secondly, the present study used weight ascertained
264	at ICU admission, rather than the patient's baseline outpatient body weight. This

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
17
14 15
15
16 17
1/
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
40
41
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

265 practice may misclassify the BMI category in as many as 21.9% of patients due to lack of fluid balance adjustment ^[35]. Thirdly, BMI was used to determine the 266 267 nutritional status of patients in this study. BMI is a simple index and widely used in 268 clinical practice, but other indices such as percent body fat might better reflect body composition^[36]. Lastly, it was a single-center study with 178 participants, and a large 269 270 proportion of our patients were older than 65 years, which may have led to a 271 sample-related bias. 272 Conclusions To our knowledge, this is the first prospective cohort study that focused on 273 medical patients with sepsis, showing that BMI was independently associated with 274 BM 90-day survival, with patients having a lower BMI at a higher risk of death. 275 276 277 Acknowledgements 278 Not applicable. 279 280 **Authors' contributions** QTZ, YCS, YAZ designed the study. QTZ, YCS, NS, YAZ, and QBM coordinated the 281 282 study. MW, JZ, YLD, SL, and HXG were responsible for patient screening, 283 enrollment, and follow-up. QTZ, MW, and YCS analyzed the data. QTZ drafted the 284 manuscript. YCS critically revised the manuscript. All authors had full access to all 285 study data, read and approved the final version of the manuscript. 286 13

2
3
4
5
6
7
8
9
10
11
12
13
14
14
16
17
18
19
20
21
22
22
24
25
26
27
28
29
30
50 51
31 32
33
34
35
36 37
37
38
39
39
40
41
42
43
44
45
46
47
47
49
50
51
52
53
54
55
56
50 57
58
59
60

Funding

288	None.
289	
290	Competing interests
291	None declared.
292	
293	Ethics approval and consent to participate
294	The study protocol was approved (approval number M2015021) by the ethics
295	committee of Peking University Third Hospital, Beijing, China. All patients or their
296	legally authorized representatives provided written informed consent to participate in
297	the study.
298	
299	Data sharing statement
300	The authors declare that all data supporting the findings of this study are available
301	within the article.
302	
303	References
304	1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus
305	Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315:801-10.
306	2. Angus DC, van der Poll T. Severe sepsis and septic shock. <i>N Engl J Med</i> 2013;369:2063.
307	3. Bouza C, López-Cuadrado T, Saz-Parkinson Z, et al. Epidemiology and recent trends of
308	severe sepsis in Spain: a nationwide population-based analysis (2006-2011). BMC Infect Dis
	14

e 15 of 29			BMJ Open	
	309		2014; 14:3863.	
	310	4.	WHO classification of body mass index (BMI). [http://apps.who.int/bmi/index.jsp?introPag	ge=
	311		intro_3.html] Accessed on 2 March 2015.	
	312	5.	Wurzinger B, Dünser MW, Wohlmuth C, et al. The association between body-mass index as	nd
	313		patient outcome in septic shock: a retrospective cohort study. Wien Klin Wochenschr 2010;	122:
	314		31-6.	
	315	6.	Arabi YM, Dara SI, Tamim HM, et al. Clinical characteristics, sepsis interventions and	
	316		outcomes in the obese patients with septic shock:an international multicenter cohort study.	
	317		<i>Crit Care</i> 2013;17:R72.	
	318	7.	Prescott HC, Chang VW, O'Brien JM Jr, et al. Obesity and 1-year outcomes in older	
	319		Americans with severe sepsis. Crit Care Med 2014;42:1766-74.	
	320	8.	Pepper DJ, Sun J, Welsh J, et al. Increased body mass index and adjusted mortality in ICU	
	321		patients with sepsis or septic shock:a systematic review and meta-analysis. Crit Care	
	322		2016;20:181.	
	323	9.	Gaulton TG, Marshall MacNabb C, Mikkelsen ME, et al. A retrospective cohort study	
	324		examining the association between body mass index and mortality in severe sepsis. Intern	
	325		Emerg Med 2015;10:471-9.	
	326	10.	Giles KA, Hamdan AD, Pomposelli FB, et al. Body mass index:surgical site infections and	
	327		mortality after lower extremity bypass from the National Surgical Quality Improvement	
	328		Program 2005-2007. Ann Vasc Surg 2010;24:48-56.	
	329	11.	Lee SM, Kang JW, Jo YH, et al. Underweight is associated with mortality in patients with	
	330		severe sepsis and septic shock. Intensive Care Med Exp 2015; 3:A876.	
				15
			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

331	12.	Wang S, Liu X, Chen Q, et al. The role of increased body mass index in outcomes of sepsis:
332		systematic review and meta-analysis. BMC Anesthesiol 2017;17:118.
333	13.	Ng PY, Eikermann M. The obesity conundrum in sepsis. BMC Anesthesiol 2017;17:147.
334	14.	Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines
335		for management of severe sepsis and septic shock: 2012. Crit Care Med 2013;41:580-637.
336	15.	Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International
337		Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017;
338		43:304-77.
339	16.	de Carvalho MA, Freitas FG, Silva Junior HT, et al. Mortality predictors in renal transplant
340		recipients with severe sepsis and septic shock. PLoS One 2014;9:e111610.
341	17.	Innocenti F, Tozzi C, Donnini C, et al. SOFA score in septic patients: incremental prognostic
342		value over age, comorbidities, and parameters of sepsis severity. Intern Emerg
343		Med 2018;13:405-12.
344	18.	Song JE, Kim MH, Jeong WY, et al. Mortality Risk Factors for Patients with Septic
345		Shock after Implementation of the Surviving Sepsis Campaign Bundles. Infect
346		Chemother 2016;48:199-208.
347	19.	GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, et al. Health Effects o
348		Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med 2017;377:13-27.
349	20.	Atamna A, Elis A, Gilady E, et al. How obesity impacts outcomes of infectious diseases. Eur
350		J Clin Microbiol Infect Dis 2017; 36:585-91.
351	21.	Taylor SP, Karvetski CH, Templin MA, et al. Initial fluid resuscitation following adjusted
352		body weight dosing is associated with improved mortality in obese patients with suspected
		1

Page 17 of 29		BMJ Open
1		
2 3 4	353	septic shock. J Crit Care 2018;43:7-12.
5 6 7	354	22. Nguyen AT, Tsai CL, Hwang LY, et al. Obesity and Mortality, Length of Stay and Hospital
8 9	355	Cost among Patients with Sepsis: A Nationwide Inpatient Retrospective Cohort Study. PLoS
10 11 12	356	<i>One</i> 2016; 11:e0154599.
13 14	357	23. Stapleton RD, Dixon AE, Parsons PE, et al. The association between BMI and plasma
15 16 17	358	cytokine levels in patients with acute lung injury. Chest 2010;138:568-77.
18 19	359	24. Stapleton RD, Suratt BT. Obesity and nutrition in acute respiratory distress syndrome. <i>Clin</i>
20 21 22	360	Chest Med 2014;35:655-71.
23 24	361	25. Zampieri FG, Jacob V, Barbeiro HV, et al. Influence of Body Mass Index on Inflammatory
25 26 27	362	Profile at Admission in Critically III Septic Patients. Int J Inflam 2015; 2015:734857.
27 28 29	363	26. Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the acute
30 31	364	respiratory distress syndrome. N Engl J Med 2003;348:683-93.
32 33 34	365	27. Wu A, Hinds CJ, Thiemermann C. High-density lipoproteins in sepsis and septic shock:
35 36	366	metabolism, actions, and therapeutic applications. Shock 2004;21:210-21.
37 38 39	367	28. Murch O, Collin M, Hinds CJ, et al. Lipoproteins in inflammation and sepsis. I. Basic science
40 41	368	Intensive Care Med 2007; 33:13-24.
42 43 44	369	29. McGown C, Birerdinc A, Younossi ZM. Adipose tissue as an endocrine organ. Clin Liver
44 45 46	370	Dis 2014;18:41-58.
47 48	371	30. Salgado DR, Rocco JR, Silva E, et al. Modulation of the renin-angiotensin-aldosterone
49 50 51	372	system in sepsis: a new therapeutic approach? Expert Opin Ther Targets 2010; 14:11-20.
52 53	373	31. Zhao H, Gu X, Zhao R, et al. Evaluation of prognostic scoring systems in liver cirrhosis
54 55 56	374	patients with bloodstream infection. Medicine (Baltimore) 2017;96(50):e8844.
57 58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

375	32.	Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septio	2
376		shock. N Engl J Med 2012;366:2055-64.	
377	33.	Scheer CS, Fuchs C, Kuhn SO, et al. Quality Improvement Initiative for Severe	
378		Sepsis and Septic Shock Reduces 90-Day Mortality: A 7.5-Year Observational Study. Crit	
379		<i>Care Med</i> 2017;45:241-52.	
380	34.	He XL, Liao XL, Xie ZC, et al. Pulmonary Infection Is an Independent Risk Factor for	
381		Long-Term Mortality and Quality of Life for Sepsis Patients. Biomed Res Int 2016;	
382		2016:4213712.	
383	35.	O'Brien JM Jr, Philips GS, Ali NA, et al. The association between body mass index, processe	s
384		of care, and outcomes from mechanical ventilation: a prospective cohort study.	
385		<i>Crit Care Med</i> 2012;40:1456-63.	
386	36.	Waisbren E, Rosen H, Bader AM, et al. Percent body fat and prediction of surgical site	
387		infection. J Am Coll Surg 2010;210:381-9.	
388			
389			
390			
391			
392			
393			
394			
395			
396			
			18
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

in-nospital chincal outcome in 178	in-hospital clinical outcome in 178 patients with sepsis					
Characteristics	Survivors	Non survivors	p valu			
	(n=104)	(n=74)	p vaiu			
Age (year)	78.0 (60.0-84.0)	78.0 (69.0-84.0)	0.291			
Males	67 (64.4)	49 (66.2)	0.805			
Body mass index (kg/m ²)	23.2 (20.4-26.1)	21.7 (18.4-24.2)	0.006			
Comorbidities						
COPD	23 (22.1)	9 (12.2)	0.088			
Diabetes mellitus	26 (25.0)	21 (28.4)	0.614			
Hypertension	47 (45.2)	31 (41.9)	0.662			
Cerebrovascular disease	30 (28.8)	15 (20.3)	0.194			
Neoplasm	18 (17.3)	12 (16.2)	0.848			
Liver disease	5 (4.8)	4 (5.4)	1.000			
Heart failure	20 (19.2)	14 (18.9)	0.958			
Chronic renal failure	18 (17.3)	11 (14.9)	0.664			
Smoking (pack years)	0 (0-30.0)	0 (0-16.3)	0.509			
Primary site of infection						
Lung	77 (74.0)	54 (73.0)	0.874			
Abdomen	10 (9.6)	5 (6.8)	0.499			
Urinary tract	7 (6.7)	6 (8.1)	0.728			
Gastrointestinal tract	7 (6.7)	5 (6.8)	1.000			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Other site	3 (2.9)	4 (5.4)	0.452
Community-acquired infection	85 (81.7)	50 (67.6)	0.030
Hypotension	22 (21.2)	41 (55.4)	<0.001
Lactate level (mmol/L)	1.8 (1.0-3.4)	2.7 (1.5-5.7)	0.001
Oliguria	8 (7.7)	16 (21.6)	0.007
PaO ₂ /FiO ₂ (mmHg)	198.5 (119.3-287.5)	152.5 (99.6-210.3)	0.006
Serum Creatinine (µmol/L)	97.0 (68.3-176.3)	108.5 (64.0-194.3)	0.868
Total bilirubin (µmol/mL)	13.1 (9.9-22.3)	18.0 (12.5-32.8)	0.015
Platelets (×10 ⁹ /L)	161.0 (95.8-232.5)	123.0 (75.0-204.3)	0.067
INR	1.2 (1.0-1.4)	1.3 (1.1-1.6)	0.015
Glasgow coma scale	15.0 (10.0-15.0)	13.0 (10.0-15.0)	0.117
SOFA score	5.0 (4.0-7.0)	9.0 (7.0-11.0)	< 0.001
APACHE II score	16.0 (12.0-22.0)	21.0 (17.0-30.0)	<0.001
Septic shock	21 (20.2)	38 (51.4)	<0.001
Non-invasive ventilation	28 (26.9)	24 (32.4)	0.426
Intubated	36 (34.6)	43 (58.1)	0.002
Positive blood culture	19 (18.3)	19 (25.7)	0.235
Length of ICU stay (days)	12.0 (6.0-22.0)	12.0 (3.0-25.0)	0.521
Length of hospital stay (days)	18.0 (10.0-30.0)	13.0 (3.0-25.0)	0.009

Data are presented as n (%) or median (interquartile range) unless stated otherwise. COPD: Chronic obstructive pulmonary disease; INR: International

400 normalized ratio; SOFA: Sequential organ failure assessment; APACHE: Acute physiology and chronic health evaluation.

1 2		
3 4	402	Table 2. Ris
5 6 7	403	regression ar
8 9		Variables
10 11 12		Body mass inde
13 14		Hypotension
15 16 17		Lactate level (r
18 19		Oliguria
20 21 22		PaO ₂ /FiO ₂ (mm
22 23 24		Septic shock
25 26		SOFA score
27 28 29		APACHE II so
30 31		Intubated
32 33 34	404	SOFA: Sequential org
33 34 35 36	404 405	SOFA: Sequential org
33 34 35 36 37 38		
33 34 35 36 37 38 39 40 41	405	
33 34 35 36 37 38 39 40 41 42 43	405 406	
33 34 35 36 37 38 39 40 41 42	405 406 407	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	405 406 407 408	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	405 406 407 408 409	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	405 406 407 408 409 410	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	405 406 407 408 409 410 411	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	405 406 407 408 409 410 411 412	

Table 2. Risk factors for 90-day mortality of patients with sepsis or septic shock by Cox regression analysis

Variables	Hazard ratio (95% Confidence interval)	p value
Body mass index (kg/m ²)	0.940 (0.889-0.994)	0.029
Hypotension	0.781 (0.229-2.670)	0.694
Lactate level (mmol/L)	1.018 (0.943-1.098)	0.648
Oliguria	1.288 (0.715-2.321)	0.399
PaO ₂ /FiO ₂ (mmHg)	1.000 (0.997-1.002)	0.933
Septic shock	1.075 (0.320-3.615)	0.907
SOFA score	1.229 (1.123-1.345)	< 0.001
APACHE II score	1.050 (1.022-1.080)	< 0.001
Intubated	1.511 (0.931-2.452)	0.095

04 SOFA: Sequential organ failure assessment; APACHE: Acute physiology and chronic health evaluation. The variables significantly associated with 90-day

405 non-survival in the univariate analysis were used in the Cox proportional hazard regression analysis.

406		
407		
408		
409		
410		
411		
412		
413		

414 Table 3. Comparison of demographics and clinical data among groups defined by body mass

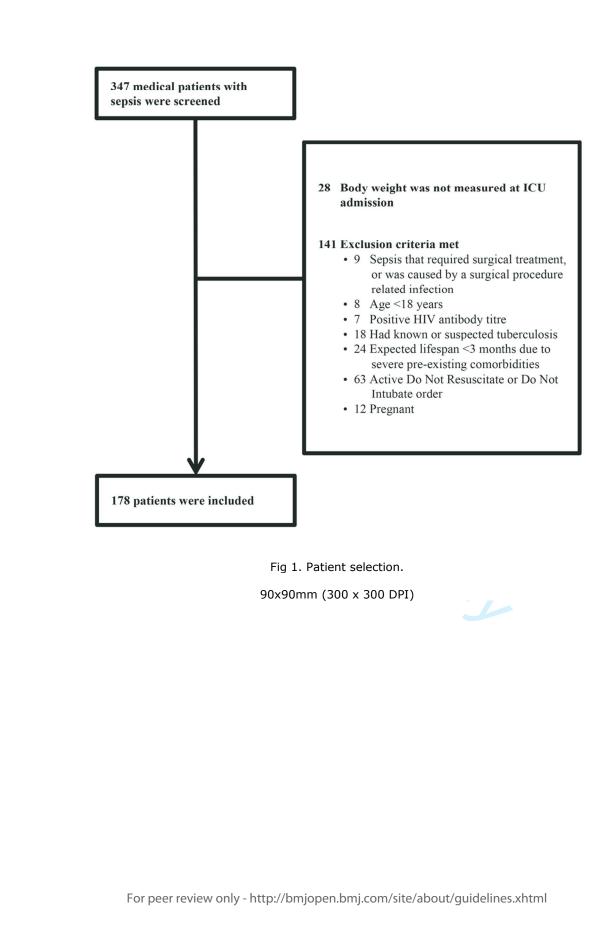
415 index in patients with sepsis

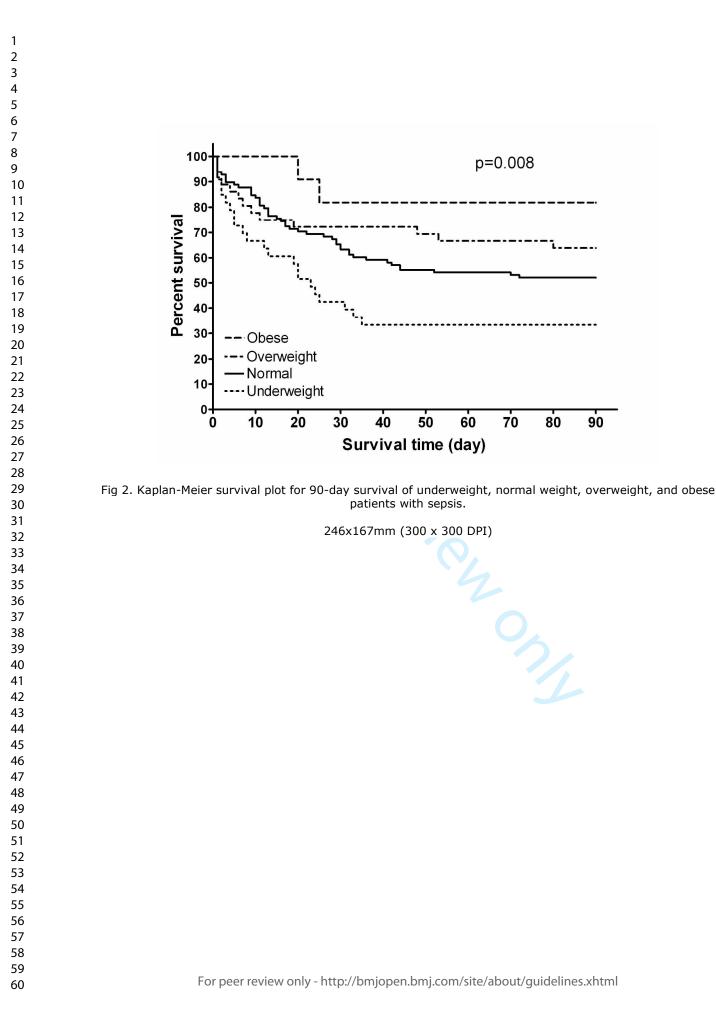
Characterist'	Underweight	Normal	Overweight	Obese	
Characteristics	(n=33)	(n=98)	(n=36)	(n=11)	p valu
Age (years)	79.0 (69.0-86.0)	78.0 (67.0-84.0)	73.0 (57.0-83.0)	77.0 (71.0-86.0)	0.162
Males	24 (72.7)	70 (71.4)	20 (55.6)	2 (18.2)	0.002
Comorbidities					
COPD	8(24.2)	21 (21.4)	0	3 (27.3)	0.017
Diabetes mellitus	8 (24.2)	25 (25.5)	9 (25.0)	5 (45.5)	0.530
Hypertension	14 (42.4)	38 (38.8)	19 (52.8)	7 (63.6)	0.265
Cerebrovascular disease	10 (30.3)	24 (24.5)	11 (30.6)	0	0.193
Neoplasm	7 (21.2)	14 (14.3)	8 (22.2)	1 (9.1)	0.547
Liver disease	2 (6.1)	5 (5.1)	2 (5.6)	0	0.879
Heart failure	8 (24.2)	17 (17.3)	5 (13.9)	4 (36.4)	0.319
Chronic renal failure	5 (15.2)	14 (14.3)	7 (19.4)	3 (27.3)	0.669
Smoking (pack-years)	0 (0-20.5)	0 (0-30.0)	0 (0-3.0)	0 (0-30.0)	0.561
Primary site of infection					
Lung	27 (81.8)	69 (70.4)	27 (75.0)	8 (72.7)	0.637
Abdomen	2 (6.1)	9 (9.2)	3 (8.3)	1 (9.1)	0.956
Urinary tract	1 (3.0)	9 (9.2)	2 (5.6)	1 (9.1)	0.656
Gastrointestinal tract	2 (6.1)	6 (6.1)	3 (8.3)	1 (9.1)	0.955
Other site	1 (3.0)	5 (5.1)	1 (2.8)	0	0.800

Page 23 of 29

BMJ Open

	Community-acquired infection	25 (75.8)	76 (77.6)	26 (72.2)	8 (72.7)	0.92
	Hypotension	19 (57.6)	34 (34.7)	9 (25.0)	1 (9.1)	0.00
	Lactate level (mmol/L)	2.4 (1.6-7.2)	2.1 (1.0-4.3)	1.6 (1.2-3.3)	1.9 (0.6-2.9)	0.20
	Oliguria	8 (24.2)	13 (13.3)	3 (8.3)	0	0.12
	-					
	PaO ₂ /FiO ₂ (mmHg)	180.0(113.5-251.0)	164.5(102.3-240.5)	188.0(140.5-268.5)	215.0(153.0-300.0)	0.34
	Serum Creatinine (µmol/L)	89.0 (57.0-127.0)	118.5 (72.5-190.5)	91.0 (60.0-212.5)	86.0 (56.0-112.0)	0.1
	Total bilirubin (µmol/mL)	18.0 (10.1-33.1)	14.4 (10.1-28.4)	17.2 (12.2-26.3)	15.2 (11.3-20.0)	0.8
	Platelets (×10 ⁹ /L)	139.0 (75.0-213.0)	147.0 (86.0-209.8)	182.5 (128.3-253.8)	115.0 (49.0-144.0)	0.0
	INR	1.3 (1.1-1.6)	1.2 (1.0-1.5)	1.2 (1.1-1.3)	1.1 (1.0-1.2)	0.2
	Glasgow coma scale	13.0 (10.0-15.0)	15.0 (12.0-15.0)	15.0 (11.0-15.0)	13.0 (10.0-15.0)	0.7
	SOFA score	8.0 (5.0-11.0)	7.0 (5.0-9.0)	6.0 (4.0-8.0)	5.0 (5.0-8.0)	0.3
	APACHE II score	18.0 (16.0-24.0)	19.0 (13.0-25.0)	18.0 (13.0-22.0)	14.0 (9.0-17.0)	0.0
	Septic shock	19 (57.6)	30 (30.6)	9 (25.0)	1(9.1)	0.0
	Non-invasive ventilation	7 (21.2)	30 (30.6)	10 (27.8)	5 (45.5)	0.4
	Intubated	19 (57.6)	43 (43.9)	13 (36.1)	4 (36.4)	0.3
	Positive blood culture	7 (21.2)	24 (24.5)	4 (11.1)	3 (27.3)	0.3
	Length of ICU stay (days)	10.0 (4.0-25.0)	13.0 (7.0-25.0)	11.0 (4.0-19.0)	9.0(6.0-13.0)	0.4
	Length of hospital stay (days)	13.0 (4.0-29.0)	16.0 (10.0-28.0)	16.0 (8.0-32.0)	13.0(8.0-20.0)	0.8
	In-hospital mortality	20 (60.6)	41 (41.8)	11 (30.6)	2 (18.2)	0.0
	90-day mortality	22 (66.7)	47 (48.0)	13 (36.1)	2 (18.2)	0.0
۷	90-day mortality416 Data are presented as n (%) or median					ized 1


417 Sequential organ failure assessment; APACHE: Acute physiology and chronic health evaluation.


1 2	
3	
4	
5	
6	
7 8	
9	
10	
11	
12 13	
14	
15	
16	
17	
18 19	
20	
21	
22	
23 24	
25	
26	
27	
28 29	
30	
31	
32	
33 34	
35	
36	
37	
38 39	
40	
41	
42 43	
43 44	
45	
46	
47	
48 49	
50	
51	
52 53	
53 54	
55	
56	
57 50	
58 59	
60	

1

418	Fig 1. Patient selection.
419	
420	
421	
422	
423	
424	
425	
426	
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	
437	
438	
439	

1		
2		
3 4	440	Fig 2. Kaplan-Meier survival plot for 90-day survival of underweight, normal weight,
5		
6	441	overweight, and obese patients with sepsis.
7	441	over weight, and obese patients with sepsis.
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30 31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
53 54		
54 55		
56		
57		
58		25
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2,3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4, 5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4, 5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5,6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6,7
Bias	9	Describe any efforts to address potential sources of bias	N/A
Study size	10	Explain how the study size was arrived at	N/A
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6,7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6,7
		(b) Describe any methods used to examine subgroups and interactions	6,7
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(e) Describe any sensitivity analyses	N/A

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	7,8
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	7,8
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N/A
		(c) Summarise follow-up time (eg, average and total amount)	8
Outcome data	15*	Report numbers of outcome events or summary measures over time	8,9
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	8,19-25
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	6
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	12,13
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	14
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml