

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Atrial Fibrillation Detection using Single Lead Portable Electrocardiographic Monitoring: A Systematic Review and Meta-Analysis.

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024178
Article Type:	Research
Date Submitted by the Author:	02-Jun-2018
Complete List of Authors:	Ramkumar, Satish; Baker IDI Heart and Diabetes Institute, CV Imaging Nerlekar, Nitesh; Monash Medical Centre Clayton D'Souza, Daniel; Monash Medical Centre Clayton Pol, Derek; Monash Medical Centre Clayton Kalman, Jonathan; Royal Melbourne Hospital, Marwick, Thomas; Baker IDI Heart and Diabetes Institute, Director
Keywords:	Pacing & electrophysiology < CARDIOLOGY, CLINICAL PHYSIOLOGY, Cardiology < INTERNAL MEDICINE

SCHOLARONE[™]

HOLARCINE Manuscripts

BMJ Open

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 1

Atrial Fibrillation Detection using Single Lead Portable Electrocardiographic Monitoring: A Systematic Review and Meta-Analysis.

Satish Ramkumar MBBS, MMed^{1,2,3}; Nitesh Nerlekar MBBS, MPH^{1,3}; Daniel D'Souza MBBS³, Derek J Pol MBBS³; Jonathan M Kalman⁴ MBBS, PhD; Thomas H Marwick MBBS, PhD, MPH^{1,2}

¹Baker Heart and Diabetes Institute, 75 Commercial Road Melbourne, Victoria 3004, Australia; ²School of Public Health and Preventative Medicine, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia; ³Monash Heart, Monash Cardiovascular Research Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia; ⁴Department of Cardiology, Royal Melbourne Hospital and the Department of Medicine, University of Melbourne, 300 Grattan Street Parkville, Victoria 3050, Australia;

Satish Ramkumar Cardiac Imaging Research Fellow, Baker Heart and Diabetes Institute; Nitesh Nerlekar Cardiac Research Fellow, Monash Heart; Daniel D'Souza Cardiology Resident, Monash Heart; Derek J Pol Cardiology Registrar, Monash Heart; Jonathan M Kalman Head of Electrophysiology, Royal Melbourne Hospital; Thomas H Marwick Director, Baker Heart and Diabetes Institute

Running title: Atrial fibrillation detection

Corresponding Author:

Dr Thomas H. Marwick Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, Australia Phone: +61-3-8532-1550; Fax: +61-3-8532-1160 Email: <u>Tom.Marwick@baker.edu.au</u>

Abstract 249 words; Text ~5000 words

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 2

"The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, *a worldwide licence* to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above."

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors'.

BMJ Open

ABSTRACT

Objectives: Recent advances in technology have allowed for heart rhythm monitoring using portable single-lead electrocardiographic (ECG) monitoring devices, which can be used for early diagnosis of atrial fibrillation (AF). We sought to investigate the AF detection rate using portable ECG devices compared with Holter monitoring.

Setting, participants and outcome measures: We searched the Medline, Embase and Scopus databases (search conducted on 8th May 2017) using search terms related to AF and screening and included studies with adults>18 years using portable ECG devices or Holter monitoring for AF detection. We excluded studies using implantable loop recorders and pacemakers. Using a random-effects model we calculated the overall AF detection rate. Meta-regression analysis was performed to explore potential sources for heterogeneity.

Results: Portable ECG monitoring was used in 18 studies (n=117,436) and Holter monitoring was used in 36 studies (n=8498). The AF detection rate using portable ECG monitoring was 1.7% (95% CI 1.4–2.1), with significant heterogeneity between studies (p<0.001). There was a moderate linear relationship between total monitoring time and AF detection rate (r=0.65, p=0.003), and meta-regression identified total monitoring time (p=0.005) and body mass index (p=0.01) as potential contributors to heterogeneity. The detection rate (4.8%, 95% CI 3.6–6.0%) in 8 studies (n=10,199) which performed multiple ECG recordings was comparable to that with 24 hour Holter (4.6%, 95% CI 3.5–5.7%). Intermittent recordings for 19 minutes total produced similar AF detection to 24 hr. Holter monitoring.

Conclusion: Portable ECG devices may offer an efficient screening option for AF compared to 24 hour Holter monitoring.

Study Registration: Prospero database - April 22^{nd,} 2017(CRD42017061021)

Key words; atrial fibrillation, screening, electrocardiographic monitoring.

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 4

Strengths and limitations of this study:

- First systematic review comparing single lead ECG monitoring to 24 hour holter monitoring for AF detection.
- Comprehensive literature search and specific inclusion criteria allowing for large patient numbers.

for beet terien only

- Heterogeneity amongst individual studies with regards to patient population, AF definitions and monitoring time.
- Poor reporting of CHA₂DS₂-VASC scores amongst individual studies
- Patient compliance unable to be accounted for in this meta-analysis

BMJ Open

Atrial fibrillation (AF) is a leading cause of stroke and heart failure worldwide, is associated with increased all-cause mortality ¹² as well as substantial financial cost.^{3 4} The prevalence of AF increases with age, exceeding more than 15% for those aged 85 and older.⁵ The epidemics of obesity, diabetes mellitus and metabolic syndrome have also been associated with the increasing prevalence of AF.⁶⁻⁸ Up to 20% of patients with stroke have underlying AF, and detection allows the initiation of anticoagulation which is associated with a significant reduction in stroke recurrence.⁹

Early diagnosis of AF may have several benefits, including individualized lifestyle intervention ¹⁰ and anticoagulation, and may be associated with a reduction in complications and healthcare costs. The importance of early diagnosis has been recognized in recent guidelines from the European Society of Cardiology (ESC) which recommended opportunistic screening using pulse palpation and 12 lead electrocardiogram (ECG).¹¹ However, screening for AF is challenging for several reasons; many patients are asymptomatic or may have atypical symptoms. There are a variety of monitoring techniques available, all which vary in diagnostic accuracy and sensitivity, and there is no accepted reference standard. Subclinical AF is associated with an increased risk of stroke, cardiovascular disease and all-cause mortality,¹² although there is controversy surrounding the significance of brief paroxysms of AF and the potential benefit of anticoagulant therapy. Implantable devices are expensive, and not cost effective for mass screening, and the use of external devices for long periods of monitoring require electrodes, which may be poorly tolerated by patients.

Recent advances in technology have allowed for the development of single lead portable electrocardiographic monitoring devices. Multiple devices are available, all using multiple points of finger contact to create a single lead ECG trace. The in-built memory of these devices allows for single or multiple time-point screening. Interpretation from a cardiologist or by automated algorithms has achieved high sensitivity and specificity for AF detection.¹³⁻¹⁵ Although they have not been incorporated into the latest AF guidelines, the accuracy, ease of use and potential cost-effectiveness of these devices may lead to them having an important role in AF screening. This paper describes a

systematic review of the published literature to investigate the overall AF detection rate using portable ECG devices compared with traditional Holter monitoring.

Methods.

Search strategy. We conducted our systematic review and meta-analysis using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline (PRISMA).¹⁶ We searched the Medline, Scopus and Embase databases using key terms including "atrial fibrillation/AF and screening/monitoring and electrocardiographic/Holter monitoring" which were mapped to subject headings. We also searched the reference lists to identify other potential articles. The search was limited to adult human subjects >18 years and limited to the English language (Supplementary Table 1). The study was prospectively registered on the Prospero database on April 22^{nd,} 2017(CRD42017061021), and the search was conducted on 8th May 2017.

Study selection. Titles and abstracts of studies identified from the search were reviewed by two independent reviewers (S.R and D.D). Studies which had a primary aim of AF detection in adult participants were included. We included all cohorts including community screening, those with risk factors and recent stroke. The screening methods included portable single lead ECG devices or continuous (Holter) monitoring (up to one week). We included studies which used single lead ECG devices for single episode screening or multiple intermittent screening periods. We included conference abstracts if demographic and outcome data were available. We excluded studies if participants were <18 years or if other forms of monitoring were used (pacemaker, implantable loop recorders, event recorders, monitoring patches and inpatient telemetry). We also excluded studies where AF detection was not the primary aim.

The primary outcome of interest was the detection rate of new AF using either single lead intermittent or continuous monitoring. Our secondary objective was to determine the optimal time of intermittent monitoring which produced equivalent AF detection to continuous monitoring.

Data Collection. Full text manuscripts of studies fitting the inclusion criteria were obtained. Quality of reporting and risk of bias was assessed using the tool developed by Downs and Black.¹⁷ A standardized data-extraction form was used by the reviewers which included information about the

Page 7 of 35

BMJ Open

patient demographics, comorbidities, screening strategy, patients with known AF and overall new AF detection rate. Where data were not reported, we attempted to contact the primary authors of the study. Any disagreements between the two reviewers were resolved by consensus or by consulting a third reviewer (TM).

Patient and public involvement. As this is a systematic review, no patient or public involvement was undertaken.

Statistical Analysis. The cumulative AF detection rate for continuous and intermittent monitoring and the 95% confidence interval was calculated using a random effects model. The results were displayed as a forest plot and heterogeneity amongst the studies was assessed using the I^2 statistic. A subgroup analysis was performed by comparing the cumulative detection rate of single lead ECG studies which performed multiple timepoint recordings with 24 hour Holter monitoring studies. Linear regression analysis was used to determine the association between the total monitoring time and AF detection using single lead ECG devices. This formula was used to determine the monitoring time using single lead ECG devices to approximate the overall AF detection rate using 24-hour continuous monitoring. Univariate meta-regression analysis was performed to assess the influence of various clinical and screening factors with AF detection. Publication bias was assessed using a funnel plot and the Egger test. Statistical analysis was performed using Stata v.13 (StataCorp, College Station, TX) with two-tailed p-values <0.05 used to denote statistical significance.

Results

Study Characteristics. The PRISMA flowchart of our included studies is shown in Figure 1. Our initial search strategy identified 5427 studies, with another 26 identified through other sources. After removing duplicate records, 4122 studies were left. After screening those using the inclusion/exclusion criteria, we identified 111 full text studies for detailed review, which excluded 59 studies, leaving 52 full text studies for inclusion in the meta-analysis (see Supplementary table 2 for excluded studies). Of the 52 studies included, 34 used continuous (Holter) monitoring (n=8154),¹⁸⁻⁵¹ 16 (n=117,092) used single lead portable ECG monitoring,^{14 15 52-65} and 2 studies (n=344) used both continuous and intermittent single lead monitoring for AF detection in a head to head comparison.^{66 67}

The baseline characteristics of the individual studies is presented in Table 1. There was a considerable range in age (54-76 years), and gender (male 29-77%) between studies. As many studies chose healthy volunteers and other studies focused on patients post stroke or those with AF risk factors, there was significant variation in comorbidities such as diabetes, hypertension and obesity. Stroke risk determined by the CHADS or CHA₂DS₂-VASC score was reported in only 14/52 studies (27%). Of the 52 studies, 36 (69%) were conducted in Europe, 8 (15%) were in Asia, 5 (10%) were in North America and 3 (6%) in Australia. Nine studies (17%) were retrospective, the remainder all being prospective cohort or randomized controlled trials.

Of the 18 studies using single lead ECG devices, 10 studies (56%) used a single 10-60 sec recording for AF detection whilst 8 studies (44%) used multiple readings over a 1-52 week period. There were five portable ECG devices used (Table 1). Sixteen studies (89%) used healthy participants with risk factors.^{14 15 52-61 63-65 67}. Two studies assessed patients following stroke or transient ischemic attack (TIA).^{62 66}

Of the 36 studies using continuous (Holter) monitoring, 27 studies (75%) used 24-hour continuous monitoring,^{18-23 25-28 33-36 38 39 41-45 47-50 66 67} 4 studies (11%) used 1 week monitoring,^{30-32 51} 2 studies (6%) used 48-hour monitoring,^{37 46} 2 studies (6%) used 72-hour monitoring,^{24 29} and 1 study (3%) used 96-hour monitoring.⁴⁰

BMJ Open

Atrial fibrillation detection using	portable electrocardiogram	phic monitoring devices.: Page 9
	p	

2												Atı	rial fib	rillation d	letectio	on using	portable elec	trocardiographic monitoring device	es.; Pag	e 9
3																				
4 5 study	n	Country	Type of patients used	Device Used	Duration of recording (sec)	Frequency of recording /day	Total monitoring (days)	Mean/median age (yrs)	Male (%)	BMI (kg/m2)	HTN (%)	DM (%)	IHD (%)	Previous diagnosis of AF (%)	HF (%)	Previous stroke (%)	Mean/median CHADS2/ CHADS-VASC	Definition of AF	New AF (n)	New AF rate (%)
Q owres et. al.	1000	Australia	Community	Alive Cor	60	1	0	76	44	ND	62	22	16	10.4	2	7	2.2	Cardiologist Interpretation	15	1 5
Svennberg et. 81. (2015) 53	7173	Sweden	Community screening (75-76 yr olds)	Zenicor	30	2	14	75	44	25.9	50	11	9.2	9.2	3.4	9	3.4	30 sec irregular rhythm without p waves or 2x episodes between 10-29 sec	218	3
9 roietti et. al.	65747	Belgium	Belgian Heart Week	Omron Heartscan HCG-801	30	1	0	58	41	NB	36	21	23	0.5	20	20	2	irregular R-R interval, no distinct p waves, variable atrial cycle length	603	11
10 Trapsenbrood			Influenza vaccination - opportunistic																	
et. al. (2016) 55 12 Engdahl et. al.	3269	Holland	screening Community screening (75-76 yr olds) in	MyDiagnostik	60	1	0	64.1	49	NR	NR	NR	NR	2.6	NR	NR	NR	Cardiologist Interpretation x 2 30 sec duration of irregular rhythm or >= 2	37	1.1
	848	Sweden	Halmstad, Sweden	Zenicor	30	2	14	75	43	NR	53	11	NR	9.6	4	10	1.9	episodes of 10 or more sec	40	4.7
12013) 57	928	Sweden	GP practices Referred for	Zenicor	10	2	28	69.8	50	NR	90.3	31.6	19.8	0	3.7	8.6	2	10 sec irregular rhythm without p waves	35	3.8
Hendrikx et. al.	95	Sweden	presyncope/palpitati ons	Zenicor	30	2	28	54.1	44	NR	28.4	1.1	8.4	0	0	6.3	1	30 sec irregular rhythm without p waves	9	9.5
17 Chan et al. 18016) 15	1013	Hong Kong	hypertension or diabetes	Alive Cor	60	1	0	68.4	47	NR	90.4	36.6	16.2	2.2	4.4	10.5	3	Cardiologist Interpretation	5	0.5
Sobocinski et.	249	Sweden	Patients post TIA/stroke	Zenicor	10	2	30	72	57	NR	65	16	20	0	4	25	3	irregular rhythm of minimum 10 sec without visible p wayes	15	6
2019 14	606	Sweden	Community event	Zenicor	10	1	0	NR	64	NR	NR	NR	NR	NR	NR	NR	NR	irregular rhythm without visible p wayes	6	1
21 Razhkumar et.	204	Australia	Community - ≥ 65 yrs with 1 or more risk factor for heart	Demos DM 100	<u></u>	-	7	70.1		20.1	72.1	56.4	5.0	0	0	ND	2	30 sec duration of irregular rhythm with	20	0.0
-23 24	204	Australia	Patients referred to respiratory clinics with suspicion of	Kemon KM-100	60	5	/	70.1	51	29.1	/2.1	56.4	5.9	U	0	NK	3	aosent p waves	20	9.8
12e5drikx et. al. (2017) 58	201	Sweden	obstructive sleep apnoea	Zenicor	30	2	14	56	69	30	51	10	9.2	0	4.6	3.1	NR	Irregular supraventricular extra systoles in series for 30 sec	13	6.5
20 27 Claes et. al. 2 8 011) 61	10758	Belgium	Community heart rhythm screening program through medical centres	Omron Heartscan 'HCG-801	30	1	0	59	38	NR	30.6	8.6	12.2	7.2	7.2	5.4	1	Irregular RR intervals, absence of p waves and variable atrial cycle length (when visible)	167	1.6
29 30			Large proportion post stroke/TIA. Also recruited from diabetes	Omron																
3 a mol et. al. (2012) 62	132	Germany	hypertension and dyslipidemia clinics	Heartscan HCG-801	30	1	0	64	58	NR	67	27	NR	0	3	49	NR	Cardiologist Interpretation x 2	7	5.3
Battipaglia et. al. (2016) 63	855	UK	Community shopping centre screening	MyDiagnostik	15	1	0	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	7	0.8
33 3 ^{Chan et al.} (2016) 59	13122	Hong Kong	Nationwide community screening program	Alive Cor	30	1	0	64.7	29	23.7	38.2	14.8	2.2	0	0.7	2.8	NR	Software algorithm definition with minimum of 30 sec	101	0.8
35 Chan et al. 36017) 65	10735	Hong Kong	Nationwide community screening program	Alive Cor	30	1	0	NB	NR	NB	NR	NR	NR	12	NR	NR	NB	Cardiologist interpretation (> 30 sec)	74	0.7
37			Community based with individuals > 65			-												20 second duration of an irregular shith-		
(2017) 64	501	UK	score ≥ 2 Patients admitted	Alive Cor	30	week	365	72.6	48	NR	54	26	14	0	1.0	7.0	3.0	without P waves	19	3.8
Gladstone et. 40(2014) 18	277	Canada	with cryptogenic stroke	Holter	continuous	continuous	1	73.2	56	NR	67	19.3	14.7	0	7	12.6	NR	30 second or longer duration of irregular rhythm	9	3.2
41 Barthelemy et. ▲Ω(2003) 19	60	France	Consecutive patients admitted with stroke/TIA	Holter	continuous	continuous	1	64.4	55	NR	50	17	NR	0	NR	27	NR	fibrillatory waves associated with irregular ventricular response ratio at leats 30 sec duration	8	13.3

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 10

3																				
4			Consecutive patients																	
Jabaudon et al.	140	Switzerland	admitted with	Holter	continuous	continuous	1	66.9	68	ND	59	16.7	16.9	47	NP	16.9	NP	NP	7	47
3 (2004) 20	149	Switzenanu	Retrospective study	Hoiter	continuous	continuous	1	00.9	00	INIT	30	10.7	10.0	4.7	ININ	10.0	IND	INR	/	4.7
6			of 100 patients																	
Houdstaal et.	100		admitted with					60.0										ND	-	-
0	100	Holland	Consecutive natients	Holter	continuous	continuous	1	60.9	74	NK	NK	NK	41	NK	NK	NK	NK	NR	5	5
O Hornig et. al.			admitted with																	
9 (1996) 22	268	Germany	stroke/TIA	Holter	continuous	continuous	1	59.1	61	NR	43.7	34	NR	NR	14.9	45	NR	NR	10	3.3
$1_{0,012,022}^{\text{Rizos et. al.}}$	196	Germany	Patients admitted	Holter	continuous	continuous	1	60	67	ND	70 0	24.6	NP	NP	NP	22 2	2	Cardiologist interpretation (> 20 sec)	14	28
11	450	Germany	with stroke/ IA	Holter	continuous	continuous	1	05	02	INIX	70.0	24.0	INIX	INIX	NIX	22.2	5	Small irregular baseline undulations of variable	14	2.0
11			Consecutive patients															amplitudes and morphology at a rate		
\$c <u>M</u> uchert et.	87	Germany	admitted with	Holter	continuous	continuous	2	50 7	57	ND	26.5	ND	171	NP	NP	NP	NP	>350/min with an irregular ventiruclar	5	6
13	82	Germany	Consecutive patients	Horter	continuous	continuous	5	55.7	57	INIX	30.5	INIX	17.1	INIX			INIX	response for at least 1 min.	5	0
fogaer et. al.			admitted with																	
(2009) 25	241	Switzerland	stroke/TIA	Holter	continuous	continuous	1	68.7	59	NR	76	25	41	7	NR	4.6	NR	NR	0	0
15			of patients post															Self-terminating sequence of >30 seconds of		
16 aer et. al.			stroke/TIA with															irregular RR intervals and the presence of		
-1 ^{(2004) 26}	425	Switzerland	Holter monitoring	Holter	continuous	continuous	1	67.4	61	NR	NR	NR	NR	NR	NR	1.2	NR	fibrillatory P waves.	9	2.1
10			of consecutive																	
Shafqat et. al.			patients admitted																	
192004) 27	465	Pakistan	with stroke/TIA	Holter	continuous	continuous	1	66.8	56	NR	NR	NR	5	2.4						
20																		Supraventricular tachyarrhythmia characterized by uncoordinated atrial		
21			Consecutive patients															activation with fibrillatory waves varying in		
tazzaro et. al.			admitted with															amplitude, shape, and timing, replacing		
/(2012) 28	133	USA	stroke/IIA	Holter	continuous	continuous	1	63.1	50	NR	70	29.3	18.8	0	NK	2.3	NK	consistent P waves and with a duration >30 sec	8	6
23			Patients admitted in															arrhythmia without detectable P waves and		
Grond et. al.			7 German centres															without a pttern more consistent with an		
2 (2013) 29	1135	Germany	with stroke/TIA	Holter	continuous	continuous	3	67	55	27.4		20.4	7.3	0	5.8	17.4	NR	alternate diagnosis	49	4.3
∠⊃ Stahrenberg et.			admitted with															2 x Cardiologist interpretation of software		
26 (2010) 30	224	Germany	stroke/TIA	Holter	continuous	continuous	7	68	58	27.6	72.9	22.3	14.8	0	5.2	16.2	NR	algorithm detection of events	28	12.5
27			Patients admitted																	
7(2 013) 31	60	Germany	stroke	Holter	continuous	continuous	7	61.8	57	NR	70	11.7	13.3	NR	0	NR	4	Cardiologist interpretation (> 30 sec)	1	1.7
Higgins et. al.			Patients admitted				_					_			6				_	
29013) 32	50	Scotland	with stroke/TIA	Holter	continuous	continuous	7	67.1	48	NR	56	8	16	0	NR	NR	NR	Cardiologist interpretation (> 30 sec)	4	8
Bodrikx et. al.			for palpitations and																	
2 (2014) 67	95	Sweden	presyncope	Holter	continuous	continuous	1	54.1	42	NR	28.4	1.1	8.4	0	0	6.3	1	30 sec irregular rhythm without p waves	2	2.1
2n Skkaretal			Consecutive patients admitted with																	
(2014) 33	52	India	stroke/TIA	Holter	continuous	continuous	1	59.5	77	NR	51.9	23.1	15.4	0	1.7	7.7	NR	30 sec irregular rhythm without p waves	3	5.8
-33			Consecutive patients																	
Wachter et. al.	198	Germany	admitted with stroke/TIA	Holter	continuous	continuous	1	73.2	62	NR	80.7	26.4	91	0	4.6	217	4.8	>30 seconds rhyhtm with irregular RR intervals and the presence of fibrillatory P wayes	9	5
Quanbinger et.	150	Germany	Patients admitted	Horter	continuous	continuous	1	73.2	02	INIX	80.7	20.4	5.1	0	4.0	21.7	4.0	and the presence of nonnatory r waves.	5	5
al. (2012) 35	192	Germany	with stroke/TIA	Holter	continuous	continuous	1	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	2	1
36			Retrospective review																	
37. Alfadramy et.			stroke/TIA with															Irregular ventricular response in the absence		
30(2010) 36	426	Canada	Holter monitoring	Holter	continuous	continuous	1	64.9	48	NR	58.2	14.1	14.1	0	1.6	6.3	NR	of p-waves or with fibrillatory waves	11	2.5
3. Andread at an			Consecutive patients															irrogular rhuthm of minimum 10 and with a st		
al. (2012) 66	249	Sweden	stroke/TIA	Holter	continuous	continuous	1	72	57	NR	65	16	20	0	4	25	3	visible p waves	5	2
40	-		Retrospective audit						-				-	-		-	-	• • • •		
41			of patients admitted																	
Dangayach et.	51	USA	with cryptogenic stroke	Holter	continuous	continuous	2	58.2	43	NR	35.3	16	15.7	7.4	NR	NR	NR	NB	15	29.4
-+Z, , ,							-													

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Atrial fibrillation detectio	n using portable el	ectrocardiographic	e monitoring de	evices.; Page 11
------------------------------	---------------------	--------------------	-----------------	------------------

3																				
∕a unalp et. al.			Patients admitted																	
(2006) 38	26	Turkey	with ischaemic stroke	Holter	continuous	continuous	1	66	69	NR	61	26	31	NR	NR	NR	NR	NR	11	42.3
5			Patients admitted																	
Fonseca et. al.			with cryptogenic																	
0 (2013) 39	80	Portugal	stroke	Holter	continuous	continuous	1	69.3	53	NR	71.3	28.8	11.3	NR	NR	22.5	NR	NR	17	21
7			Patients admitted																	
Manina et. al.			with cryptogenic															Irregular ventricular response in the absence		
8 (2014) 40	114	Italy	stroke	Holter	continuous	continuous	4	63.1	NR	NR	52.6	9.6	NR	NR	NR	NR	NR	of p waves or with fibrillatory waves	29	25.4
0			C															small irregular baseline undulations of variable		
J Taganua at al			Consecutive patients															amplitude and morphology at a rate of 300-		
1 agawa et. al.	200	lanan	ischaomic stroko	Holtor	continuous	continuous	1	72 6	60	ND	70.1	25.2	ND	20.4	ND	ND	ND		26	0 /
11	506	заран	Consecutive patients	Hoitei	continuous	continuous	1	72.0	00	INIT	70.1	23.5	ININ	20.4	INIT	INIT	INIT	Tesponse	20	0.4
Shihazaki et al			admitted with																	
1 2 012) 42	536	lanan	ischaemic stroke	Holter	continuous	continuous	1	72 4	64	NR	65.9	25.7	9.8	NR	03	NR	NR	NB	12	2.2
120			Retrospective audit				_													
Ja debroucke			of patients admitted																	
et. al. (2004) 43	136	Belgium	with ischaemic stroke	Holter	continuous	continuous	1	68	52	NR	7	5.1								
-14		-	Consecutive patients																	
fogogawa et.			admitted with															irregular and uncoordinated atrial electrical		
al. (2013) 44	68	Japan	ischaemic stroke	Holter	continuous	continuous	1	69.9	54	NR	66.2	14.7	NR	NR	NR	NR	NR	activity on surface ECG lasting > 30 sec	17	25
16			Retrospective audit																	
17			of patients admitted																	
Atmuri et. al.			with ischaemic																	
18 012) 45	140	Australia	stroke/TIA	Holter	continuous	continuous	1	NR	NR	NR	65	20	37.1	18.6	NR	NR	NR	NR	12	8.6
10			Cohort study of																	
19			patients ≥ 65 yrs with																	
	274	Italy	nypertension in multiple CB clipics	Holtor	continuour	continuous	2	70	E 4	ND	100	15	0	7	4	2.2	ND	Cordiologist interpretation	4	1 5
Paguliou Roiro	2/4	italy		Hoitei	continuous	continuous	2	70	54	INIT	100	15	9	/	4	2.2	INIT	Cardiologist interpretation	4	1.5
At al (2013)			admitted with																	
77 47	284	Canada	stroke/TIA	Holter	continuous	continuous	1	70.6	52	NR	68.7	26.7	27.4	NR	2.2	22.3	NR	Cardiologist interpretation	18	6.3
			Retrospective review				_													
23gan et. al.			of patients admitted																	
a (2011) 48	400	Turkey	post stroke	Holter	continuous	continuous	1	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	40	10
-24			Retrospective review																	
⊅5 µen et. al.			of patients admitted																	
(2008) 49	126	Canada	post stroke	Holter	continuous	continuous	1	NR	NR	NR	NR	NR	NR	7	NR	NR	NR	NR	9	7.1
26			Consecutive patients																	
Sujssa et. al.			admitted with																	
~ (2012) 50	354	France	ischaemic stroke	Holter	continuous	continuous	1	62.4	57	NR	51.1	18.6	NR	0	NR	NR	NR	Cardiologist interpretation	2	0.6
28 Alhahrt et.			Patients admitted				_				-									
al. (2013) 51	224	Germany	with ischaemic stroke	Holter	continuous	continuous	7	68.5	59	NR	73.2	22.3	15.2	NR	5.4	24.1	NR	>30 second irregular rhythm	29	12.9
29																				

A DAtrial Fibrillation BMI – Body Mass Index (kg/m²) DM – Diabetes Mellitus HF – Heart Failure HTN - Hypertension IHD – Ischaemic Heart Disease

³² Table 1 – Summary of included trials investigating AF detection using single lead ECG devices or Holter Monitoring

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Overall AF detection. The combined AF detection rate using single lead ECG monitoring (n=117,436 from 18 studies) was 1.7% (95% CI 1.4% – 2.1%). The cumulative AF detection rate using continuous (Holter) monitoring (n=8498 from 36 studies) was 5.5% (95% CI 4.4% – 6.6%). There was significant heterogeneity between studies ($I^2 = 94\%$ for single lead ECG monitoring, 87% for Holter monitoring). The overall new AF detection rate is presented in Figure 2.

Comparison of multiple intermittent monitoring to 24 hour Holter. There was significant variation in the monitoring time using both single lead and Holter monitoring which contributed to the difference in the cumulative detection rate seen in Figure 2. Figure 3 compares the detection rate of multiple intermittent single lead recordings to 24-hour continuous monitoring, which is used routinely in clinical practice. There were 8 studies (n=10,199, mean weighted age 68.8±8.4 years from 6 studies, 47% male from 8 studies) that performed multiple intermittent single lead ECG recordings and 27 studies (n=6284, mean weighted age 67.8±5.1 years from 23 studies, 58% male from 23 studies) that used 24-hour Holter monitoring. From the data available, the multiple intermittent ECG group had a lower AF risk to the 24-hour Holter group (hypertension – 55% (n=8 studies) vs 65% (n=20 studies), diabetes mellitus – 15% (n=8 studies) vs 22% (n=20 studies), heart failure – 3.3% (n=8 studies) vs 3.9% (n=11 studies), ischemic heart disease – 11% (n=6 studies) vs 19% (n=15 studies) and previous stroke/TIA – 9% (n=7 studies) vs 16% (n=15 studies)) respectively. The combined AF detection rate was 4.8% (95% CI 3.6–6.0%) using multiple intermittent ECG recordings. The cumulative AF detection rate using 24-hour Holter monitoring was 4.6% (95% CI 3.5–5.7%).

Association between monitoring time and AF detection. Using single lead ECG devices, we found a moderate linear relationship between the total monitoring time and AF detection rate (β =0.13, R² = 0.42). Using this formula, we noted that approximately 19 minutes of total intermittent monitoring produced similar AF detection to 24-hour continuous monitoring (Figure 4). The study by Halcox et. al. was an outlier, with a much lower AF detection rate than other studies (3.8% from 52 minutes of total monitoring) and this reduced the linear correlation between total monitoring time and AF detection rate ⁶⁴. Exclusion of these data led to a stronger linear relationship (β =0.26, R² =

BMJ Open

0.80) and a much lower total intermittent monitoring time required (12 min) to produce a similar AF detection rate to 24 hour Holter monitoring.

Meta-regression. Sources of heterogeneity in the 18 studies using single lead ECG monitoring were investigated using meta-regression (Table 2). Monitoring time per participant (β =0.11, 95% CI 0.04-0.18, p=0.005) and body mass index (β =1.1, 95% CI 0.58-1.5, p=0.01) were associated with AF detection.

Variable	Number	β (95% C.I)	P value
	of studies		
Age (years)	15	0.00 (-0.22 - 0.24)	0.95
Monitoring time per participant (min)	18	0.11 (0.04 – 0.18)	0.005
Body Mass Index (kg/m ²)	4	1.1 (0.58 – 1.5)	0.01
CHADS Score (%)	11	-0.13 (-2.6 – 2.4)	0.91
Hypertension (%)	14	0.01 (-0.08 - 0.10)	0.75
Previous diagnosis of AF (%)	16	-0.13 (-0.50 - 0.24)	0.46
Ischaemic Heart Disease (%)	12	-0.10 (-0.42 - 0.21)	0.48
Previous stroke (%)	13	0.06 (-0.09 - 0.19)	0.45
Male gender	16	0.10 (-0.04 - 0.24)	0.16

 Table 2 – Meta Regression Analysis for AF detection (Single lead ECG studies)

Sensitivity Analysis. A number of outlier studies were observed in the meta-analysis that could influence the cumulative AF detection rate.^{37-40 44} Removal of these outlier studies resulted in a reduction in the overall AF detection rate in all Holter studies (table 3) and for 24 hour Holter studies (table 4). When these outlier studies were removed the overall AF detection rate for 24 hour Holter was 3.86% (95% C.I 2.88% - 4.83%), much lower than the detection rate by multiple intermittent ECG recordings using portable single lead devices (4.78%, 95% C.I 3.58% - 5.97%). A cumulative meta-analysis (figure 5) did not show any significant variation in the AF detection rate

Study Omitted	AF detection rate (%) in remainder	95% C.I (%)
Dangayach et. al. (2011)	5.27	4.17 - 6.38
Fonseca et. al. (2013)	5.26	4.15 - 6.36
Gunalp et. al. (2006)	5.32	4.21 - 6.42
Manina et. al. (2014)	5.11	4.03 - 6.20
Yadogawa et. al. (2013)	5.25	4.14 - 6.35
All studies excluded	4.31	3.36 - 5.26

over time using either Holter or single lead ECG monitoring.

Table 3 – Outlier studies omitted (all Holter studies) to assess the change to the overall AF detection rate

4 30	2 21 5 20
1.00	5.21 - 5.39
4.39	3.30 - 5.47
4.30	3.22 - 5.38
3.86	2.88 - 4.83
	4.39 4.30 3.86

Table 4 – Outlier studies omitted (24 hour Holter) to assess the change to the overall AF detection rate

Publication bias. Publication bias was explored using a funnel plot of all included studies (Supplemental Figure 1). There was significant publication bias in both single lead ECG device and Holter monitoring studies (Egger test, p=0.003 and p<0.001 respectively).

Quality of studies. A summary of the quality analysis (Supplemental Table 3) showed that overall quality of reporting was moderate. All studies described the primary objective of the trial and included a summary of the main findings. Detailed comorbidities of the study participants were only adequately reported in 28/52 (54%), and limitations were discussed in 35/52 (67%) of studies. Most had a very selective patient population, 31/52 (60%) were post stroke/TIA cohorts.

Discussion

Our study is the only systematic review that we are aware of that has studied the overall AF detection rate of single lead portable ECG devices. The results of our systematic review suggest a linear relationship between monitoring time per patient and AF detection rate. Single timepoint screening has an approximate 1% AF detection rate which can be increased to around 5% when

BMJ Open

multiple recordings are performed. We noted that approximately 19 minutes of intermittent monitoring produced similar detection rates to conventional 24 hours continuous Holter monitoring. **Early diagnosis of AF:** AF creates a significant burden on both patients as well as the health care system. AF will continue to rise in incidence and the costs to the health care system will continue to increase, due to aging, sedentariness, and the prevalence of obesity and the metabolic syndrome.^{3 68} Early diagnosis offers the possibility for early initiation of treatment which may reduce the occurrence of the complications which may lead to reduced hospital admissions and associated health care costs. Early treatment for AF can be achieved in different ways. Patients with subclinical AF have an increased risk of stroke and cardiovascular events, like those with established AF.^{12 69} Anticoagulation may help reduce the incidence of stroke in this cohort.

The close relationship between metabolic syndrome and AF has encouraged research into the benefits of lifestyle intervention. Aggressive lifestyle intervention in patients with AF undergoing catheter ablation has been reported to lead to a reduction in symptom burden, improved quality of life and the need for repeat ablation procedures.¹⁰ It remains to be tested whether initiation of lifestyle intervention and aggressive risk factor modification following the early diagnosis of AF may be associated with positive LA remodeling and reduction of disease progression. Such a process may lead to additional health benefits, including reduction in cardiovascular risk and improvement in exercise capacity.

AF screening and feasibility. AF is a leading cause of stroke and heart failure in the community. As well as an association with increased all-cause mortality, it is associated with reduced quality of life. The availability of preventive therapies, including anticoagulation, has led to increasing recognition of the importance of AF screening for early diagnosis. However, AF screening shares the limitations of screening with other diagnostic tests. The screening tool must have high sensitivity, and needs to be inexpensive and cost effective. We also need to minimize and have a method of addressing false positives. Current guidelines recommend opportunistic screening using pulse palpation and 12 lead ECG.¹¹ In a previous systematic review this was associated with a new AF detection rate of approximately 1%.⁵ Pulse palpation may be non-specific in patients with other irregular rhythms such as ventricular ectopy, and 12 lead ECG is only able to capture a single timepoint for screening.

There are multiple other methods for AF detection. Continuous Holter monitoring is probably the most commonly used in clinical practice, especially in stroke cohorts. It has the potential advantage of assessing heart rhythm throughout the day and may be useful in detecting nocturnal subclinical AF. However, the disadvantages include the cost of Holter monitoring (especially for mass screening), the inconvenience of leads and electrodes (which may affect compliance), and typical limitation to 1-2 days of capture (as extended periods are more cumbersome and less cost-effective. Other event recorders are again expensive and limited to symptomatic patients. Extended period monitoring using implantable devices have shown promise in the cryptogenic stroke population (where many have been diagnosed with paroxysmal AF),⁷⁰ but they are invasive and not feasible for mass screening.

Portable single lead ECG devices permit multiple 30-60 second recordings to be captured, and downloaded to a computer. These devices have several potential advantages over Holter monitoring. They are leadless and require finger contact (and are hence easy to use and acceptable to patients). They have a high degree of sensitivity for identifying AF.⁷¹⁻⁷³ Most interface with a web-based cloud system where ECG rhythms can be wirelessly transferred to clinicians, allowing rapid analysis and diagnosis. The development of automated algorithms to detect AF is helpful for mass screening. In two small studies they have demonstrated superior AF detection compared with 24 hour Holter monitoring.^{66 67} Although screening using these portable devices are currently not in the latest AF guidelines, they may offer a feasible option for mass screening. Screening using these devices has been demonstrated to be cost effective.^{74 75}

We noted a moderate linear association between monitoring time and AF detection rate. Single timepoint screening for 30-60 sec achieved an overall detection rate of approximately 1%. This is no better than what has been reported using pulse palpation or 12 lead ECG, hence does not add any incremental benefit in screening programs ⁵. Multiple intermittent recordings improve AF detection; we found that at least 19 minutes of total monitoring should be performed to achieve detection rates similar to 24 Holter monitoring.

The linear relationship between monitoring time and AF detection rate ($R^2=0.80$) and the reproduction of AF detection rates of 24 hour Holter monitoring with only 12 minutes of intermittent

BMJ Open

monitoring was possible in our study only after exclusion of an outlier.⁶⁴ Despite the inclusion of elderly participants with at least one risk factor for AF, the use of a validated single lead ECG device and a prolonged monitoring period, that study had a lower AF detection rate (3.8%) than the remaining studies, even using a shorter monitoring period.^{53 56 57} Relatively low rates of adherence (only approximately 25% completed 2 x 30 second ECG recordings every week for the full year of monitoring) may be a potential explanation for the lower AF detection rate noted.⁶⁴

Limitations: There are several challenges inherent in this meta-analysis of studies investigating AF detection. The most important is the target screening population. Most studies did not report the CHADS or CHA2DS2-VASC score, a history of previous stroke, or other co-morbidities. Consequently, it was difficult to ascertain if the risk profiles of patients in these studies were equivalent. Most Holter monitoring studies were performed in the stroke population – which is likely a population with higher AF risk than many studies using portable ECG devices, which recruited mainly healthy participants or those with AF risk factors from the community. The significant heterogeneity amongst both Holter and portable ECG device studies make it difficult to perform direct comparisons between both groups. The type/duration of monitoring and type of device used will also influence the overall AF detection rate and varied significantly between studies. There are several possible confounders which may not have been taken into account. The validity of the linear regression analysis comparing detection time and rate may be limited due to the significant differences in study population, study design and AF definitions. However, despite these limitations, the analysis may provide some important inferences into AF screening. Multiple intermittent ECG recordings achieved a similar AF detection rate to 24 hour Holter monitoring. This may suggest that in a similar cohort of patients with the same comorbidities, single lead intermittent monitoring may be superior for AF detection.

Compared to 24-hour continuous monitoring, single lead portable ECG monitoring is more patient dependent. Good patient compliance is essential to obtain multiple readings across different timepoints which improves sensitivity. The analysis performed does not take into account patient compliance as this is difficult to assess and poorly reported across the individual studies. Most single lead device manufacturers have proprietary automated AF detection algorithms which were used for

diagnosis. Not all of these algorithms have had rigorous testing and comparison to a reference standard. It is also difficult to distinguish AF from other supraventricular tachycardias using single lead ECG devices as the P wave is often not readily discernible. The use of different automated algorithms makes AF definitions non-standardized and can potentially create issues with both over and underdiagnoses.

There are other limitations in this analysis. The efficacy of intermittent monitoring is critically dependent on AF burden and density. All studies varied in their monitoring period and strategy. The linear regression model used was able to determine a total intermittent monitoring time which produced similar AF detection rates to 24-hour continuous monitoring. However, it is difficult to translate the total monitoring time into an effective monitoring strategy. For example, we are unable to determine from our analysis if 12 x 60 second recordings over 12 consecutive days is different to 2 x 60 second recordings daily for 6 consecutive days. The definitions of AF also vary between studies. Many are based on individual physician interpretation and criteria for diagnosis were not explicitly specified. The duration of AF varied from 10-30 seconds between studies, although a cut-off of 30 seconds, was the most widely adopted practice.

Conclusion: Single lead portable ECG devices may offer an efficient screening option for AF compared to 24 hr. Holter monitoring. Total monitoring time is related with AF detection and a total of 19 minutes may achieve a similar detection rate to 24 hour Holter monitoring.

Contributors: SR – Performed the literature search and analysis of individual studies. Involved in the statistical analysis, manuscript preparation and editing. TM – Is guarantor. Developed project idea/rationale. Involved in data analysis and manuscript preparation and editing. NN – Involved in data and statistical analysis as well as manuscript preparation and editing. DD – Performed the literature search and analysis of individual studies. Involved in the manuscript preparation and editing. DP – Involved in analysis of individual studies and statistical analysis. Involved in

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 19

manuscript preparation and editing. JK - involved in the project outline, data analysis, manuscript

preparation and editing.

Data Sharing: Further figures and data available in supplementary material.

BMJ Group declaration of interests statement

I have read and understood the BMJ Group policy on declaration of interests and declare the following interests: *[list them or state "none"]*.

Date - 05/01/2018

Name:

Satish Ramkumar

Receives equipment and software support from Semacare Inc, a manufacturer of handheld ECG devices. The sponsors had no role in the design and conduct of the study, in the collection, analysis, and interpretation of the data, and in the preparation, review, or approval of the manuscript.

Receives research scholarships from the Heart Foundation and Avant

Thomas H Marwick

Receives equipment and software support from Semacare Inc, a manufacturer of handheld ECG devices. The sponsors had no role in the design and conduct of the study, in the collection, analysis, and interpretation of the data, and in the preparation, review, or approval of the manuscript.

Nitesh Nerlekar – none Daniel D'Souza – none Derek J Pol – none Jonathan M Kalman - none

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 20

1. Krahn AD, Manfreda J, Tate RB, et al. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. The American Journal of Medicine 1995;98(5):476-84.

2. Vidaillet H, Granada JF, Chyou P-H, et al. A population-based study of mortality among patients with atrial fibrillation or flutter. The American Journal of Medicine 2002;113(5):365-70.

3. Kim MH, Johnston SS, Chu B-C, et al. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circulation: Cardiovascular Quality and Outcomes 2011;4(3):313-20.

4. Leyden JM, Kleinig TJ, Newbury J, et al. Adelaide stroke incidence study: declining stroke rates but many preventable cardioembolic strokes. Stroke 2013;44(5):1226-31. doi: 10.1161/strokeaha.113.675140 [published Online First: 2013/03/14]

5. Lowres N, Neubeck L, Redfern J, et al. Screening to identify unknown atrial fibrillation: A systematic review. Thrombosis and Haemostasis 2013;110(2):213-22. doi: http://dx.doi.org/10.1160/TH13-02-0165

6. Watanabe H, Tanabe N, Watanabe T, et al. Metabolic syndrome and risk of development of atrial fibrillation. Circulation 2008;117(10):1255-60.

7. Ball J, Thompson DR, Ski CF, et al. Estimating the current and future prevalence of atrial fibrillation in the Australian adult population. Med J Aust 2015;202(1):32-5.

1	
2	
3	
4	
5	
6 7	
/ 0	
o Q	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
4Z 13	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

8. Dagres N, Anastasiou-Nana M. Atrial Fibrillation and Obesity. *Journal of the American College of Cardiology* 2010;55(21):2328-29. doi: 10.1016/j.jacc.2010.01.045

9. Sposato LA, Cipriano LE, Saposnik G, et al. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. *Lancet neurol* 2015;14(4):377-87. doi: <u>https://dx.doi.org/10.1016/S1474-4422(15)70027-X</u>

10. Pathak RK, Middeldorp ME, Lau DH, et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study. *Journal of the American College of Cardiology* 2014;64(21):2222-31.

11. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. *European Heart Journal* 2016;37(38):2893-962. doi: 10.1093/eurheartj/ehw210

12. Martinez C, Katholing A, Freedman SB. Adverse prognosis of incidentally detected ambulatory atrial fibrillation. *Thrombosis and haemostasis* 2014;112(2):276-86.

13. Lau J, Lowres N, Neubeck L, et al. Performance of an automated iPhone ECG algorithm to diagnose atrial fibrillation in a community AF screening program (search-AF). *Heart Lung and Circulation* 2013;22:S205. doi: <u>http://dx.doi.org/10.1016/j.hlc.2013.05.488</u>

14. Doliwa PS, Frykman V, Rosenqvist M. Short-term ECG for out of hospital detection of silent atrial fibrillation episodes. *Scandinavian Cardiovascular Journal* 2009;43(3):163-68.

15. Chan PH, Wong CK, Poh YC, et al. Diagnostic performance of a smartphone-based photoplethysmographic application for atrial fibrillation screening in a primary care setting. *Journal of the American Heart Association* 2016;5(e003428):e003428.

16. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS medicine* 2009;6(7):e1000097.

17. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. *Journal of Epidemiology and Community Health* 1998;52(6):377-84. doi: 10.1136/jech.52.6.377

18. Gladstone DJ, Spring M, Dorian P, et al. Atrial fibrillation in patients with cryptogenic stroke. *New England Journal of Medicine* 2014;370(26):2467-77.

19. Barthélémy JC, Féasson-Gérard S, Garnier P, et al. Automatic cardiac event recorders reveal paroxysmal atrial fibrillation after unexplained strokes or transient ischemic attacks. *Annals of Noninvasive Electrocardiology* 2003;8(3):194-99.

20. Jabaudon D, Sztajzel J, Sievert K, et al. Usefulness of ambulatory 7-day ECG monitoring for the detection of atrial fibrillation and flutter after acute stroke and transient ischemic attack. *Stroke* 2004;35(7):1647-51. doi: <u>https://dx.doi.org/10.1161/01.STR.0000131269.69502.d9</u>

21. Koudstaal PJ, van Gijn J, Klootwijk A, et al. Holter monitoring in patients with transient and focal ischemic attacks of the brain. *Stroke* 1986;17(2):192-95.

22. Hornig C, Haberbosch W, Lammers C, et al. Specific cardiological evaluation after focal cerebral ischemia. *Acta Neurologica Scandinavica* 1996;93(4):297-302.

23. Rizos T, Güntner J, Jenetzky E, et al. Continuous stroke unit electrocardiographic monitoring versus 24-hour Holter electrocardiography for detection of paroxysmal atrial fibrillation after stroke. *Stroke* 2012;43(10):2689-94.

24. Schuchert A, Behrens G, Meinertz T. Impact of long-term ECG recording on the detection of paroxysmal atrial fibrillation in patients after an acute ischemic stroke. *Pacing Clin Electrophysiol* 1999;22(7):1082-4.

25. Schaer B, Sticherling C, Lyrer P, et al. Cardiological diagnostic work-up in stroke patients–a comprehensive study of test results and therapeutic implications. *European Journal of Neurology* 2009;16(2):268-73.

26. Schaer B, Zellweger M, Cron T, et al. Value of routine Holter monitoring for the detection of paroxysmal atrial fibrillation in patients with cerebral ischemic events. *Stroke* 2004;35(3):e68-e70.

27. Shafqat S, Kelly P, Furie K. Holter monitoring in the diagnosis of stroke mechanism. *Internal Medicine Journal* 2004;34(6):305-09.

28. Lazzaro MA, Krishnan K, Prabhakaran S. Detection of atrial fibrillation with concurrent holter monitoring and continuous cardiac telemetry following ischemic stroke and transient ischemic attack. *J Stroke Cerebrovasc Dis* 2012;21(2):89-93. doi: <u>https://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2010.05.006</u>

29. Grond M, Jauss M, Hamann G, et al. Improved detection of silent atrial fibrillation using 72-hour Holter ECG in patients with ischemic stroke. *Stroke* 2013;44(12):3357-64.

30. Stahrenberg R, Weber-Kruger M, Seegers J, et al. Enhanced detection of paroxysmal atrial fibrillation by early and prolonged continuous holter monitoring in patients with cerebral ischemia presenting in sinus rhythm. *Stroke* 2010;41(12):2884-88. doi: <u>http://dx.doi.org/10.1161/STROKEAHA.110.591958</u>

31. Ritter MA, Kochhauser S, Duning T, et al. Occult atrial fibrillation in cryptogenic stroke: detection by 7-day electrocardiogram versus implantable cardiac monitors. *Stroke* 2013;44(5):1449-52. doi: <u>https://dx.doi.org/10.1161/STROKEAHA.111.676189</u>

32. Higgins P, MacFarlane PW, Dawson J, et al. Noninvasive cardiac event monitoring to detect atrial fibrillation after ischemic stroke: a randomized, controlled trial. *Stroke* 2013;44(9):2525-31. doi: <u>https://dx.doi.org/10.1161/STROKEAHA.113.001927</u>

BMJ Open

33. Thakkar S, Bagarhatta R. Detection of paroxysmal atrial fibrillation or flutter in patients with acute ischemic stroke or transient ischemic attack by Holter monitoring. *Indian Heart Journal* 2014;66(2):188-92.

34. Wachter R, Gröschel K, Gelbrich G, et al. Holter-electrocardiogram-monitoring in patients with acute ischaemic stroke (Find-AF RANDOMISED): an open-label randomised controlled trial. *Lancet neurol* 2017;16(4):282-90.

35. Gumbinger C, Krumsdorf U, Veltkamp R, et al. Continuous monitoring versus HOLTER ECG for detection of atrial fibrillation in patients with stroke. *European Journal of Neurology* 2012;19(2):253-7. doi: <u>https://dx.doi.org/10.1111/j.1468-1331.2011.03519.x</u>

36. Alhadramy O, Jeerakathil TJ, Majumdar SR, et al. Prevalence and predictors of paroxysmal atrial fibrillation on Holter monitor in patients with stroke or transient ischemic attack. *Stroke* 2010;41(11):2596-600. doi: <u>https://dx.doi.org/10.1161/STROKEAHA.109.570382</u>

37. Dangayach NS, Kane K, Moonis M. Paroxysmal atrial fibrillation in cryptogenic stroke. *Therapeutics and Clinical Risk Management* 2011;7(1):33-37. doi: <u>http://dx.doi.org/10.2147/TCRM.S15079</u>

38. Gunalp M, Atalar E, Coskun F, et al. Holter monitoring for 24 hours in patients with thromboembolic stroke and sinus rhythm diagnosed in the emergency department. *Advances in Therapy* 2006;23(6):854-60.

39. Fonseca AC, Brito D, Pinho e Melo T, et al. N-terminal pro-brain natriuretic peptide shows diagnostic accuracy for detecting atrial fibrillation in cryptogenic stroke patients. *International Journal of Stroke* 2014;9(4):419-25. doi: <u>http://dx.doi.org/10.1111/ijs.12126</u>

40. Manina G, Agnelli G, Becattini C, et al. 96 hours ECG monitoring for patients with ischemic cryptogenic stroke or transient ischaemic attack. *Intern* 2014;9(1):65-7. doi: <u>https://dx.doi.org/10.1007/s11739-012-0755-3</u>

41. Tagawa M, Takeuchi S, Chinushi M, et al. Evaluating patients with acute ischemic stroke with special reference to newly developed atrial fibrillation in cerebral embolism. *Pacing and Clinical Electrophysiology* 2007;30(9):1121-28.

42. Shibazaki K, Kimura K, Fujii S, et al. Brain natriuretic peptide levels as a predictor for new atrial fibrillation during hospitalization in patients with acute ischemic stroke. *The American Journal of Cardiology* 2012;109(9):1303-07.

43. Vandenbroucke E, Thijs V. Diagnostic and therapeutic impact of ambulatory electrocardiography in acute stroke. *Acta Neurologica Belgica* 2004;104(1):27-31.

44. Yodogawa K, Seino Y, Ohara T, et al. Prediction of atrial fibrillation after ischemic stroke using P-wave signal averaged electrocardiography. *Journal of Cardiology* 2013;61(1):49-52.

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 24

45. Atmuri K, Hughes A, Coles D, et al. The role of cardiac disease parameters in predicting the results of Holter monitoring in patients with acute ischaemic stroke. *J Clin Neurosci* 2012;19(7):965-68.

46. Salvatori V, Becattini C, Laureti S, et al. Holter monitoring to detect silent atrial fibrillation in high-risk subjects: the Perugia General Practitioner Study. *Intern* 2015;10(5):595-601. doi: <u>https://dx.doi.org/10.1007/s11739-015-1241-5</u>

47. Beaulieu-Boire I, Leblanc N, Berger L, et al. Troponin elevation predicts atrial fibrillation in patients with stroke or transient ischemic attack. *Journal of Stroke and Cerebrovascular Diseases* 2013;22(7):978-83. doi: http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2012.01.008

48. Dogan U, Dogan EA, Tekinalp M, et al. P-wave dispersion for predicting paroxysmal atrial fibrillation in acute ischemic stroke. *International Journal of Medical Sciences* 2012;9(1):108.

49. Douen AG, Pageau N, Medic S. Serial electrocardiographic assessments significantly improve detection of atrial fibrillation 2.6-fold in patients with acute stroke. *Stroke* 2008;39(2):480-2. doi: <u>https://dx.doi.org/10.1161/STROKEAHA.107.492595</u>

50. Suissa L, Bresch S, Lachaud S, et al. Optimal timing and duration of continuous ECG monitoring for detecting atrial fibrillation in stroke patients. *Archives of Cardiovascular Diseases Supplements* 2012;4:43-44.

51. Wohlfahrt J, Stahrenberg R, Weber-Kruger M, et al. Clinical predictors to identify paroxysmal atrial fibrillation after ischaemic stroke. *European Journal of Neurology* 2014;21(1):21-7. doi: <u>https://dx.doi.org/10.1111/ene.12198</u>

52. Lowres N, Neubeck L, Salkeld G, et al. Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies: The SEARCH-AF study. *Thrombosis and Haemostasis* 2014;111(6):1167-76. doi: <u>http://dx.doi.org/10.1160/TH14-03-0231</u>

53. Svennberg E, Engdahl J, Al-Khalili F, et al. Mass screening for untreated atrial fibrillation: the STROKESTOP study. *Circulation* 2015;131:2176-84.

54. Proietti M, Mairesse GH, Goethals P, et al. A population screening programme for atrial fibrillation: a report from the Belgian Heart Rhythm Week screening programme. *Europace* 2016;18:1779-86.

55. Kaasenbrood F, Hollander M, Rutten FH, et al. Yield of screening for atrial fibrillation in primary care with a hand-held, single-lead electrocardiogram device during influenza vaccination. *Europace* 2016;18(10):1514-20. doi: <u>http://dx.doi.org/10.1093/europace/euv426</u>

56. Engdahl J, Andersson L, Mirskaya M, et al. Stepwise Screening of Atrial Fibrillation in a 75-Year-Old PopulationClinical Perspective. *Circulation* 2013;127(8):930-37.

BMJ Open

57. Hendrikx T, Hörnsten R, Rosenqvist M, et al. Screening for atrial fibrillation with baseline and intermittent ECG recording in an out-of-hospital population. *BMC Cardiovascular Disorders* 2013;13(1):41.

58. Hendrikx T, Sundqvist M, Sandström H, et al. Atrial fibrillation among patients under investigation for suspected obstructive sleep apnea. *PloS One* 2017;12(2):e0171575.

59. Chan Ny, Choy Cc. Screening for atrial fibrillation in 13 122 Hong Kong citizens with smartphone electrocardiogram. *Heart* 2017;103(1):24-31. doi: <u>http://dx.doi.org/10.1136/heartjnl-2016-309993</u>

60. Ramkumar S, Yang H, Wang Y, et al. The Role of Left Atrial and Ventricular Function in Prediction of Atrial Fibrillation: P2-19. *Journal of the American Society of Echocardiography* 2017;30(6):B70.

61. Claes N, Goethals M, Goethals P, et al. Screening for Atrial Fibrillation (AF) in Belgium: A multicentre trial. *European Journal of Cardiovascular Prevention and Rehabilitation* 2011;1):S30. doi: <u>http://dx.doi.org/10.1177/1741826711407000</u>

62. Samol A, Masin M, Gellner R, et al. Prevalence of unknown atrial fibrillation in patients with risk factors. *Europace* 2013;15(5):657-62.

63. Battipaglia I, Gilbert K, Hogarth AJ, et al. Screening for atrial fibrillation in the community using a novel ECG recorder. *Journal of Atrial Fibrillation* 2016;9(2):29-31.

64. Halcox JP, Wareham K, Cardew A, et al. Assessment of Remote Heart Rhythm Sampling Using the AliveCor Heart Monitor to Screen for Atrial Fibrillation: The REHEARSE-AF Study. *Circulation* 2017:CIRCULATIONAHA. 117.030583.

65. Chan, Ny, Siu Cw, Choy Cc et. al. Effectiveness of community atrial fibrillation screening in over 10,000 citizens using smartphone electrocardiogram- The AFinder program. ESC Congress; 2017 29th August Barcelona.

66. Doliwa Sobocinski P, Änggårdh Rooth E, Frykman Kull V, et al. Improved screening for silent atrial fibrillation after ischaemic stroke. *EP Europace* 2012;14(8):1112-16.

67. Hendrikx T, Rosenqvist M, Wester P, et al. Intermittent short ECG recording is more effective than 24-hour Holter ECG in detection of arrhythmias. *BMC Cardiovascular Disorders* 2014;14(1):41.

68. Stewart S, Murphy N, Walker A, et al. Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK. *Heart* 2004;90(3):286-92. doi: 10.1136/hrt.2002.008748

69. Healey JS, Connolly SJ, Gold MR, et al. Subclinical Atrial Fibrillation and the Risk of Stroke. *New England Journal of Medicine* 2012;366(2):120-29. doi: 10.1056/NEJMoa1105575

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 26

70. Sanna T, Diener HC, Passman RS, et al. Cryptogenic stroke and underlying atrial fibrillation. *New England Journal of Medicine* 2014;370(26):2478-86. doi: <u>http://dx.doi.org/10.1056/NEJMoa1313600</u>

71. Desteghe L, Raymaekers Z, Lutin M, et al. Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting. *Europace* 2016:euw025.

72. Williams J, Pearce K, Benett I, et al. The effectiveness of a mobile ECG device in identifying AF: sensitivity, specificity and predictive value. *British Journal of Cardiology* 2015;22(2)

73. Freedman SB, Lowres N. Asymptomatic atrial fibrillation: the case for screening to prevent stroke. *JAMA* 2015;314(18):1911-12.

74. Aronsson M, Svennberg E, Rosenqvist M, et al. Cost-effectiveness of mass screening for untreated atrial fibrillation using intermittent ECG recording. *EP Europace* 2015;17(7):1023-29. doi: 10.1093/europace/euv083

75. Jacobs MS, Kaasenbrood F, Postma MJ, et al. Cost-effectiveness of screening for atrial fibrillation in primary care with a handheld, single-lead electrocardiogram device in the Netherlands. *Europace* 2016:euw285.

85.

60

BMJ Open

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 27

1	
2	Figure Logonda
3	rigure Legends
5	Figure 1 - Overview of inclusion and exclusion of studies based on the PRISMA flowchart
6 7	Figure 2 – Forest Plot showing the overall AF detection rate between single lead ECG devices and
8 9	Holter monitoring
10 11	Figure 3 – Forest Plot comparing the AF detection rate between 24 hour Holter monitoring and
12 13	performing multiple intermittent single lead ECG recordings
14 15	Figure 4 – Graph showing the linear relationship between total monitoring time and AF detection
16 17	rate in single lead ECG devices
18 19	Figure 5 – Cumulative Meta-analysis showing minimal variation in AF detection over time using
20 21	Holter and single lead ECG devices.
22 23	Supplementary Figure 1 – Funnel Plots for Holter monitoring and single lead ECG device studies
24	
25	
27	
28	
29	
30	
31	
32	
34	
35	
36	
37	
38	
40	
41	
42	
43	
44	
45	
47	
48	
49	
50	
57	
53	
54	
55	
56	
57	

170x163mm (300 x 300 DPI)

Study	size (n)	detection rate (%)	ES (95% OI)
Single Lead ECG monitoring			
Battipaglia et. al. (2016)	855	.8	0.82 (0.33, 1.68)
Chan et al. (2016)	1013	.5	0.49 (0.16, 1.15)
Chan et al. (2016)	13122	.8	0.77 (0.63, 0.93)
Chan et. al. (2017)	10735	.7	0.69 (0.54, 0.86)
Claes et. al. (2012)	10758	1.6	1.55 (1.33, 1.80)
Doliwa et. al. (2009)	606	1	0.99 (0.36, 2.14)
Engdahl et. al. (2013)	848	4.7	4.72 (3.39, 6.37)
Halcox et. al. (2017)	501	3.8	3.79 (2.30, 5.86)
Hendrikx et. al. (2013)	928	3.8	3.77 (2.64, 5.21)
Hendrikx et. al. (2014)	95	9.5	9.47 (4.42, 17.22)
Hendrikx et. al. (2017)	201	6.5	6.47 (3.49, 10.81)
Kaasenbrood et. al. (2016)	3269	1.1	1.13 (0.80, 1.56)
Lowres et. al. (2014)	1000	1.5	1.50 (0.84, 2.46)
Proietti et. al. (2016)	65747	1.1	0.92 (0.85, 0.99)
Ramkumar et. al. (2017)	204	9.8	9.80 (6.09, 14.73)
Samol et. al. (2012)	132	5.3	
Sobocinski et. al. (2012)	249	6	6.02 (3.41, 9.74)
Svennberg et. al. (2015)	7173	3	 3.04 (2.65, 3.46)
Subtotal (I^2 = 93.63%, p = 0.6	00)		1.74 (1.39, 2.09)
Holter Monitoring			
Alhadramy et. al. (2010)	426	2.5	2.58 (1.30, 4.57)
Atmuri et. al. (2012)	140	8.6	8.57 (4.51, 14.49)
Barthelemy et. al. (2003)	60	13.3	13.33 (5.94, 24.59)
Beaulieu-Boire et. al. (2013)	284	6.3	6.34 (3.80, 9.83)
Dangayach et. al. (2011)	51	29.4	29.41 (17.49, 43.83)
Dogan et. al. (2011)	400	10	10.00 (7.24, 13.37)
Douen et. al. (2008)	126	7.1	7.14 (3.32, 13.13)
Fonseca et. al. (2013)	80	21	21.25 (12.89, 31.83)
Gladstone et. al. (2014)	277	3.2	3.25 (1.50, 6.08)
Grond et. al. (2013)	1135	4.3	4.32 (3.21, 5.67)
Gumbinger et. al. (2011)	192	1	1.04 (0.13, 3.71)
Gunalp et. al. (2006)	26	42.3	42.31 (23.35, 63.08)
Hendrikx et. al. (2014)	95	2.1	2.11 (0.26, 7.40)
Higgins et. al. (2013)	50	8	8.00 (2.22, 19.23)
Hornig et. al. (1996)	268	3.3	3.73 (1.80, 6.75)
Jabaudon et al. (2004)	149	4./	4.70 (1.91, 9.44)
Noudsiaak et. al. (1986)	100	5	5.00 (1.64, 11.28)
Lazzaro et. al. (2012)	133	6	6.02 (2.63, 11.51)
Manina et. al. (2014)	114	25.4	25.44 (17.75, 34.45)
Hitter et. al. (2013)	60	1.7	1.67 (0.04, 8.94)
nizos et. al. (2012) Caluatari at. al. (2015)	496	2.8	2.82 (1.55, 4.69)
Salvatofi et. al. (2015)	2/4	1.5	1.46 (0.40, 3.70)
Schuchart at al (2004)	425	2.1	2.12 (0.97, 3.98)
Scholast et al. (1999)	ACE	24	
Shibazaki et al. (2004)	400	2.4	1.08 (0.35, 2.49)
Shibazaki et. al. (2012)	536	2.2	2.24 (1.16, 3.88)
Subucinski et. al. (2012) Stobrophere et. el. (2012)	249	10 5	2.01 (0.66, 4.62)
Stanrenberg et. al. (2010)	224	12.5	12.50 (8.47, 17.56)
Suissa et. al. (2012)	354	.0	0.56 (0.07, 2.03)
Tagawa et. al. (2007)	308	8.4	8.44 (5.59, 12.12)
Thakkar et. al. (2014)	52	5.8	5.77 (1.21, 15.95)
Valuebroucke et. al. (2004)	130	5.1	5.15 (2.09, 10.32)
wachter et. al. (2017)	198	5	4.55 (2.10, 8.45)
Vorimanit et. al. (2013)	224	12.9	12.95 (8.84, 18.06)
Fauoyawa et. al. (2013) Seboor et. al. (2000)	08	25	25.00 (15.29, 36.98
Subtotal (IA2 - 87 45% - 0)	241	0	(Excluded)
$Outprotect (1) \ge 07.40\%, p = 0.1$	00)		▼ 5.49 (4.30, 6.63)

Figure 2

152x159mm (300 x 300 DPI)

	Sample size	New AF									%
Study	(n)	rate (%)								ES (95% CI)	Weig
Multiple ECG Recordings											
Engdahl et. al. (2013)	848	4.7	-							4.72 (3.39, 6.37)	17.05
Halcox et. al. (2017)	501	3.8								3.79 (2.30, 5.86)	15.63
Hendrikx et. al. (2013)	928	3.8	-							3.77 (2.64, 5.21)	18.2
Hendrikx et. al. (2014)	95	9.5			-					9.47 (4.42, 17.22)	3.48
Hendrikx et. al. (2017)	201	6.5		e						6.47 (3.49, 10.81)	7.98
Ramkumar et. al. (2017)	204	9.8		_						9.80 (6.09, 14.73)	6.21
Sobocinski et. al. (2012)	249	6								6.02 (3.41, 9.74)	9.47
Svennberg et. al. (2015)	7173	3	•							3.04 (2.65, 3.46)	21.9
Subtotal (I^2 = 73.78%, p =	= 0.00)	100	•							4.78 (3.58, 5.97)	100.
Holter											
Albedramy at al. (2010)	106	2.5	-							2 59 (1 20 4 57)	5 21
Amadianty et. al. (2010)	420	2.5								2.38 (1.30, 4.37)	0.01
	140	0.0		-						0.57 (4.51, 14.49)	2.90
Paguliau Paire at al. (2003)	00	6.0	-							6.24 (2.80, 0.82)	1.04
Seaulieu-Bolle et. al. (2013)	400	0.5								0.34 (3.00, 9.03)	4.29
Dogan et al. (2011)	400	7.1		_						7 14 (2 22 12 12)	4.20
Douen et. al. (2008)	120	7.1								7.14 (3.32, 13.13)	3.05
-onseca et. al. (2013)	80	21								21.25 (12.89, 31.83)	1.20
	2//	3.2								3.25 (1.50, 6.06)	4.09
Sumbinger et. al. (2011)	192	10.0	-							1.04 (0.13, 3.71)	5.35
Junaip et. al. (2006)	26	42.3								42.31 (23.35, 63.08)	0.34
Hendrikx et. al. (2014)	95	2.1								2.11 (0.26, 7.40)	4.24
Hornig et. al. (1996)	268	3.3								3.73 (1.80, 6.75)	4.74
labaudon et al. (2004)	149	4./								4.70 (1.91, 9.44)	3.84
(oudstaak et. al. (1986)	100	5	-	•						5.00 (1.64, 11.28)	3.20
azzaro et. al. (2012)	133	6	-	-						6.02 (2.63, 11.51)	3.36
Rizos et. al. (2012)	496	2.8	-							2.82 (1.55, 4.69)	5.34
Schaer et. al. (2004)	425	2.1	-							2.12 (0.97, 3.98)	5.40
Shafqat et. al. (2004)	465	2.4	-							1.08 (0.35, 2.49)	5.63
Shibazaki et. al. (2012)	536	2.2	-							2.24 (1.16, 3.88)	5.47
Sobocinski et. al. (2012)	249	2								2.01 (0.66, 4.62)	5.14
Suissa et. al. (2012)	354	.6	÷							0.56 (0.07, 2.03)	5.70
lagawa et. al. (2007)	308	8.4	· ·	-						8.44 (5.59, 12.12)	4.07
hakkar et. al. (2014)	52	5.8		—						5.77 (1.21, 15.95)	2.07
andebroucke et. al. (2004)) 136	5.1								5.15 (2.09, 10.32)	3.60
Nachter et. al. (2017)	198	5	-							4.55 (2.10, 8.45)	4.23
Yadogawa et. al. (2013)	68	25	1	-		•	-			25.00 (15.29, 36.98)	1.01
Schaer et. al. (2009)	241	0								(Excluded)	×
Subtotal (I^2 = 84.75%, p =	0.00)									4.59 (3.45, 5.72)	100.

Figure 3

201x183mm (300 x 300 DPI)

125x84mm (300 x 300 DPI)

Study	Year	E3 (53 % 01)
Single Lead ECG Monitoring	g	
Doliwa et. al. (2009)	2009	3.48 (0.29, 6.67)
Sobocinski et. al. (2012)	2012	3.37 (0.03, 6.71)
Claes et. al. (2012)	2012	3.28 (0.58, 5.98)
Samolet al (2012)	2012	3 24 (0.69, 5.79)
Enodabliet al. (2013)	2013	3.84 (-1.38, 9.09)
Hondriky at al (2012)	2013	3.72 (0.00 8.24)
Lourse et al. (2014)	2013	5.72 (-0.50, 0.54) 4.20 / 6.70 (15.10)
Lowies et. al. (2014)	2014	4.20 (-6.70, 13.10)
Current and (2014)	2014	3.29 (-0.54, 7.13)
Svennberg et. al. (2015)	2015	3.88 (-4.23, 12.00)
Proletti et. al. (2016)	2016	4.06 (-3.13, 11.25)
Kaasenbrood et. al. (2016)	2016	4.17 (-2.04, 10.38)
Chan et al. (2016)	2016	3.48 (-0.17, 7.13)
Battipaglia et. al. (2016)	2016	3.31 (0.83, 5.80)
Ramkumar et. al. (2017)	2017	3.31 (0.36, 6.25)
Hendrikx et. al. (2017)	2017	3.24 (0.48, 5.99)
Chan et al. (2016)	2017	3.36 (0.91, 5.81)
Chan et. al. (2017)	2017	3.41 (1.00, 5.82)
Halcox et. al. (2017)	2017	3.40 (1.07, 5.74)
Holter Monitoring		
Koudstaak et. al. (1986)	1986	2.73 (-0.98. 6.43)
Hornig et. al. (1996)	1996	2.81 (-0.60, 6.22)
Schuchert et. al. (1999)	1999	2.88 (-0.05, 5.81)
Barthelemy et al. (2003)	2003	2 47 (-2 58 7 52)
Jahaudon et al. (2004)	2004	2.64 (-1.62, 6.90)
Schaer et al (2004)	2004	2.96 (0.16.5.77)
Schaeret at (2004)	2004	2.00 (0.10, 3.77)
Verdebreuele et al. (2004)	2004	3.07 (0.30, 3.70)
Currele et al. (2004)	2004	2.55 (1.14, 4.02)
Gunap et. al. (2006)	2000	2.09 (1.00, 4.29)
Deves et al. (2007)	2007	2.54 (1.06, 4.02)
Obstantial (2008)	2008	2.54 (1.24, 3.65)
Stanlenberg et. al. (2010)	2010	2.95 (0.60, 5.30)
Alhadramy et. al. (2010)	2010	3.10 (1.26, 4.95)
Gumbinger et. al. (2011)	2011	3.08 (1.20, 4.96)
Dangayach et. al. (2011)	2011	2.94 (1.23, 4.66)
Dogan et. al. (2011)	2011	2.54 (1.22, 3.86)
Rizos et. al. (2012)	2012	2.90 (-0.32, 6.11)
Lazzaro et. al. (2012)	2012	3.04 (0.48, 5.59)
Sobocinski et. al. (2012)	2012	3.13 (1.33, 4.94)
Shibazaki et. al. (2012)	2012	2.56 (1.10, 4.03)
Atmuri et. al. (2012)	2012	 2.51 (1.14, 3.88)
Suissa et. al. (2012)	2012	2.58 (1.29, 3.87)
Grond et. al. (2013)	2013	3.04 (0.57, 5.52)
Ritter et. al. (2013)	2013	3.04 (0.78, 5.29)
Higgins et. al. (2013)	2013	2.98 (0.86, 5.11)
Fonseca et. al. (2013)	2013	2.61 (1.06, 4.16)
Yadogawa et. al. (2013)	2013	2.51 (1.11, 3.90)
Beaulieu-Boire et. al. (2013)	2013	2.55 (1.21, 3.89)
Wohlhahrt et. al. (2013)	2013	2.57 (1.29, 3.84)
Gladstone et. al. (2014)	2014	3.43 (-5.48, 12.33)
Hendrikx et. al. (2014)	2014	3.04 (0.98, 5.09)
Thakkar et. al. (2014)	2014	3.02 (1.05, 4.99)
Manina et. al. (2014)	2014	2.54 (1.03, 4.04)
Salvatori et. al. (2015)	2015	2.54 (1.18, 3.90)
Wachter et. al. (2017)	2017	3.02 (1.11, 4.94)

Cumulative random-effects meta-analysis of AF Detection using Holter and Portable ECG Monitoring

Figure 5

203x241mm (300 x 300 DPI)

Page 33 of 35

BMJ Open

Page 34 of 35

PRISMA 2009 Checklist

4 5 Section/topic	_#	Checklist item	Reported on page #
7 TITLE			
⁸ Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
11 12 13 14	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criter participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	
Rationale	3	Describe the rationale for the review in the context of what is already known.	
18 Objectives 19	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, compariso outcomes, and study design (PICOS).	
21 METHODS			
22 Protocol and registration 23	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
24 25 26	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	
27 Information sources 28	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
²⁹ Search 30 31	8	8 Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	
32 Study selection 33	9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).		5
³⁴ Data collection process 35 34	cess10Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.		5
37 Data items 38	11	11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	
 ³⁹ Risk of bias in individual ⁴⁰ studies 	12	2 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	
42 Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6
⁴³ Synthesis of results 44 45	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	6
Page 35 of 35

PRISMA 2009 Checklist

4			Page 1 of 2	
5 6 7	Section/topic	#	Checklist item	Reported on page #
, 8 9	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6
1 1 1	Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	6
1				
1.	Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6
1 1 1	Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	6-11
1	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	6-11
2 2 2	Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	6-11
2	Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	11/12
2	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	11/12
2	Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	11/12
2		•		
2 3 3	Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12
3 3	2 Limitations 3	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15
3 3	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	16
3				
3 3 3	Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	16/17
4	0			

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Atrial Fibrillation Detection using Single Lead Portable Electrocardiographic Monitoring: A Systematic Review and Meta-Analysis.

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024178.R1
Article Type:	Research
Date Submitted by the Author:	13-Aug-2018
Complete List of Authors:	Ramkumar, Satish; Baker IDI Heart and Diabetes Institute, CV Imaging Nerlekar, Nitesh; Monash Medical Centre Clayton D'Souza , Daniel ; Monash Medical Centre Clayton Pol , Derek ; Monash Medical Centre Clayton Kalman, Jonathan; Royal Melbourne Hospital, Marwick, Thomas; Baker IDI Heart and Diabetes Institute, Director
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Pacing & electrophysiology < CARDIOLOGY, CLINICAL PHYSIOLOGY, Cardiology < INTERNAL MEDICINE
	·

SCHOLARONE[™] Manuscripts

BMJ Open

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 1

Atrial Fibrillation Detection using Single Lead Portable Electrocardiographic Monitoring: A Systematic Review and Meta-Analysis.

Satish Ramkumar MBBS, MMed^{1,2,3}; Nitesh Nerlekar MBBS, MPH^{1,3}; Daniel D'Souza MBBS³, Derek J Pol MBBS³; Jonathan M Kalman⁴ MBBS, PhD; Thomas H Marwick MBBS, PhD, MPH^{1,2}.

¹Baker Heart and Diabetes Institute, 75 Commercial Road Melbourne, Victoria 3004, Australia; ²School of Public Health and Preventative Medicine, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia; ³Monash Heart, Monash Cardiovascular Research Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia; ⁴Department of Cardiology, Royal Melbourne Hospital and the Department of Medicine, University of Melbourne, 300 Grattan Street Parkville, Victoria 3050, Australia;

Satish Ramkumar Cardiac Imaging Research Fellow, Baker Heart and Diabetes Institute, Thomas H Marwick Director, Baker Heart and Diabetes Institute, Nitesh Nerlekar Cardiac Research Fellow, Monash Heart, Daniel D'Souza Cardiology Resident, Monash Heart, Derek J Pol Cardiology Registrar, Monash Heart, Jonathan M Kalman Head of Electrophysiology, Royal Melbourne Hospital

Running title: Atrial fibrillation detection

Corresponding Author:

Dr Thomas H. Marwick Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, Australia Phone: +61-3-8532-1550; Fax: +61-3-8532-1160 Email: <u>Tom.Marwick@bakeridi.edu.au</u>

Abstract 248 words; Text ~5000 words

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 2

"The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, *a worldwide licence* to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above."

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors'.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Objectives:Recent advances technology advnaces have allowed for heart rhythm monitoring using single-lead electrocardiographic (ECG) monitoring devices, which can be used for early diagnosis of atrial fibrillation (AF). We sought to investigate the AF detection rate using portable ECG devices compared with Holter monitoring.

Setting, participants and outcome measures: We searched the Medline, Embase and Scopus databases (conducted on 8th May 2017) using search terms related to AF screening and included studies with adults>18 years using portable ECG devices or Holter monitoring for AF detection. We excluded studies using implantable loop recorders and pacemakers. Using a random-effects model we calculated the overall AF detection rate. Meta-regression analysis was performed to explore potential sources for heterogeneity. Quality of reporting was assessed using the tool developed by Downs and Black.

Results:Portable ECG monitoring was used in 18 studies(n=117,436) and Holter monitoring was used in 36 studies(n=8498). The AF detection rate using portable ECG monitoring was 1.7%(95% CI 1.4– 2.1), with significant heterogeneity between studies(p<0.001). There was a moderate linear relationship between total monitoring time and AF detection rate(r=0.65, p=0.003), and metaregression identified total monitoring time(p=0.005) and body mass index(p=0.01) as potential contributors to heterogeneity. The detection rate(4.8%, 95% CI 3.6–6.0%) in 8 studies(n=10,199) which performed multiple ECG recordings was comparable to that with 24 hour Holter(4.6%, 95% CI 3.5–5.7%). Intermittent recordings for 19 minutes total produced similar AF detection to 24 hr. Holter monitoring.

Conclusion:Portable ECG devices may offer an efficient screening option for AF compared to 24 hour Holter monitoring.

Study Registration: Prospero database - April 22^{nd,} 2017(CRD42017061021) **Key words;** atrial fibrillation, screening, electrocardiographic monitoring.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 4

Strengths and limitations of this study:

- First systematic review comparing single lead ECG monitoring to 24 hour holter monitoring for AF detection.
- Comprehensive literature search and specific inclusion criteria allowing for large patient numbers.
- Heterogeneity amongst individual studies with regards to patient population, AF definitions and monitoring time.
- Poor reporting of CHA2DS2-VASC scores amongst individual studies
- Patient compliance unable to be accounted for in this meta-analysis

or beer terier only

Atrial fibrillation (AF) is a leading cause of stroke and heart failure worldwide, is associated with increased all-cause mortality ¹² as well as substantial financial cost.^{3 4} The prevalence of AF increases with age, exceeding more than 15% for those aged 85 and older.⁵ The epidemics of obesity, diabetes mellitus and metabolic syndrome have also been associated with the increasing prevalence of AF.⁶⁻⁸ Up to 20% of patients with stroke have underlying AF, and detection allows the initiation of anticoagulation which is associated with a significant reduction in stroke recurrence.⁹

Early diagnosis of AF may have several benefits, including individualized lifestyle intervention ¹⁰ and anticoagulation, and may be associated with a reduction in complications and healthcare costs. The importance of early diagnosis has been recognized in recent guidelines from the European Society of Cardiology (ESC) which recommended opportunistic screening using pulse palpation and 12 lead electrocardiogram (ECG).¹¹ However, screening for AF is challenging for several reasons; many patients are asymptomatic or may have atypical symptoms. There are a variety of monitoring techniques available, all which vary in diagnostic accuracy and sensitivity, and there is no accepted reference standard. Subclinical AF is associated with an increased risk of stroke, cardiovascular disease and all-cause mortality,¹² although there is controversy surrounding the significance of brief paroxysms of AF and the potential benefit of anticoagulant therapy. Implantable devices are expensive, and not cost effective for mass screening, and the use of external devices for long periods of monitoring require electrodes, which may be poorly tolerated by patients.

Recent advances in technology have allowed for the development of single lead portable electrocardiographic monitoring devices. Multiple devices are available, all using multiple points of finger contact to create a single lead ECG trace. The in-built memory of these devices allows for single or multiple time-point screening. Interpretation from a cardiologist or by automated algorithms has achieved high sensitivity and specificity for AF detection.¹³⁻¹⁵ Although they have not been incorporated into the latest AF guidelines, the accuracy, ease of use and potential cost-effectiveness of these devices may lead to them having an important role in AF screening. This paper describes a

systematic review of the published literature to investigate the overall AF detection rate using portable ECG devices compared with traditional Holter monitoring.

Methods.

Search strategy. We conducted our systematic review and meta-analysis using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline (PRISMA).¹⁶ We searched the Medline, Scopus and Embase databases using key terms including "atrial fibrillation/AF and screening/monitoring and electrocardiographic/Holter monitoring" which were mapped to subject headings. We also searched the reference lists to identify other potential articles. The search was limited to adult human subjects >18 years and limited to the English language (see search strategy for Medline database in supplementary material). The study was prospectively registered on the Prospero database on April 22^{nd,} 2017(CRD42017061021), and the search was conducted on 8th May 2017. Study selection. Titles and abstracts of studies identified from the search were reviewed by two independent reviewers (S.R and D.D). Studies which had a primary aim of AF detection in adult participants were included. We included all cohorts including community screening, those with risk factors and recent stroke. The screening methods included portable single lead ECG devices or continuous (Holter) monitoring (up to one week). We included studies which used single lead ECG devices for single episode screening or multiple intermittent screening periods. We included conference abstracts if demographic and outcome data were available. We excluded studies if participants were <18 years or if other forms of monitoring were used (pacemaker, implantable loop recorders, event recorders, monitoring patches and inpatient telemetry). We also excluded studies where AF detection was not the primary aim.

The primary outcome of interest was the detection rate of new AF using either single lead intermittent or continuous monitoring. Our secondary objective was to determine the optimal time of intermittent monitoring which produced equivalent AF detection to continuous monitoring.

Data Collection. Full text manuscripts of studies fitting the inclusion criteria were obtained. Quality of reporting and risk of bias was assessed using the tool developed by Downs and Black.¹⁷ A standardized data-extraction form was used by the reviewers which included information about the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 41

BMJ Open

patient demographics, comorbidities, screening strategy, patients with known AF and overall new AF detection rate. Where data were not reported, we attempted to contact the primary authors of the study. Any disagreements between the two reviewers were resolved by consensus or by consulting a third reviewer (TM).

Statistical Analysis. The cumulative AF detection rate for continuous and intermittent monitoring and the 95% confidence interval was calculated using a random effects model. The results were displayed as a forest plot and heterogeneity amongst the studies was assessed using the l^2 statistic. A subgroup analysis was performed by comparing the cumulative detection rate of single lead ECG studies which performed multiple timepoint recordings with 24 hour Holter monitoring studies. Linear regression analysis was used to determine the association between the total monitoring time and AF detection using single lead ECG devices. This formula was used to determine the monitoring time using single lead ECG devices to approximate the overall AF detection rate using 24-hour continuous monitoring. Univariate meta-regression analysis was performed to assess the influence of various clinical and screening factors with AF detection. Publication bias was assessed using a funnel plot and the Egger test. Statistical analysis was performed using Stata v.13 (StataCorp, College Station, TX) with two-tailed p-values <0.05 used to denote statistical significance.

Patient and Public Involvement. If patients were not involved in this review.

Results

Study Characteristics. The PRISMA flowchart of our included studies is shown in Figure 1 and the search strategy in Supplementary Table 1. Our initial search strategy identified 5427 studies, with another 26 identified through other sources. After removing duplicate records, 4122 studies were left. After screening those using the inclusion/exclusion criteria, we identified 111 full text studies for detailed review, which excluded 59 studies, leaving 52 full text studies for inclusion in the meta-analysis (see Supplementary Table 2 for excluded studies). Of the 52 studies included, 34 used continuous (Holter) monitoring (n=8154),¹⁸⁻⁵¹ 16 (n=117,092) used single lead portable ECG monitoring,^{14 15 52-65} and 2 studies (n=344) used both continuous and intermittent single lead monitoring for AF detection in a head to head comparison.^{66 67}

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

The baseline characteristics of the individual studies is presented in Table 1. There was a considerable range in age (54-76 years), and gender (male 29-77%) between studies. As many studies chose healthy volunteers and other studies focused on patients post stroke or those with AF risk factors, there was significant variation in comorbidities such as diabetes, hypertension and obesity. Stroke risk determined by the CHADS or CHA_2DS_2 -VASC score was reported in only 14/52 studies (27%). Of the 52 studies, 36 (69%) were conducted in Europe, 8 (15%) were in Asia, 5 (10%) were in North America and 3 (6%) in Australia. Nine studies (17%) were retrospective, the remainder all being prospective cohort or randomized controlled trials.

Of the 18 studies using single lead ECG devices, 10 studies (56%) used a single 10-60 sec recording for AF detection whilst 8 studies (44%) used multiple readings over a 1-52 week period. There were five portable ECG devices used (Table 1). Sixteen studies (89%) used healthy participants with risk factors.^{14 15 52-61 63-65 67}. Two studies assessed patients following stroke or transient ischemic attack (TIA).^{62 66}

Of the 36 studies using continuous (Holter) monitoring, 27 studies (75%) used 24-hour continuous monitoring,^{18-23 25-28 33-36 38 39 41-45 47-50 66 67} 4 studies (11%) used 1 week monitoring,^{30-32 51} 2 studies (6%) used 48-hour monitoring,^{37 46} 2 studies (6%) used 72-hour monitoring,^{24 29} and 1 study (3%) used 96-hour monitoring.⁴⁰

Page 9 of 41

BMJ Open

Atrial fibrillation detection using	g portable electrocar	diographic mo	nitoring devices.: Page 9

2												Atı	rial fib	rillation d	letectio	on using	portable elec	trocardiographic monitoring device	es.; Pag	e 9
3																				
4 5 Study	n	Country	Type of patients used	Device Used	Duration of recording (sec)	Frequency of recording /day	Total monitoring (days)	Mean/median age (yrs)	Male (%)	BMI (kg/m2)	HTN (%)	DM (%)	IHD (%)	Previous diagnosis of AF (%)	HF (%)	Previous stroke (%)	Mean/median CHADS2/ CHADS-VASC	Definition of AF	New AF (n)	New AF rate (%)
Owres et. al.	1000	Australia	Community	Alive Con	60	1	0	70	44	ND	62	22	10	10.4	2	7	2.2	Condictorist Internation	15	1.5
7 (2014) 52 Svennberg et.	7172	Australia	Community screening	Alive Cor	30	2	14	76	44	25.0	6Z	11	16	10.4	3	/	3.3	30 sec irregular rhythm without p waves or 2x	219	
9 rojetti et al	/1/5	Sweden	Relgian Heart Week	Omron	30	2	14	75	40	25.9	50	11	9.2	9.2	5.4	3	5.4	irregular P-P interval no distinct p waves	210	
-10 ^{016) 54}	65747	Belgium	screening	HCG-801	30	1	0	58	41	NR	36	21	23	0.5	20	20	2	variable atrial cycle length	603	1.1
f a a senbrood et. al. (2016) 55	3269	Holland	- opportunistic screening	MyDiagnostik	60	1	0	64.1	49	NR	NR	NR	NR	2.6	NR	NR	NR	Cardiologist Interpretation x 2	37	1.1
12 Engdahl et. al. 12013) 56	848	Sweden	Community screening (75-76 yr olds) in Halmstad, Sweden	Zenicor	30	2	14	75	43	NR	53	11	NR	9.6	4	10	1.9	30 sec duration of irregular rhythm or >= 2 episodes of 10 or more sec	40	4.7
Hendrikx et. al. (2013) 57	928	Sweden	GP practices	Zenicor	10	2	28	69.8	50	NR	90.3	31.6	19.8	0	3.7	8.6	2	10 sec irregular rhythm without p waves	35	3.8
15 Hendrikx et. al.			Referred for presyncope/palpitati				6													
1(Q ₀₁₄₎₆₇	95	Sweden	ons Patients ≥ 65 yrs with	Zenicor	30	2	28	54.1	44	NR	28.4	1.1	8.4	0	0	6.3	1	30 sec irregular rhythm without p waves	9	9.5
Chan et al. 18 016) 15	1013	Hong Kong	hypertension or diabetes	Alive Cor	60	1	0	68.4	47	NR	90.4	36.6	16.2	2.2	4.4	10.5	3	Cardiologist Interpretation	5	0.5
Sobocinski et. 19(2012) 66	249	Sweden	Patients post TIA/stroke	Zenicor	10	2	30	72	57	NR	65	16	20	0	4	25	3	irregular rhythm of minimum 10 sec without visible p waves	15	6
2009) 14	606	Sweden	Community event	Zenicor	10	1	0	NR	64	NR	NR	NR	NR	NR	NR	NR	NR	irregular rhythm without visible p waves	6	1
21 <u>Ra</u> 2hkumar et. _al.(2017) 60 _23	204	Australia	Community - ≥ 65 yrs with 1 or more risk factor for heart failure Patients referred to	Remon RM-100	60	5	7	70.1	51	29.1	72.1	56.4	5.9	0	0	NR	3	30 sec duration of irregular rhythm with absent p waves	20	9.8
24 H2e5drikx et. al. (2017) 58	201	Sweden	respiratory clinics with suspicion of obstructive sleep apnoea	Zenicor	30	2	14	56	69	30	51	10	9.2	0	4.6	3.1	NR	Irregular supraventricular extra systoles in series for 30 sec	13	6.5
20 27 Claes et. al. 28 ⁰¹¹⁾⁶¹	10758	Belgium	Community heart rhythm screening program through medical centres	Omron Heartscan 'HCG-801	30	1	0	59	38	NR	30.6	8.6	12.2	7.2	7.2	5.4	1	Irregular RR intervals, absence of p waves and variable atrial cycle length (when visible)	167	1.6
29 30 ⊅amol et. al.			Large proportion post stroke/TIA. Also recruited from diabetes, hypertension and	Omron Heartscan																
(2012) 62 Batipaglia et.	132	Germany	dyslipidemia clinics Community shopping	HCG-801	30	1	0	64	58	NR	67	27	NR	0	3	49	NR	Cardiologist Interpretation x 2	7	5.3
al. (2016) 63 33	855	UK	centre screening Nationwide	MyDiagnostik	15	1	0	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	7	0.8
34 ^{1an et al.} (2016) 59	13122	Hong Kong	community screening program Nationwide	Alive Cor	30	1	0	64.7	29	23.7	38.2	14.8	2.2	0	0.7	2.8	NR	Software algorithm definition with minimum of 30 sec	101	0.8
Chan et al. 36 017) 65	10735	Hong Kong	community screening program	Alive Cor	30	1	0	NR	NR	NR	NR	NR	NR	1.2	NR	NR	NR	Cardiologist interpretation (≥ 30 sec)	74	0.7
37 3 18 cox et. al. (2017) 64	501	UK	Community based with individuals > 65 yrs with CHADS-VASC score ≥ 2	Alive Cor	30	2x per week	365	72.6	48	NR	54	26	14	0	1.0	7.0	3.0	30 second duration of an irregular rhythm without P waves	19	3.8
39 Gladstone et. 40(2014) 18	277	Canada	Patients admitted with cryptogenic	Holter	continuous	continuous	1	72.2	56	NR	67	19.3	1/1 7	0	7	12.6	NR	30 second or longer duration of irregular	9	3.2
41 Barthelemy et. (2003) 19	60	France	Consecutive patients admitted with stroke/TIA	Holter	continuous	continuous	1	64.4	55	NR	50	17.5	NR	0	NR	27	NR	fibrillatory waves associated with irregular ventricular response ratio at leats 30 sec duration	8	13.3

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 10

3																				
4			Consecutive patients																	
Jabaudon et al.	4.40	6 1	admitted with					66 0	60		50	467	46.0			46.0		ND	-	
) (2004) 20	149	Switzerland	Stroke/IIA Retrospective study	Holter	continuous	continuous	1	66.9	68	NK	58	16.7	16.8	4.7	NK	16.8	NK	NR	/	4.7
6			of 100 patients																	
- ₩oudstaal et.			admitted with																	
al. (1986) 21	100	Holland	stroke/TIA	Holter	continuous	continuous	1	60.9	74	NR	NR	NR	41	NR	NR	NR	NR	NR	5	5
8 Hornig at al			Consecutive patients																	
9 (1996) 22	268	Germany	stroke/TIA	Holter	continuous	continuous	1	59.1	61	NR	43.7	34	NR	NR	14.9	45	NR	NB	10	3.3
Bizos et. al.			Patients admitted													-				
(2012) 23	496	Germany	with stroke/TIA	Holter	continuous	continuous	1	69	62	NR	78.8	24.6	NR	NR	NR	22.2	3	Cardiologist interpretation (≥ 30 sec)	14	2.8
11			6															Small irregular baseline undulations of variable		
1 Quchert et			admitted with															>350/min with an irregular ventiruclar		
al. (1999) 24	82	Germany	stroke/TIA	Holter	continuous	continuous	3	59.7	57	NR	36.5	NR	17.1	NR	NR	NR	NR	response for at leats 1 min.	5	6
13			Consecutive patients																	
fchaer et. al.			admitted with								-			_						
(2009) 25	241	Switzerland	stroke/IIA Retrospective review	Holter	continuous	continuous	1	68.7	59	NK	76	25	41	/	NK	4.6	NK	NR	0	0
15			of patients post															Self-terminating sequence of >30 seconds of		
16aer et. al.			stroke/TIA with															irregular RR intervals and the presence of		
1 (2004) 26	425	Switzerland	Holter monitoring	Holter	continuous	continuous	1	67.4	61	NR	NR	NR	NR	NR	NR	1.2	NR	fibrillatory P waves.	9	2.1
10			Retrospective review																	
I 8 Shafqat et. al.			patients admitted																	
19004) 27	465	Pakistan	with stroke/TIA	Holter	continuous	continuous	1	66.8	56	NR	NR	NR	NR	NR	NR	NR	NR	NR	5	2.4
20																		Supraventricular tachyarrhythmia		
20			Consecutive nationts															characterized by uncoordinated atrial		
21 Lazzaro et. al.			admitted with															amplitude, shape, and timing, replacing		
22012)28	133	USA	stroke/TIA	Holter	continuous	continuous	1	63.1	50	NR	70	29.3	18.8	0	NR	2.3	NR	consistent P waves and with a duration >30 sec	8	6
22																		≥ 1 period of >30 sec duration of an absolute		
Z3			Patients admitted in															arrhythmia without detectable P waves and		
24 (2013) 29	1135	Germany	with stroke/TIA	Holter	continuous	continuous	3	67	55	27.4		20.4	7.3	0	5.8	17.4	NR	alternate diagnosis	49	4.3
25		,	Consecutive patients				-	•						-	0.0					
Stahrenberg et.			admitted with															2 x Cardiologist interpretation of software		
2010) 30	224	Germany	stroke/TIA	Holter	continuous	continuous	7	68	58	27.6	72.9	22.3	14.8	0	5.2	16.2	NR	algorithm detection of events	28	12.5
27, tter et al			with cryptogenic																	
2 (2013) 31	60	Germany	stroke	Holter	continuous	continuous	7	61.8	57	NR	70	11.7	13.3	NR	0	NR	4	Cardiologist interpretation (> 30 sec)	1	1.7
Higgins et. al.			Patients admitted																	
29 013) 32	50	Scotland	with stroke/TIA	Holter	continuous	continuous	7	67.1	48	NR	56	8	16	0	NR	NR	NR	Cardiologist interpretation (> 30 sec)	4	8
B Odrikx et al			Patients investigated for palpitations and																	
a (2014) 67	95	Sweden	presyncope	Holter	continuous	continuous	1	54.1	42	NR	28.4	1.1	8.4	0	0	6.3	1	30 sec irregular rhythm without p waves	2	2.1
- 31			Consecutive patients																	
Bh@kkar et. al.	50	1	admitted with					50.5			54.0	22.4		0				20 sectors leaded by the later sector	2	5.0
-33	52	India	Stroke/IIA	Holter	continuous	continuous	1	59.5	11	NK	51.9	23.1	15.4	0	1.7	1.1	NK	30 sec irregular rhythm without p waves	3	5.8
Wachter et. al.			admitted with															>30 seconds rhyhtm with irregular RR intervals		
3 (2017) 34	198	Germany	stroke/TIA	Holter	continuous	continuous	1	73.2	62	NR	80.7	26.4	9.1	0	4.6	21.7	4.8	and the presence of fibrillatory P waves.	9	5
Sugnbinger et.			Patients admitted																	
al. (2012) 35	192	Germany	with stroke/IIA Retrospective review	Holter	continuous	continuous	1	NR	NK	NK	NK	NK	NK	NR	NK	NK	NK	NR	2	1
50			of patients post																	
Alhadramy et.			stroke/TIA with															Irregular ventricular response in the absence		
38(2010) 36	426	Canada	Holter monitoring	Holter	continuous	continuous	1	64.9	48	NR	58.2	14.1	14.1	0	1.6	6.3	NR	of p-waves or with fibrillatory waves	11	2.5
200 norinski et			Consecutive patients															irregular rhythm of minimum 10 sec without		
al. (2012) 66	249	Sweden	stroke/TIA	Holter	continuous	continuous	1	72	57	NR	65	16	20	0	4	25	3	visible p waves	5	2
40			Retrospective audit															•		
41			of patients admitted																	
Dangayach et.	51	1104	with cryptogenic	Holter	continuous	continuous	2	58.2	12	NP	35.3	16	15.7	7 4	NP	NR	ND	NR	15	29.4
42(2011) 57	11	03M	JUNC	nonter	continuous	continuous	4	J0.2	+3	AIN1	55.5	10	13.7	7.4	IND	INIX	IND	nn.	13	23.4

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Atrial fibrillation detectio	n using portable e	electrocardiographic	monitoring d	levices.; Page 1	11
------------------------------	--------------------	----------------------	--------------	------------------	----

3																				
4 unalp et. al.			Patients admitted																	
(2006) 38	26	Turkey	with ischaemic stroke	Holter	continuous	continuous	1	66	69	NR	61	26	31	NR	NR	NR	NR	NR	11	42.3
5			Patients admitted																	
Fonseca et. al.	00	Destured	with cryptogenic	Haltan	*		1	CO 3	50	ND	71.0	20.0	11.2	ND	ND	22.5	ND	ND	17	21
-	80	Portugal	Stroke Dationts admitted	Hoiter	continuous	continuous	1	09.3	53	INK	/1.3	28.8	11.3	NK	INK	22.5	INK	NR	17	21
Z Manina et al			with countogenic															Irregular ventricular response in the absence		
Q (2014) 40	114	Italv	stroke	Holter	continuous	continuous	4	63.1	NR	NR	52.6	9.6	NR	NR	NR	NR	NR	of p waves or with fibrillatory waves	29	25.4
																		small irregular baseline undulations of variable		
9			Consecutive patients															amplitude and morphology at a rate of 300-		
Tagawa et. al.			admitted with															350/min associated with irregular ventricular		
2007) 41	308	Japan	ischaemic stroke	Holter	continuous	continuous	1	72.6	60	NR	70.1	25.3	NR	20.4	NR	NR	NR	response	26	8.4
11			Consecutive patients																	
Shibazaki et. al.	500		admitted with					72.4	~ ~		65.0	25.7			0.0			10	42	
<u>1</u> 2012)42	536	Japan	ischaemic stroke	Holter	continuous	continuous	1	/2.4	64	NR	65.9	25.7	9.8	NR	0.3	NR	NR	NR	12	2.2
13 debroucko			Retrospective audit																	
	136	Belgium	with ischaemic stroke	Holter	continuous	continuous	1	68	52	NR	NR	NR	NR	NR	NR	NR	NR	NB	7	5.1
	150	Deigium	Consecutive natients	Horter	contandous	continuous	-	00	52										,	5.1
for the second s			admitted with															irregular and uncoordinated atrial electrical		
al. (2013) 44	68	Japan	ischaemic stroke	Holter	continuous	continuous	1	69.9	54	NR	66.2	14.7	NR	NR	NR	NR	NR	activity on surface ECG lasting > 30 sec	17	25
16			Retrospective audit																	
17			of patients admitted																	
Atmuri et. al.			with ischaemic																	
18 012) 45	140	Australia	stroke/TIA	Holter	continuous	continuous	1	NR	NR	NR	65	20	37.1	18.6	NR	NR	NR	NR	12	8.6
10			Cohort study of																	
Salvatori et al			hypertension in																	
20015)46	274	Italy	multiple GP clinics	Holter	continuous	continuous	2	70	54	NR	100	15	9	7	4	2.2	NR	Cardiologist interpretation	4	1.5
Beaulieu-Boire			Consecutive patients										-							
Zet. al. (2013)			admitted with																	
22 47	284	Canada	stroke/TIA	Holter	continuous	continuous	1	70.6	52	NR	68.7	26.7	27.4	NR	2.2	22.3	NR	Cardiologist interpretation	18	6.3
22			Retrospective review																	
4 ∂∂gan et. al.			of patients admitted																	
$-2^{4^{011}48}$	400	Turkey	post stroke	Holter	continuous	continuous	1	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	40	10
25			Retrospective review																	
2008) 49	126	Canada	of patients admitted	Holter	continuous	continuous	1	NP	NP	NP	NP	NP	NIP	7	NP	NP	NP	NP	٥	71
26	120	Callaua	Consecutive natients	Hoitei	continuous	continuous	1	INIX	INIX	INIX		INIX	INIX	/	INIA	INIX	INIX		9	7.1
Suissa et. al.			admitted with																	
2 (2012) 50	354	France	ischaemic stroke	Holter	continuous	continuous	1	62.4	57	NR	51.1	18.6	NR	0	NR	NR	NR	Cardiologist interpretation	2	0.6
9/8hlhahrt et.			Patients admitted																	
al. (2013) 51	224	Germany	with ischaemic stroke	Holter	continuous	continuous	7	68.5	59	NR	73.2	22.3	15.2	NR	5.4	24.1	NR	>30 second irregular rhythm	29	12.9
29																				
30																				
AF – Atrial	Fibrillation	BMI – Bod	y Mass Index (kg/m ⁻) [JM – Diabetes M	ellitus HF -	- Heart Failure	HTN - Hype	rtension	IHD – Ischae	emic Heart	Disease									
31												_	_							
Table	.1 C		of included the	ale invoct	igoting A	E dataati	on naina	, cingle le	ad Eff	VI da	11000	on II	altan	Moni	towing					

Table 1 – Summary of included trials investigating AF detection using single lead ECG devices or Holter Monitoring

Overall AF detection. The combined AF detection rate using single lead ECG monitoring (n=117,436 from 18 studies) was 1.7% (95% CI 1.4% – 2.1%). The cumulative AF detection rate using continuous (Holter) monitoring (n=8498 from 36 studies) was 5.5% (95% CI 4.4% – 6.6%). There was significant heterogeneity between studies ($I^2 = 94\%$ for single lead ECG monitoring, 87% for Holter monitoring). The overall new AF detection rate is presented in Figure 2.

Comparison of multiple intermittent monitoring to 24 hour Holter. There was significant variation in the monitoring time using both single lead and Holter monitoring which contributed to the difference in the cumulative detection rate seen in Figure 2. Figure 3 compares the detection rate of multiple intermittent single lead recordings to 24-hour continuous monitoring, which is used routinely in clinical practice. There were 8 studies (n=10,199, mean weighted age 68.8±8.4 years from 6 studies, 47% male from 8 studies) that performed multiple intermittent single lead ECG recordings and 27 studies (n=6284, mean weighted age 67.8±5.1 years from 23 studies, 58% male from 23 studies) that used 24-hour Holter monitoring. From the data available, the multiple intermittent ECG group had a lower AF risk to the 24-hour Holter group (hypertension – 55% (n=8 studies) vs 65% (n=20 studies), diabetes mellitus – 15% (n=8 studies) vs 22% (n=20 studies), heart failure – 3.3% (n=8 studies) vs 3.9% (n=11 studies), ischemic heart disease – 11% (n=6 studies) vs 19% (n=15 studies) and previous stroke/TIA – 9% (n=7 studies) vs 16% (n=15 studies)) respectively. The combined AF detection rate was 4.8% (95% CI 3.6–6.0%) using multiple intermittent ECG recordings. The cumulative AF detection rate using 24-hour Holter monitoring was 4.6% (95% CI 3.5–5.7%).

Association between monitoring time and AF detection. Using single lead ECG devices, we found a moderate linear relationship between the total monitoring time and AF detection rate (β =0.13, R² = 0.42). Using this formula, we noted that approximately 19 minutes of total intermittent monitoring produced similar AF detection to 24-hour continuous monitoring (Figure 4). The study by Halcox et. al. was an outlier, with a much lower AF detection rate than other studies (3.8% from 52 minutes of total monitoring) and this reduced the linear correlation between total monitoring time and AF detection rate ⁶⁴. Exclusion of these data led to a stronger linear relationship (β =0.26, R² =

BMJ Open

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 13

0.80) and a much lower total intermittent monitoring time required (12 min) to produce a similar AF detection rate to 24 hour Holter monitoring.

Meta-regression. Sources of heterogeneity in the 18 studies using single lead ECG monitoring were investigated using meta-regression (Table 2). Monitoring time per participant (β =0.11, 95% CI 0.04-0.18, p=0.005) and body mass index (β =1.1, 95% CI 0.58-1.5, p=0.01) were associated with AF detection.

Variable	Number	β (95% C.I)	P value
	of studies		
Age (years)	15	0.00 (-0.22 – 0.24)	0.95
Monitoring time per participant (min)	18	0.11 (0.04 – 0.18)	0.005
Body Mass Index (kg/m ²)	4	1.1 (0.58 – 1.5)	0.01
CHADS Score (%)	11	-0.13 (-2.6 – 2.4)	0.91
Hypertension (%)	14	0.01 (-0.08 - 0.10)	0.75
Previous diagnosis of AF (%)	16	-0.13 (-0.50 - 0.24)	0.46
Ischaemic Heart Disease (%)	12	-0.10 (-0.42 - 0.21)	0.48
Previous stroke (%)	13	0.06(-0.09-0.19)	0.45
Male gender	16	0.10 (-0.04 - 0.24)	0.16

 Table 2 – Meta Regression Analysis for AF detection (Single lead ECG studies)

Sensitivity Analysis. A number of outlier studies were observed in the meta-analysis that could influence the cumulative AF detection rate.^{37-40 44} Removal of these outlier studies resulted in a reduction in the overall AF detection rate in all Holter studies (table 3) and for 24 hour holter studies (table 4). When these outlier studies were removed the overall AF detection rate for 24 hour Holter was 3.86% (95% C.I 2.88% - 4.83%), much lower than the detection rate by multiple intermittent ECG recordings using portable single lead devices (4.78%, 95% C.I 3.58% - 5.97%). A cumulative meta-analysis (figure 5) did not show any significant variation in the AF detection rate over time using

Study Omitted	Overall AF detection rate (%)	95% C.I (%)
Dangayach et. al. (2011)	5.27	4.17 - 6.38
Fonseca et. al. (2013)	5.26	4.15 - 6.36
Gunalp et. al. (2006)	5.32	4.21 - 6.42
Manina et. al. (2014)	5.11	4.03 - 6.20
Yadogawa et. al. (2013)	5.25	4.14 - 6.35
All studies excluded	4.31	3.36 - 5.26

Holter or single lead ECG monitoring.

Table 3 – Outlier studies omitted (all Holter studies) to assess the change to the overall AF detection rate

Study Omitted	Overall AF	95% C.I (%)	
	uelection rate (78)		
Fonseca et. al. (2013)	4.30	3.21 - 5.39	
Gunalp et. al. (2006)	4.39	3.30 - 5.47	
Yadogawa et. al. (2013)	4.30	3.22 - 5.38	
All studies excluded	3.86	2.88 - 4.83	
			7

Table 4 – Outlier studies omitted (24 hour Holter) to assess the change to the overall AF detection rate

Publication bias. Publication bias was explored using a funnel plot of all included studies (Supplemental Figure 1). There was significant publication bias in both single lead ECG device and Holter monitoring studies (Egger test, p=0.003 and p<0.001 respectively).

Quality of studies. A summary of the quality analysis (Supplemental Table 3) showed that overall quality of reporting was moderate. All studies described the primary objective of the trial and included a summary of the main findings. Detailed comorbidities of the study participants were only adequately reported in 28/52 (54%), and limitations were discussed in 35/52 (67%) of studies. Most had a very selective patient population, 31/52 (60%) were post stroke/TIA cohorts.

Discussion

Our study is the only systematic review that we are aware of that has studied the overall AF detection rate of single lead portable ECG devices. The results of our systematic review suggest a

BMJ Open

linear relationship between monitoring time per patient and AF detection rate. Single timepoint screening has an approximate 1% AF detection rate which can be increased to around 5% when multiple recordings are performed. We noted that approximately 19 minutes of intermittent monitoring produced similar detection rates to conventional 24 hours continuous Holter monitoring. **Early diagnosis of AF:** AF creates a significant burden on both patients as well as the health care system. AF will continue to rise in incidence and the costs to the health care system will continue to increase, due to aging, sedentariness, and the prevalence of obesity and the metabolic syndrome.^{3 68} Early diagnosis offers the possibility for early initiation of treatment which may reduce the occurrence of the complications which may lead to reduced hospital admissions and associated health care costs. Early treatment for AF can be achieved in different ways. Patients with subclinical AF have an increased risk of stroke and cardiovascular events, like those with established AF.^{12 69} Anticoagulation may help reduce the incidence of stroke in this cohort.

The close relationship between metabolic syndrome and AF has encouraged research into the benefits of lifestyle intervention. Aggressive lifestyle intervention in patients with AF undergoing catheter ablation has been reported to lead to a reduction in symptom burden, improved quality of life and the need for repeat ablation procedures.¹⁰ It remains to be tested whether initiation of lifestyle intervention and aggressive risk factor modification following the early diagnosis of AF may be associated with positive LA remodeling and reduction of disease progression. Such a process may lead to additional health benefits, including reduction in cardiovascular risk and improvement in exercise capacity.

AF screening and feasibility. AF is a leading cause of stroke and heart failure in the community. As well as an association with increased all-cause mortality, it is associated with reduced quality of life. The availability of preventive therapies, including anticoagulation, has led to increasing recognition of the importance of AF screening for early diagnosis. However, AF screening shares the limitations of screening with other diagnostic tests. The screening tool must have high sensitivity, and needs to be inexpensive and cost effective. We also need to minimize and have a method of addressing false positives. Current guidelines recommend opportunistic screening using pulse palpation and 12 lead ECG.¹¹ In a previous systematic review this was associated with a new AF detection rate of

approximately 1%.⁵ Pulse palpation may be non-specific in patients with other irregular rhythms such as ventricular ectopy, and 12 lead ECG is only able to capture a single timepoint for screening. There are multiple other methods for AF detection. Continuous Holter monitoring is probably the most commonly used in clinical practice, especially in stroke cohorts. It has the potential advantage of assessing heart rhythm throughout the day and may be useful in detecting nocturnal subclinical AF. However, the disadvantages include the cost of Holter monitoring (especially for mass screening), the inconvenience of leads and electrodes (which may affect compliance), and typical limitation to 1-2 days of capture (as extended periods are more cumbersome and less cost-effective. Other event recorders are again expensive and limited to symptomatic patients. Extended period monitoring using implantable devices have shown promise in the cryptogenic stroke population (where many have been diagnosed with paroxysmal AF),⁷⁰ but they are invasive and not feasible for mass screening.

Portable single lead ECG devices permit multiple 30-60 second recordings to be captured, and downloaded to a computer. These devices have several potential advantages over Holter monitoring. They are leadless and require finger contact (and are hence easy to use and acceptable to patients). They have a high degree of sensitivity for identifying AF.^{71,73} Most interface with a web-based cloud system where ECG rhythms can be wirelessly transferred to clinicians, allowing rapid analysis and diagnosis. The development of automated algorithms to detect AF is helpful for mass screening. In two small studies they have demonstrated superior AF detection compared with 24 hour Holter monitoring.^{66 67} Although screening using these portable devices are currently not in the latest AF guidelines, they may offer a feasible option for mass screening. Screening using these devices has been demonstrated to be cost effective.^{74 75}

We noted a moderate linear association between monitoring time and AF detection rate. Single timepoint screening for 30-60 sec achieved an overall detection rate of approximately 1%. This is no better than what has been reported using pulse palpation or 12 lead ECG, hence does not add any incremental benefit in screening programs ⁵. Multiple intermittent recordings improve AF detection; we found that at least 19 minutes of total monitoring should be performed to achieve detection rates similar to 24 Holter monitoring.

BMJ Open

The linear relationship between monitoring time and AF detection rate ($R^2=0.80$) and the reproduction of AF detection rates of 24 hour Holter monitoring with only 12 minutes of intermittent monitoring was possible in our study only after exclusion of an outlier.⁶⁴ Despite the inclusion of elderly participants with at least one risk factor for AF, the use of a validated single lead ECG device and a prolonged monitoring period, that study had a lower AF detection rate (3.8%) than the remaining studies, even using a shorter monitoring period.^{53 56 57} Relatively low rates of adherence (only approximately 25% completed 2 x 30 second ECG recordings every week for the full year of monitoring) may be a potential explanation for the lower AF detection rate noted.⁶⁴

Limitations: There are several challenges inherent in this meta-analysis of studies investigating AF detection. The most important is the target screening population. Most studies did not report the CHADS or CHA₂DS₂-VASC score, a history of previous stroke, or other co-morbidities. Consequently, it was difficult to ascertain if the risk profiles of patients in these studies were equivalent. Most Holter monitoring studies were performed in the stroke population – which is likely a population with higher AF risk than many studies using portable ECG devices, which recruited mainly healthy participants or those with AF risk factors from the community. The significant heterogeneity amongst both Holter and portable ECG device studies make it difficult to perform direct comparisons between both groups. The type/duration of monitoring and type of device used will also influence the overall AF detection rate and varied significantly between studies. There are several possible confounders which may not have been taken into account. The validity of the linear regression analysis comparing detection time and rate may be limited due to the significant differences in study population, study design and AF definitions. However, despite these limitations, the analysis may provide some important inferences into AF screening. Multiple intermittent ECG recordings achieved a similar AF detection rate to 24 hour Holter monitoring. This may suggest that in a similar cohort of patients with the same comorbidities, single lead intermittent monitoring may be superior for AF detection.

Compared to 24-hour continuous monitoring, single lead portable ECG monitoring is more patient dependent. Good patient compliance is essential to obtain multiple readings across different timepoints which improves sensitivity. The analysis performed does not take into account patient

compliance as this is difficult to assess and poorly reported across the individual studies. Most single lead device manufacturers have proprietary automated AF detection algorithms which were used for diagnosis. Not all of these algorithms have had rigorous testing and comparison to a reference standard. It is also difficult to distinguish AF from other supraventricular tachycardias using single lead ECG devices as the P wave is often not readily discernible. The use of different automated algorithms makes AF definitions non-standardized and can potentially create issues with both over and underdiagnoses.

There are other limitations in this analysis. The efficacy of intermittent monitoring is critically dependent on AF burden and density. All studies varied in their monitoring period and strategy. The linear regression model used was able to determine a total intermittent monitoring time which produced similar AF detection rates to 24-hour continuous monitoring. However, it is difficult to translate the total monitoring time into an effective monitoring strategy. For example, we are unable to determine from our analysis if 12 x 60 second recordings over 12 consecutive days is different to 2 x 60 second recordings daily for 6 consecutive days. The definitions of AF also vary between studies. Many are based on individual physician interpretation and criteria for diagnosis were not explicitly specified. The duration of AF varied from 10-30 seconds between studies, although a cut-off of 30 seconds, was the most widely adopted practice.

Conclusion: Single lead portable ECG devices may offer an efficient screening option for AF compared to 24 hr. Holter monitoring. Total monitoring time is related with AF detection and a total of 19 minutes may achieve a similar detection rate to 24 hour Holter monitoring.

Contributors: SR – Performed the literature search and analysis of individual studies. Involved in the statistical analysis, manuscript preparation and editing. TM – Is guarantor. Developed project idea/rationale. Involved in data analysis and manuscript preparation and editing. NN – Involved in data and statistical analysis as well as manuscript preparation and editing. DD – Performed the literature search and analysis of individual studies. Involved in the manuscript preparation and

BMJ Open

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 19

editing. DP – Involved in analysis of individual studies and statistical analysis. Involved in manuscript preparation and editing. JK – involved in the project outline, data analysis, manuscript preparation and editing.

Data Sharing: There are no remaining unpublished data

BMJ Group declaration of interests statement

I have read and understood the BMJ Group policy on declaration of interests and declare the following interests: *[list them or state "none"]*.

Date - 05/01/2018 Name:

Satish Ramkumar

Receives equipment and software support from Semacare Inc, a manufacturer of handheld ECG devices. The sponsors had no role in the design and conduct of the study, in the collection, analysis, and interpretation of the data, and in the preparation, review, or approval of the manuscript.

Receives research scholarships from the Heart Foundation and Avant

Thomas H Marwick

Receives equipment and software support from Semacare Inc, a manufacturer of handheld ECG devices. The sponsors had no role in the design and conduct of the study, in the collection, analysis, and interpretation of the data, and in the preparation, review, or approval of the manuscript.

Nitesh Nerlekar – none Daniel D'Souza – none Derek J Pol – none Jonathan M Kalman - none

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 20

References

1. Krahn AD, Manfreda J, Tate RB, et al. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. *The American Journal of Medicine* 1995;98(5):476-84.

2. Vidaillet H, Granada JF, Chyou P-H, et al. A population-based study of mortality among patients with atrial fibrillation or flutter. *The American Journal of Medicine* 2002;113(5):365-70.

3. Kim MH, Johnston SS, Chu B-C, et al. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. *Circulation: Cardiovascular Quality and Outcomes* 2011;4(3):313-20.

4. Leyden JM, Kleinig TJ, Newbury J, et al. Adelaide stroke incidence study: declining stroke rates but many preventable cardioembolic strokes. *Stroke* 2013;44(5):1226-31. doi: 10.1161/strokeaha.113.675140 [published Online First: 2013/03/14]

5. Lowres N, Neubeck L, Redfern J, et al. Screening to identify unknown atrial fibrillation: A systematic review. *Thrombosis and Haemostasis* 2013;110(2):213-22. doi: <u>http://dx.doi.org/10.1160/TH13-02-0165</u>

6. Watanabe H, Tanabe N, Watanabe T, et al. Metabolic syndrome and risk of development of atrial fibrillation. *Circulation* 2008;117(10):1255-60.

7. Ball J, Thompson DR, Ski CF, et al. Estimating the current and future prevalence of atrial fibrillation in the Australian adult population. *Med J Aust* 2015;202(1):32-5.

1	
2	
3	
4	
5	
6	
7	
, 8	
0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40	
42	
42	
75 77	
44	
45	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

8. Dagres N, Anastasiou-Nana M. Atrial Fibrillation and Obesity. *Journal of the American College of Cardiology* 2010;55(21):2328-29. doi: 10.1016/j.jacc.2010.01.045

9. Sposato LA, Cipriano LE, Saposnik G, et al. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. *Lancet neurol* 2015;14(4):377-87. doi: <u>https://dx.doi.org/10.1016/S1474-4422(15)70027-X</u>

10. Pathak RK, Middeldorp ME, Lau DH, et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study. *Journal of the American College of Cardiology* 2014;64(21):2222-31.

11. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. *European Heart Journal* 2016;37(38):2893-962. doi: 10.1093/eurheartj/ehw210

12. Martinez C, Katholing A, Freedman SB. Adverse prognosis of incidentally detected ambulatory atrial fibrillation. *Thrombosis and haemostasis* 2014;112(2):276-86.

13. Lau J, Lowres N, Neubeck L, et al. Performance of an automated iPhone ECG algorithm to diagnose atrial fibrillation in a community AF screening program (search-AF). *Heart Lung and Circulation* 2013;22:S205. doi: <u>http://dx.doi.org/10.1016/j.hlc.2013.05.488</u>

14. Doliwa PS, Frykman V, Rosenqvist M. Short-term ECG for out of hospital detection of silent atrial fibrillation episodes. *Scandinavian Cardiovascular Journal* 2009;43(3):163-68.

15. Chan PH, Wong CK, Poh YC, et al. Diagnostic performance of a smartphone-based photoplethysmographic application for atrial fibrillation screening in a primary care setting. *Journal of the American Heart Association* 2016;5(e003428):e003428.

16. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS medicine* 2009;6(7):e1000097.

17. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. *Journal of Epidemiology and Community Health* 1998;52(6):377-84. doi: 10.1136/jech.52.6.377

18. Gladstone DJ, Spring M, Dorian P, et al. Atrial fibrillation in patients with cryptogenic stroke. *New England Journal of Medicine* 2014;370(26):2467-77.

19. Barthélémy JC, Féasson-Gérard S, Garnier P, et al. Automatic cardiac event recorders reveal paroxysmal atrial fibrillation after unexplained strokes or transient ischemic attacks. *Annals of Noninvasive Electrocardiology* 2003;8(3):194-99.

20. Jabaudon D, Sztajzel J, Sievert K, et al. Usefulness of ambulatory 7-day ECG monitoring for the detection of atrial fibrillation and flutter after acute stroke and transient ischemic attack. *Stroke* 2004;35(7):1647-51. doi: <u>https://dx.doi.org/10.1161/01.STR.0000131269.69502.d9</u>

21. Koudstaal PJ, van Gijn J, Klootwijk A, et al. Holter monitoring in patients with transient and focal ischemic attacks of the brain. *Stroke* 1986;17(2):192-95.

22. Hornig C, Haberbosch W, Lammers C, et al. Specific cardiological evaluation after focal cerebral ischemia. *Acta Neurologica Scandinavica* 1996;93(4):297-302.

23. Rizos T, Güntner J, Jenetzky E, et al. Continuous stroke unit electrocardiographic monitoring versus 24-hour Holter electrocardiography for detection of paroxysmal atrial fibrillation after stroke. *Stroke* 2012;43(10):2689-94.

24. Schuchert A, Behrens G, Meinertz T. Impact of long-term ECG recording on the detection of paroxysmal atrial fibrillation in patients after an acute ischemic stroke. *Pacing Clin Electrophysiol* 1999;22(7):1082-4.

25. Schaer B, Sticherling C, Lyrer P, et al. Cardiological diagnostic work-up in stroke patients–a comprehensive study of test results and therapeutic implications. *European Journal of Neurology* 2009;16(2):268-73.

26. Schaer B, Zellweger M, Cron T, et al. Value of routine Holter monitoring for the detection of paroxysmal atrial fibrillation in patients with cerebral ischemic events. *Stroke* 2004;35(3):e68-e70.

27. Shafqat S, Kelly P, Furie K. Holter monitoring in the diagnosis of stroke mechanism. *Internal Medicine Journal* 2004;34(6):305-09.

28. Lazzaro MA, Krishnan K, Prabhakaran S. Detection of atrial fibrillation with concurrent holter monitoring and continuous cardiac telemetry following ischemic stroke and transient ischemic attack. *J Stroke Cerebrovasc Dis* 2012;21(2):89-93. doi: <u>https://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2010.05.006</u>

29. Grond M, Jauss M, Hamann G, et al. Improved detection of silent atrial fibrillation using 72-hour Holter ECG in patients with ischemic stroke. *Stroke* 2013;44(12):3357-64.

30. Stahrenberg R, Weber-Kruger M, Seegers J, et al. Enhanced detection of paroxysmal atrial fibrillation by early and prolonged continuous holter monitoring in patients with cerebral ischemia presenting in sinus rhythm. *Stroke* 2010;41(12):2884-88. doi: <u>http://dx.doi.org/10.1161/STROKEAHA.110.591958</u>

31. Ritter MA, Kochhauser S, Duning T, et al. Occult atrial fibrillation in cryptogenic stroke: detection by 7-day electrocardiogram versus implantable cardiac monitors. *Stroke* 2013;44(5):1449-52. doi: <u>https://dx.doi.org/10.1161/STROKEAHA.111.676189</u>

32. Higgins P, MacFarlane PW, Dawson J, et al. Noninvasive cardiac event monitoring to detect atrial fibrillation after ischemic stroke: a randomized, controlled trial. *Stroke* 2013;44(9):2525-31. doi: <u>https://dx.doi.org/10.1161/STROKEAHA.113.001927</u>

BMJ Open

33. Thakkar S, Bagarhatta R. Detection of paroxysmal atrial fibrillation or flutter in patients with acute ischemic stroke or transient ischemic attack by Holter monitoring. *Indian Heart Journal* 2014;66(2):188-92.

34. Wachter R, Gröschel K, Gelbrich G, et al. Holter-electrocardiogram-monitoring in patients with acute ischaemic stroke (Find-AF RANDOMISED): an open-label randomised controlled trial. *Lancet neurol* 2017;16(4):282-90.

35. Gumbinger C, Krumsdorf U, Veltkamp R, et al. Continuous monitoring versus HOLTER ECG for detection of atrial fibrillation in patients with stroke. *European Journal of Neurology* 2012;19(2):253-7. doi: <u>https://dx.doi.org/10.1111/j.1468-1331.2011.03519.x</u>

36. Alhadramy O, Jeerakathil TJ, Majumdar SR, et al. Prevalence and predictors of paroxysmal atrial fibrillation on Holter monitor in patients with stroke or transient ischemic attack. *Stroke* 2010;41(11):2596-600. doi: <u>https://dx.doi.org/10.1161/STROKEAHA.109.570382</u>

37. Dangayach NS, Kane K, Moonis M. Paroxysmal atrial fibrillation in cryptogenic stroke. *Therapeutics and Clinical Risk Management* 2011;7(1):33-37. doi: <u>http://dx.doi.org/10.2147/TCRM.S15079</u>

38. Gunalp M, Atalar E, Coskun F, et al. Holter monitoring for 24 hours in patients with thromboembolic stroke and sinus rhythm diagnosed in the emergency department. *Advances in Therapy* 2006;23(6):854-60.

39. Fonseca AC, Brito D, Pinho e Melo T, et al. N-terminal pro-brain natriuretic peptide shows diagnostic accuracy for detecting atrial fibrillation in cryptogenic stroke patients. *International Journal of Stroke* 2014;9(4):419-25. doi: <u>http://dx.doi.org/10.1111/ijs.12126</u>

40. Manina G, Agnelli G, Becattini C, et al. 96 hours ECG monitoring for patients with ischemic cryptogenic stroke or transient ischaemic attack. *Intern* 2014;9(1):65-7. doi: <u>https://dx.doi.org/10.1007/s11739-012-0755-3</u>

41. Tagawa M, Takeuchi S, Chinushi M, et al. Evaluating patients with acute ischemic stroke with special reference to newly developed atrial fibrillation in cerebral embolism. *Pacing and Clinical Electrophysiology* 2007;30(9):1121-28.

42. Shibazaki K, Kimura K, Fujii S, et al. Brain natriuretic peptide levels as a predictor for new atrial fibrillation during hospitalization in patients with acute ischemic stroke. *The American Journal of Cardiology* 2012;109(9):1303-07.

43. Vandenbroucke E, Thijs V. Diagnostic and therapeutic impact of ambulatory electrocardiography in acute stroke. *Acta Neurologica Belgica* 2004;104(1):27-31.

44. Yodogawa K, Seino Y, Ohara T, et al. Prediction of atrial fibrillation after ischemic stroke using P-wave signal averaged electrocardiography. *Journal of Cardiology* 2013;61(1):49-52.

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 24

45. Atmuri K, Hughes A, Coles D, et al. The role of cardiac disease parameters in predicting the results of Holter monitoring in patients with acute ischaemic stroke. *J Clin Neurosci* 2012;19(7):965-68.

46. Salvatori V, Becattini C, Laureti S, et al. Holter monitoring to detect silent atrial fibrillation in high-risk subjects: the Perugia General Practitioner Study. *Intern* 2015;10(5):595-601. doi: <u>https://dx.doi.org/10.1007/s11739-015-1241-5</u>

47. Beaulieu-Boire I, Leblanc N, Berger L, et al. Troponin elevation predicts atrial fibrillation in patients with stroke or transient ischemic attack. *Journal of Stroke and Cerebrovascular Diseases* 2013;22(7):978-83. doi: <u>http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2012.01.008</u>

48. Dogan U, Dogan EA, Tekinalp M, et al. P-wave dispersion for predicting paroxysmal atrial fibrillation in acute ischemic stroke. *International Journal of Medical Sciences* 2012;9(1):108.

49. Douen AG, Pageau N, Medic S. Serial electrocardiographic assessments significantly improve detection of atrial fibrillation 2.6-fold in patients with acute stroke. *Stroke* 2008;39(2):480-2. doi: <u>https://dx.doi.org/10.1161/STROKEAHA.107.492595</u>

50. Suissa L, Bresch S, Lachaud S, et al. Optimal timing and duration of continuous ECG monitoring for detecting atrial fibrillation in stroke patients. *Archives of Cardiovascular Diseases Supplements* 2012;4:43-44.

51. Wohlfahrt J, Stahrenberg R, Weber-Kruger M, et al. Clinical predictors to identify paroxysmal atrial fibrillation after ischaemic stroke. *European Journal of Neurology* 2014;21(1):21-7. doi: <u>https://dx.doi.org/10.1111/ene.12198</u>

52. Lowres N, Neubeck L, Salkeld G, et al. Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies: The SEARCH-AF study. *Thrombosis and Haemostasis* 2014;111(6):1167-76. doi: <u>http://dx.doi.org/10.1160/TH14-03-0231</u>

53. Svennberg E, Engdahl J, Al-Khalili F, et al. Mass screening for untreated atrial fibrillation: the STROKESTOP study. *Circulation* 2015;131:2176-84.

54. Proietti M, Mairesse GH, Goethals P, et al. A population screening programme for atrial fibrillation: a report from the Belgian Heart Rhythm Week screening programme. *Europace* 2016;18:1779-86.

55. Kaasenbrood F, Hollander M, Rutten FH, et al. Yield of screening for atrial fibrillation in primary care with a hand-held, single-lead electrocardiogram device during influenza vaccination. *Europace* 2016;18(10):1514-20. doi: <u>http://dx.doi.org/10.1093/europace/euv426</u>

56. Engdahl J, Andersson L, Mirskaya M, et al. Stepwise Screening of Atrial Fibrillation in a 75-Year-Old PopulationClinical Perspective. *Circulation* 2013;127(8):930-37.

BMJ Open

57. Hendrikx T, Hörnsten R, Rosenqvist M, et al. Screening for atrial fibrillation with baseline and intermittent ECG recording in an out-of-hospital population. *BMC Cardiovascular Disorders* 2013;13(1):41.

58. Hendrikx T, Sundqvist M, Sandström H, et al. Atrial fibrillation among patients under investigation for suspected obstructive sleep apnea. *PloS One* 2017;12(2):e0171575.

59. Chan Ny, Choy Cc. Screening for atrial fibrillation in 13 122 Hong Kong citizens with smartphone electrocardiogram. *Heart* 2017;103(1):24-31. doi: <u>http://dx.doi.org/10.1136/heartjnl-2016-309993</u>

60. Ramkumar S, Yang H, Wang Y, et al. The Role of Left Atrial and Ventricular Function in Prediction of Atrial Fibrillation: P2-19. *Journal of the American Society of Echocardiography* 2017;30(6):B70.

61. Claes N, Goethals M, Goethals P, et al. Screening for Atrial Fibrillation (AF) in Belgium: A multicentre trial. *European Journal of Cardiovascular Prevention and Rehabilitation* 2011;1):S30. doi: <u>http://dx.doi.org/10.1177/1741826711407000</u>

62. Samol A, Masin M, Gellner R, et al. Prevalence of unknown atrial fibrillation in patients with risk factors. *Europace* 2013;15(5):657-62.

63. Battipaglia I, Gilbert K, Hogarth AJ, et al. Screening for atrial fibrillation in the community using a novel ECG recorder. *Journal of Atrial Fibrillation* 2016;9(2):29-31.

64. Halcox JP, Wareham K, Cardew A, et al. Assessment of Remote Heart Rhythm Sampling Using the AliveCor Heart Monitor to Screen for Atrial Fibrillation: The REHEARSE-AF Study. *Circulation* 2017:CIRCULATIONAHA. 117.030583.

65. Chan, Ny, Siu Cw, Choy Cc et. al. Effectiveness of community atrial fibrillation screening in over 10,000 citizens using smartphone electrocardiogram- The AFinder program. ESC Congress; 2017 29th August Barcelona.

66. Doliwa Sobocinski P, Änggårdh Rooth E, Frykman Kull V, et al. Improved screening for silent atrial fibrillation after ischaemic stroke. *EP Europace* 2012;14(8):1112-16.

67. Hendrikx T, Rosenqvist M, Wester P, et al. Intermittent short ECG recording is more effective than 24-hour Holter ECG in detection of arrhythmias. *BMC Cardiovascular Disorders* 2014;14(1):41.

68. Stewart S, Murphy N, Walker A, et al. Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK. *Heart* 2004;90(3):286-92. doi: 10.1136/hrt.2002.008748

69. Healey JS, Connolly SJ, Gold MR, et al. Subclinical Atrial Fibrillation and the Risk of Stroke. *New England Journal of Medicine* 2012;366(2):120-29. doi: 10.1056/NEJMoa1105575

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 26

70. Sanna T, Diener HC, Passman RS, et al. Cryptogenic stroke and underlying atrial fibrillation. *New England Journal of Medicine* 2014;370(26):2478-86. doi: <u>http://dx.doi.org/10.1056/NEJMoa1313600</u>

71. Desteghe L, Raymaekers Z, Lutin M, et al. Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting. *Europace* 2016:euw025.

72. Williams J, Pearce K, Benett I, et al. The effectiveness of a mobile ECG device in identifying AF: sensitivity, specificity and predictive value. *British Journal of Cardiology* 2015;22(2)

73. Freedman SB, Lowres N. Asymptomatic atrial fibrillation: the case for screening to prevent stroke. *JAMA* 2015;314(18):1911-12.

74. Aronsson M, Svennberg E, Rosenqvist M, et al. Cost-effectiveness of mass screening for untreated atrial fibrillation using intermittent ECG recording. *EP Europace* 2015;17(7):1023-29. doi: 10.1093/europace/euv083

75. Jacobs MS, Kaasenbrood F, Postma MJ, et al. Cost-effectiveness of screening for atrial fibrillation in primary care with a handheld, single-lead electrocardiogram device in the Netherlands. *Europace* 2016:euw285.

85.

BMJ Open

Atrial fibrillation detection using portable electrocardiographic monitoring devices.; Page 27

1	
2 3	Figure Legends
4 5	Figure 1 – Overview of inclusion and exclusion of studies based on the PRISMA flowchart
6	Figure 2 – Forest Plot showing the overall AF detection rate between single lead ECG devices and
8	Holter monitoring
9 10	Figure 3 – Forest Plot comparing the AF detection rate between 24 hour Holter monitoring and
11 12	norforming multiple intermittant single lead ECC recordings
13	performing multiple intermittent single lead ECO recordings
15	Figure 4 – Graph showing the linear relationship between total monitoring time and AF detection
16 17	rate in single lead ECG devices
18	Figure 5 – Cumulative Meta-analysis showing minimal variation in AF detection over time using
20	Holter and single lead ECG devices.
21 22	Supplementary Figure 1 – Funnel Plots for Holter monitoring and single lead ECG device studies
23 24	
25	
26	
28	
29	
30 31	
32	
33	
34	
35 36	
37	
38	
39	
40	
42	
43	
44	
45	
46 47	
48	
49	
50	
51	
5∠ 53	
54	
55	
56	

170x163mm (300 x 300 DPI)

Single Lad ECG monitoring 0.42 (0.33, 1.66) Chan et al. (2016) 1013 5 Chan et al. (2011) 10739 1.6 Dolwa et al. (2010) 866 1.85 (1.33, 1.80) Dolwa et al. (2010) 866 4.8 Pendrik et al. (2011) 828 3.8 Hendrik et al. (2011) 828 3.8 Schoolinik et al. (2011) 828 3.4 Hendrik et al. (2011) 828 3.4 Schoolinik et al. (2011) 829 1.1 Lowres et al. (2014) 95 9.8 Pankumet al. (2017) 226 8.9 Schoolinik et al. (2016) 827 1.1 Schoolinik et al. (2016) 827 1.1 Schoolinik et al. (2016) 717 3 Schoolinik et al. (2016) 717 3 Schoolinik et al. (2016) 126 1.4 Schooliniket al. (20	Sample New AF size detection (n) rate (%) ES (95% OI)
Batispains et al. (2016) 613 5 Chan et al. (2017) 1075 7 Chan et al. (2017) 1075 7 Chan et al. (2017) 1075 7 Far et al. (2017) 1078 1 Far et al. (2016) 108 3 Far et al. (2017) 1078 1 Far et al. (2016) 108 3 Far et al. (2017) 108 1 Far et al. (2016) 108 3 Far et al. (2017) 118 4 Far et al. (2016) 108 3 Far et al. (2017) 118 4 Far et al. (2016) 118 4 Far et al. (2017) 118 4 Far et al. (2018) 118 4 Far et al. (2018) 118 4 Far et al. (2018) 118 4 Far et al. (2019) 118 4 Far et al. (2017) 118 4 Far et al. (2018) 127 4 Far et al. (2018) 127 4 Far et al. (2018) 127 4 Far et al. (2018) 128 4 Far et al. (2018) 128 4 Far et al. (2018) 128	Lead ECG monitoring
Chan et al. (2016) 1013 5 Chan et al. (2017) 10725 7 Chan et al. (2017) 1073 7 Chan et al. (2017) 1073 7 Chan et al. (2017) 1073 7 Chan et al. (2017) 1071 6 Chan et al. (2014) 1070 115 Chan et al. (2017) 1071 6 Chan et al. (2017) 1071 7 Chan et al. (2017) 1072 7 Chan et al. (2017) 1071 7 Chan et al. (2017) 1072 7 Chan et al. (2017) 1072 7 Chan et al. (2017) 1073 7 Chan et al. (2017) 1073 7 Chan et al. (2017) 1072 7 Chan et al. (2017) 1073 7 Chan et al. (2017) 1075 7 Chan et al. (2017) 1073 7 Chan et al. (2017) 1073 7 Chan et al. (2017) 1073 7 Chan et al. (2017) 1075 7 Chan et al.	aglia et. al. (2016) 855 .8 🔶 0.82 (0.33, 1.
Chan et al. (2017) 1075 7. Chan et al. (2017) 1075 1. Chan et al. (2017) 1075 1. Chan et al. (2010) 66 1. Chan et al. (2010) 66 1. Hendrik et al. (2017) 1075 1. Hendrik et al. (2016) 259 1.1 Hendrik et al. (2016) 259 1.1 Hendrik et al. (2016) 259 1.1 Hendrik et al. (2017) 1075 5. Hendrik et al. (2017) 1075 5. Hendrik et al. (2016) 259 1.1 Hendrik et al. (2016) 259 1.1 Hendrik et al. (2017) 1075 5. Hendrik et al. (2016) 259 1.1 Hendrik et al. (2017) 1075 5. Hendrik et al. (2016) 259 1.1 Hendrik et al. (2017) 1075 5. Hendrik et al. (201	et al. (2016) 1013 .5 • 0.49 (0.16, 1.
Chan et. al. (2017) 10735 7 Chan et. al. (2012) 10758 1.6 Clase et. al. (2012) 10758 1.6 Clase et. al. (2013) 649 4.7 Halcox et. al. (2017) 501 3.8 Halcox et. al. (2017) 501 5.5 Halcox et. al. (2014) 505 7.1 Halcox et. al. (2017) 7264 9.8 Sandet al. (2015) 717 3 Samol et. al. (2017) 73 5 Samol et. al. (2017) 73 5 Halcox et. al. (2017) 73 7 Halcox et. al. (2017) 75 2.4 Halcox et. al	et al. (2016) 13122 .8 🗢 0.77 (0.63, 0.
Claes et al. (2012) 1075 1 5 Engdah et al. (2017) 50 1 3.8 Hendik et al. (2017) 50 1 3.8 Hendik et al. (2017) 50 3 8 Hendik et al. (2017) 50 3 8 Hendik et al. (2017) 50 5 5 Hendik et al. (2018) 205 21 4 Hendik et al. (2019) 205 21 5 Hendik et al. (2014) 205 11 Hendik et al. (2016) 205 11 Hendik et al. (2017) 205 15 Same dt al. (2017) 205 15 Same dt al. (2017) 205 15 Same dt al. (2017) 205 25 Same dt al. (2017) 205 25 Same dt al. (2017) 205 25 Same dt al. (2012) 205 25 Same dt al. (2017) 205 25 Same dt al. (2017) 205 25 Same dt al. (2012) 205 25 Same dt al. (2012) 205 25 Same dt al. (2012) 205 25 Same dt al. (2013) 205 25 Hendik et al. (2013) 205 25 Hendik et al. (2013) 205 25 Same dt al. (2011) 40 10 Dogan et al. (2011) 40 10 Dogan et al. (2013) 5 England et al. (2014) 5 England et al. (2013) 5 England et al. (2014) 5 England et al. (2014) 5 England et al. (2013) 5 England et al. (2014) 5 England et al. (2013) 5 England et al. (2014) 5 England et al. (2015) 2 England et al. (2016) 5 England et al. (2016) 5 England et al. (2016) 5 England et al. (2017) 5 Engl	et. al. (2017) 10735 .7 • 0.69 (0.54, 0.
Delma at. al. (2029) 606 1 1 Figdah et al. (2013) 646 4.7. Halcox et. al. (2017) 501 3.8 Hendrik et. al. (2013) 648 4.7. Handrik et. al. (2013) 648 4.7. Hendrik et. al. (2014) 95 9.5 Hendrik et. al. (2016) 3269 1.1 Liso 1004 1.26 Kaasentood at. al. (2016) 3269 1.1 Liso 1004 1.26 Kaasentood at. al. (2017) 204 9.8 Samod et. al. (2012) 124 5.3 Samod et. al. (2012) 124 5.3 Subbotal (P2 = 93.63%, p = 0.00) Helter Montoring Handraw et. al. (2011) 426 2.5 Amute t. al. (2012) 124 6.5 Subbotal (P2 = 93.63%, p = 0.00) Helter Montoring Handraw et. al. (2011) 426 2.5 Amute t. al. (2012) 426 2.5 Amute t. al. (2012) 426 2.5 Amute t. al. (2011) 426 2.5 Amute t. al. (2012) 426 2.5 Amute t. al. (2011) 426 2.5 Amute t. al. (2012) 426 2.5 Amute t. al. (2013) 426 2.5 Amute t. al. (2013) 426 2.5 Hendrik et. al. (2013) 426 2.5 Hendrik et. al. (2014) 426 2.5 Hendrik et. al. (2013) 426 2.5 Hendrik et. al. (2013) 426 2.5 Hendrik et. al. (2013) 426 2.5 Hendrik et. al. (2014) 427 3.2 Hendrik et. al. (2014) 437 4.2 Hendrik et. al. (2014) 437 4.2 Hendrik et. al. (2014) 437 4.2 Hendrik et. al. (2014) 436 5.2 Hendrik	et. al. (2012) 10758 1.6
Englah et al. (2017) 548 47. Hendrik et al. (2017) 501 38 Hendrik et al. (2017) 501 38 Hendrik et al. (2017) 501 38 Hendrik et al. (2017) 501 55. Hendrik et al. (2017) 201 65. Kasenchood ta. (2016) 57.77 (24, 52.1) Hendrik et al. (2016) 57.77 1.1 Kasenchood ta. (2016) 57.77 1.1 Kasenchood ta. (2016) 57.77 1.1 Kasenchood ta. (2017) 204 98 Sabota et al. (2017) 406 Sabota et al. (2017) 406 Sabota et al. (2017) 406 Sabota et al. (2017) 407 Sabota et al. (2017) 407 Sabota et al. (2017) 407 Sabota et al. (2018) 407 Sabota et al. (2018) 408 Sabota et al. (2019) 50 Sabota et al. (2014) 400 Sabota et al. (2014) 400 Sabota et al. (2014) 407 Sabota et al. (2015) 408 Sabota et al. (2014) 407 Sabota et al. (2015) 408 Sabota et al. (2017) 408 Sabota et al. (201	a et. al. (2009) 606 1 • 0.99 (0.36, 2.
Halcox et. al. (2017) 501 3.8 Hendrix et. al. (2013) 282 3.8 Hendrix et. al. (2014) 100 15 Kaasenbrood et. al. (2016) 3269 1.1 Lowres et. al. (2017) 216 5. Hornix et. al. (2016) 26747 1.1 Fankunar et. al. (2016) 65747 1.1 Fankunar et. al. (2017) 249 5.3 Subotal (1/2 = 93.63%, p = 0.00) Haltor Hornix et. al. (2017) 249 5.3 Subotal (1/2 = 93.63%, p = 0.00) Haltor Hornix et. al. (2017) 249 5.3 Subotal (1/2 = 93.63%, p = 0.00) Haltor Hornix et. al. (2017) 249 5.3 Subotal (1/2 = 93.63%, p = 0.00) Haltor Hornix et. al. (2017) 248 6.3 Subotal (1/2 = 93.63%, p = 0.00) Haltor Hornix et. al. (2013) 244 6.3 Dagangach et. al. (2013) 252 7.1 Forestear et. al. (2013) 253 7.1 Forestear et. al. (2013) 254 7.1 Forestear et. al. (2014) 257 7.3 Subotal (1/2 = 9.43) 7.7 Subachori et. al. (2013) 254 7.1 Forestear et. al. (2014) 257 7.3 Subachori et. al. (2015) 254 7.1 Forestear et. al. (2014) 257 7.3 Subachori et. al. (2015) 254 7.1 Forestear et. al. (2014) 257 7.3 Subachori et. al. (2014) 257 7.3 Subachori et. al. (2015) 256 7.1 Forestear et. al. (2014) 257 7.3 Subachori et. al. (2014) 257 7.3 Subachori et. al. (2014) 257 7.3 Subachori et. al. (2015) 256 7.1 Forestear et. al. (2014) 257 7.3 Subachori et. al. (2015) 256 7.1 Forestear et. al. (2014) 257 7.3 Subachori et. al. (2015) 256 7.1 Forestear et. al. (2014) 257 7.3 Subachori et. al. (2015) 276 7.3 Subachori et. al. (2014) 256 7.1 Forestear et. al. (2014) 256 7.1 Forestear et. al. (2015) 257 7.5 Subachori et. al. (2015) 257 7.5 Subachori et. al. (2014) 455 7.2 Subachori et. al. (2015) 7.7 Subachori et. al. (2015) 7.7 Subach	hi et. al. (2013) 848 4.7 4.72 (3.39, 6.
Hendrik et. al. (2013) Hendrik et. al. (2014) Hendrik et. al. (2017) Hendrik et. al. (2017) Hendrik et. al. (2016) Hasaerburod et. al. (2016) Hasaerburod et. al. (2017) Hasaerburod et. al. (2018) Hasaerburod et. al. (2019) Hasaerburod et. al. (2019) Hasaerburod et. al. (2017) Hasaerburod et. al. (2013) Hasaerburod et. al. (2013) Hasaerburod et. al. (2013) Hasaerburod et. al. (2013) Hasaerburod et. al. (2014) Hasaerburod et. al. (2015) Hasaerburod et. al. (2015) Hasaerburod et. al. (2016) Hasaerburod et. al. (2017) Hasaerburod et. al. (2018) Hasaerburod et. al. (2018) Hasaerburod et. al. (2019) Hasaerburod et. al. (2019) Hasaerburod et. al. (2014) Hasaerburod et. al. (2014) Hasaerburod et. al. (2015) Hasaerburod et. al. (2015) Hasaerburod et. al. (2016) Hasaerburod et. al. (2017) Hasaerburod et. al. (2018) Hasaerburod et. al. (2014) Hasaerburod et. al. (2014) Hasaerburod et. al. (2015) Hasaerburod et. al. (2014) Hasaerburod et. al. (2014) Hasaerburod et. al. (2015) Hasaerburod et. al. (2014) Hasaerburod et. al. (2015) Hasaerburod et. al. (2016) Hasaerburod et. al. (2016) Hasaerburod et. al. (2017) Hasaerburod et. al. (2	x et. al. (2017) 501 3.8 🛨 3.79 (2.30, 5.
Hendrik et. al. (2017) Hendrik et. al. (2017) Hendrik et. al. (2016) Hendrik et. al. (2016) Hendrik et. al. (2017) Hendrik et. al. (2014) Hendrik et. al. (2014) Hendrik et. al. (2014) Hendrik et. al. (2017) Hendrik et. al. (2014) Hendrik et. al. (2017) Hendrik et. al. (2012) Hendrik et. al. (2013) Hendrik et. al. (2014) Hendrik et. al. (2013) Hendrik et. al. (2014) Hendrik et. al. (2015) Hendrik et. al. (2016) Hendrik et. al. (2016) Hendrik et. al. (2017) Hendrik et. al. (2016) Hendrik et. al. (2016) Hendrik et. al. (2017) Hendrik et. al. (2017) Hendrik et. al. (2016) Hendrik et. al. (2017) Hendrik et. al. (2016) Hendrik et. al. (2017) Hendrik et. al. (2018) Hendrik et. al. (2017) Hendrik et. al. (2017) Hendri	ikx et. al. (2013) 928 3.8 🛨 3.77 (2.64, 5.
Hendrik et. al. (2017) 201 6.5 Kaaserbrood et. al. (2016) 6724 1.1 Lowres et. al. (2017) 204 9.8 Samol et. al. (2012) 132 5.3 Subcinit (2015) 7.173 3 Subcinit (2015) 7.174 (2015) 7.174 3 Subcinit (2015) 7.174 1.175 3 Subcinit (2	ikx et. al. (2014) 95 9.5 9.47 (4.42, 1)
Kaasembrood et al. (2016) 3269 1.1 Lowres et al. (2017) 400 1.5 Proietti et. al. (2017) 405 2.5 Samol et. al. (2017) 132 5.3 Sobocinski et. al. (2017) 132 5.3 Sobocinski et. al. (2012) 132 5.3 Sobocinski et. al. (2015) 7173 3 Subtatal (1/2 - 38,35%, p = 0.00) Hotar Monitoring Annaut et. al. (2010) 426 2.5 Annaut et. al. (2010) 426 5.4 Barinetemy et. al. (2001) 426 5.4 Barinetemy et. al. (2001) 224 6.3 Danaguart et. al. (2013) 224 6.3 Danaguart et. al. (2013) 224 6.3 Danaguart et. al. (2011) 400 10 Catadatione al. (2013) 224 6.3 Danaguart et. al. (2011) 400 10 Catadatione al. (2013) 125 7.1 Forming et. al. (2014) 126 7.1 Catadatione al. (2015) 77 2.2 Catadatione al. (2014) 127 7.2 Catadatione al. (2015) 25 8 Herdrix et. al. (2011) 400 10 Catadatione al. (2014) 127 7.2 Catadatione al. (2015) 25 8 Herdrix et. al. (2015) 25 8 Sature et. al. (2013) 50 8 Herdrix et. al. (2015) 25 4 Haring et. al. (2015) 25 4 Haring et. al. (2015) 25 8 Sature et. al. (2013) 50 8 Herdrix et. al. (2013) 50 8 Sature et. al. (2013) 50 8 Sature et. al. (2013) 50 8 Sature et. al. (2013) 50 8 Herdrix et. al. (2013) 50 8 Sature et.	ikx et. al. (2017) 201 6.5 6.47 (3.49, 10
Lowres et al. (2014) 1000 1.5 Proteit et al. (2015) 6747 1.1 Ramkurar et. al. (2017) 204 9.8 Samol et. al. (2012) 132 5.3 Suboral (2012) 132 5.3 Suboral (2012) 132 5.3 Suboral (2012) 132 5.3 Suboral (2015) 7773 3 Suboral (2016) 728 Beaulian-Boire et al. (2013) 284 6.3 Dangayach et al. (2013) 284 6.3 Dangayach et al. (2011) 400 10 Douen et al. (2014) 115 1294 Forsecar et al. (2013) 115 4.3 Gumbinger et al. (2013) 115 4.3 Gumbinger et al. (2013) 50 8 Hendrick et al. (2014) 192 1 Gumbinger et al. (2014) 1192 1 Gumbinger et al. (2014) 114 254 Riter et al. (2013) 60 1.7 Rites et al. (2012) 136 6 Suboral et al. (2012) 136 6 Suboral et al. (2012) 137 6 Suboral et al. (2012) 136 6 Suboral et al. (2013) 224 12.5 Subar et al. (2014) 124 12.5 Suboral et al. (2015) 274 12.5 Suboral et al. (2012) 246 2.5 Suboral et al. (2014) 136 5.1 Wohlmahr et al. (2013) 244 12.5 Suboral et al. (nbrood et. al. (2016) 3269 1.1 • 1.13 (0.80, 1.
Proteit et. al. (2017) 65/47 1.1 Bartkmaret et. al. (2017) 132 5.3 Samol et. al. (2012) 132 5.3 Sobocinski et. al. (2015) 7173 3 Subtati (1/2 = 28.38%), p = 0.00) Holter Monitoring Almari et. al. (2010) 426 2.5 Almari et. al. (2012) 140 8.6 Bartielemy et. al. (2010) 426 2.5 Almari et. al. (2012) 140 8.6 Bartielemy et. al. (2010) 426 2.5 Almari et. al. (2012) 140 8.6 Bartielemy et. al. (2010) 151 2.94 Dogan et. al. (2013) 60 13.3 Bartielemy et. al. (2010) 151 2.94 Dogan et. al. (2014) 140 8.0 Sobocinski et. al. (2015) 151 2.94 Combined (2016) 1128 7.1 Foresce et. al. (2013) 150 2.1 Generalized (2016) 128 7.1 Foresce et. al. (2013) 150 2.1 Generalized (2016) 1128 7.1 Foresce et. al. (2014) 155 2.1 Generalized (2016) 1128 7.1 Foresce et. al. (2013) 150 2.1 Generalized (2016) 1128 7.1 Foresce et. al. (2014) 152 4.3 Generalized (2016) 1128 7.1 Foresce et. al. (2015) 150 8.1 Generalized (2016) 1128 7.1 Foresce et. al. (2014) 152 4.3 Generalized (2016) 1128 7.1 Foresce et. al. (2014) 148 7.7 Koudstake et. al. (2014) 149 7.7 Sobocinski et. (2015) 150 8.1 Foresce et. al. (2015) 150 8.1 Sobocinski et. al. (2015) 150 8.2 Sobocinski et. al. (2015) 156 8.5 Sobocinski et. al. (2015) 156 8.5 Sobocinski et. al. (2015) 156 8.5 Sobocinski et. al. (2015) 254 6.5 Sobocinski et. al. (2015) 254 6.5 Sobocinski et. al. (2015) 254 6.5 Sobocinski et. al.	s et. al. (2014) 1000 1.5
Hamkumar et. al. (2017) 204 9.8 Samol et. al. (2012) 132 5.3 Soberinki et. al. (2012) 132 5.3 Soberinki et. al. (2012) 249 6 Subbanchi (1/2 = 93.63%, p = 0.00) Holter Monitoring Altadramy et. al. (2010) 426 2.5 Altmui et. al. (2012) 140 8.6 Barthelemy et. al. (2013) 224 6.3 Dagayach et. al. (2013) 202 7.1 Forsecut et. al. (2013) 202 7.1 Forsecut et. al. (2013) 202 7.1 Gunding et. al. (2014) 105 2.1 Horing et. al. (2013) 1155 4.3 Gunding et. al. (2013) 50 8 Horing et. al. (2014) 129 1 Gunding et. al. (2014) 129 1 Horing et. al. (2014) 129 1 Horing et. al. (2014) 129 2.1 Higgins et. al. (2013) 50 8 Horing et. al. (2014) 149 4.7 Koudstak et. al. (2014) 149 5.2 Hing et. al. (2014) 149 5.2 Hing et. al. (2014) 149 5.2 Lazzare et. al. (2013) 60 1.7 Rises et. al. (2014) 149 5.2 Lazzare et. al. (2013) 60 1.7 Rises et. al. (2014) 149 5.2 Hing et. al. (2012) 133 6 Subtat et. al. (2014) 149 5.2 Hing et. al. (2012) 136 6 Salvatori et. al. (2013) 60 1.7 Rises et. al. (2014) 149 5.2 Salvatori et. al. (2013) 60 1.7 Rises et. al. (2014) 149 5.2 Salvatori et. al. (2014) 149 5.2 Salvatori et. al. (2015) 274 1.5 Salvatori et. al. (2015) 274 1.5 Salvatori et. al. (2016) 224 2.2 Salvatorberg et. al. (2017) 308 8.4 Tagawa et. al. (2004) 36 5.1 Wohlmahr et. al. (2013) 224 12.9 Salvatori et. al. (2014) 326 5.5 Vander et. al. (2014) 326 5.5 Vander et. al. (2014) 326 5.5 Vander et. al. (2015) 274 12.5 Salvatori et. al. (201	ii et. al. (2016) 65747 1.1 • 0.92 (0.85, 0.
Sathol et al. (2012) 132 5.3 Sobcinski et al. (2012) 132 5.3 Sobcinski et al. (2015) 7173 3 Subtotal (?2 = 28.63%), p = 0.00 Holter Monitoring Afhadramy et al. (2010) 426 2.5 Afhadramy et al. (2010) 426 2.5 Bathielemy et al. (2010) 60 11.3 Bathielemy et al. (2010) 60 11.3 Bathielemy et al. (2012) 246 6.3 Dangyate et al. (2013) 60 11.3 Bathielemy et al. (2013) 60 11.3 Bathielemy et al. (2014) 151 224 6.3 Dangyate et al. (2015) 151 426 6.3 Dangyate et al. (2017) 151 428 Catastrone et al. (2017) 152 4 Catastrone et al. (2018) 155 4.3 Catastrone et al. (2019) 155 4.3 Catastrone et al. (2011) 155 4.3 Catastrone et al. (2014) 155 4.3 Catastrone et al. (2014) 155 4.3 Catastrone et al. (2015) 155 8 Hiorrig et al. (2013) 55 8 Hiorrig et al. (2013) 50 8 Sobciastrie et al. (2013) 50 8 Sobociest et al. (2012) 160 5 Sobociest et al. (2013) 50 8 Sobociest et al. (2012) 166 5 Sobociest et al. (2014) 156 5 Sobociest et al. (2015) 264 6 Sobociest et al. (2014) 156 5 Sobociest et	umar et. al. (2017) 204 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8
Soudcinskie at (2015) 249 0 Soudcinskie at (2015) 7173 3 Subtail (122 = 93.63%, p = 0.00) 1.74 (139.209) Holter Monitoring 1.74 (139.209) Hardaram yet al. (2012) 140 8.6 Barthelemy et al. (2013) 284 6.3 Dangayach et al. (2011) 120 12 Jouen et al. (2013) 284 6.3 Dangayach et al. (2011) 400 10 Douen et al. (2013) 204 25 Grade at al. (2014) 105 2.1 Herdrike et al. (2013) 264 1774 3.33 Gladstone et al. (2013) 264 2.3 2.25 (13.0, 4.57) Gumbing et al. (2013) 105 2.1 4.2 2.24 (1.49, 4.38) Gumbing et al. (2014) 95 2.1 4.2 2.25 (2.2, 1.5.87) Herdrike et al. (2013) 50 8 8.3 3.37 (16.0, 6.88) Couldskie et al. (2014) 95 2.1 4.2 4.23 (2.3, 1.5.3) Herdrike et al. (2013) 50 8 8.4 1.6.7 (5.4.46) Hornis et al. (2014) <td>et. al. (2012) 132 5.3 5.30 (2.16, 10</td>	et. al. (2012) 132 5.3 5.30 (2.16, 10
Svennorg et. al. (2015) 7/173 3 Subtail (12: 2-8, 33%), p = 0.00) Holter Monitoring Anadramy et. al. (2010) 428 2.5 Anadramy et. al. (2012) 428 6.3 Barhelemy et. al. (2013) 60 13.3 Barhelemy et. al. (2013) 60 13.3 Barhelemy et. al. (2013) 61 224 6.3 Dangayach et. al. (2013) 216 7.1 Foundations et. al. (2011) 40 10 Dogen et. al. (2011) 40 10 Dogen et. al. (2011) 40 10 Control et. al. (2013) 226 7.1 Foundations et. al. (2011) 217 2.2 Ground et. al. (2011) 218 4.3 Double et. al. (2013) 218 4.3 Control et. al. (2013) 218 4.3 Double et. al. (2014) 227 4.1 Control et. al. (2015) 218 4.3 Control et. al. (2017) 22 Ground et. al. (2011) 25 5.8 Herdriko et. al. (2011) 25 6.8 Herdriko et. al. (2014) 25 6.8 Herdriko et. al. (2014) 25 6.8 Southal et. al. (2015) 50 8 Herdriko et. al. (2014) 155 5.8 Herdriko et. al. (2014) 159 5.2 Lazzaro et. al. (2013) 50 8 Horing et. al. (2014) 149 4.7 Kourdshake et. al. (2013) 50 8 Horing et. al. (2014) 149 4.7 Kourdshake et. al. (2013) 50 8 Horing et. al. (2014) 149 4.7 Kourdshake et. al. (2013) 50 8 Southal et. al. (2013) 50 8 Horing et. al. (2014) 149 5.2 Lazzaro et. al. (2015) 274 1.5 Southal et. al. (2013) 50 4.7 Southal et. al. (2013) 50 4.7 Southal et. al. (2013) 50 4.7 Southal et. al. (2014) 149 5.2 Lazzaro et. al. (2015) 274 1.5 Southal et. al. (2015) 274 1.5 Southal et. al. (2014) 149 5.2 Southal et. al. (2015) 274 1.5 Southal et. al. (2015) 274 1.5 Southal et. al. (2015) 274 1.5 Southal et. al. (2016) 274 1.5 Southal et. al. (2017) 386 6.4 Southal et. al. (2017) 386 8.4 Tazy (155, 469) 2.2 Southare et. al. (2017) 386 8.4 Tazy (155, 849) 5.5 Yandet et. al. (2017) 386 8.4 Tazy (156, 849) 1.5 Southal et. al. (2017) 386 8.4 Tazy (156, 843, 18.06) Southal et. al. (2017) 386 8.4 Tazy (156, 843, 18.06) Southal et. al. (2017) 386 5.4 Southal et. al. (2017) 386 5.4 South	inski et. al. (2012) 249 6 6.02 (3.41, 9
Subtial ("2 = 93.63%, p = 0.00) Holter Monitoring Hardermy et al. (2010) 426 2.5 Almarit et al. (2012) 140 8.6 Bardlency et al. (2013) 284 6.3 Dangayach et al. (2011) 129 4 Dogen et al. (2011) 129 7.1 Prosecut et al. (2013) 287 7.1 Prosecut et al. (2014) 192 7 Prosecut et al. (2013) 286 7.1 Prosecut et al. (2014) 192 7 Prosecut et al. (2015) 267 7.1 Higgins et al. (2014) 192 1 Hurdrix et al. (2014) 192 1 Alback on et al. (2014) 192 1 Prosecut et al. (2015) 267 8.1 Hurdrix et al. (2014) 194 7.7 Koustaak et al. (2015) 274 1.5 Scharer et al. (2012) 193 6 Scharer et al. (2012) 194 7 Scharer et al. (2012) 195 7.1 Scharer et al. (2012) 195 7.1 Prosecut et al. (2012) 196 2.4 Scharer et al. (2012) 197 7.2 Scharer et al. (2012) 198 7.1 Scharer et al. (2012) 198 7.1 Scharer et al. (2014) 196 7.1 Scharer et al. (2015) 274 1.5 Scharer e	Derg et al. (2015) /1/3 3 3.04 (205, 3.
Heiter Monitoring 2.58 (1.30, 4.57) Andrariny et al. (2012) 140 8.6 Bartheleny et al. (2013) 284 6.3 Dangayach et al. (2011) 120 140 Dougen et al. (2011) 284 6.3 Dougen et al. (2011) 10 100 Dougen et al. (2013) 20 7.174 (3.32) Glatsbone et al. (2013) 100 22.4 Grond et al. (2013) 1135 4.3 Gumbinger et al. (2013) 1135 4.3 Gumbinger et al. (2013) 1135 4.3 Gumbinger et al. (2011) 120 1 Hordinki et al. (2013) 1135 4.3 Gumbinger et al. (2011) 120 1 4.32 (3.21, 5.67) Hordinki et al. (2014) 15 2.1 4.3 Hordinki et al. (2014) 15 5.4 4.7 Hordinki et al. (2013) 60 1.7 8.26 Rite et al. (2013) 60 1.7 8.26 Rite et al. (2013) 60 1.7 8.26 Rite et al. (2013) 64 5.0 6.2	at (r ² = 93.63%, p = 0.00)
Aladami et al. (2010) 420 2.3 Ammi et al. (2010) 420 2.3 Bardheimy et al. (2020) 60 13.3 Bardheimy et al. (2010) 60 13.3 Bardheimy et al. (2011) 40 6.3 Dangan et al. (2011) 40 10 Dogen et al. (2013) 60 11 Glastone et al. (2014) 40 10 Dowen et al. (2015) 67 12 Glastone et al. (2014) 40 22 Groud et al. (2015) 67 22 Groud et al. (2013) 67 22 Groud et al. (2013) 71 423 (23.21, 567) Gumbioge et al. (2014) 55 2.1 Horrig et al. (2015) 50 8 Horrig et al. (2014) 149 4.7 Koutdank et al. (2013) 50 8 Horrig et al. (2013) 50 8 Horrig et al. (1966) 28 3.3 Jabauton et al. (2014) 149 4.7 Koutdank et al. (2013) 60 1.7 Rize et al. (2013) 61 5.00 (16.4	Monitoring
Alluft al. (2012) 140 63 Bardleeny et al. (2003) 0 13.3 Bardleeny et al. (2013) 24 6.3 Dagayach et al. (2011) 10 29.4 Duemet al. (2011) 40 10 Duemet al. (2013) 26 7.1 Duemet al. (2014) 7.1 4.23 Quadistic et al. (2013) 26 7.1 Ourment al. (2014) 277 3.2 Gardatione et al. (2013) 115 4.3 Gumbinger et al. (2014) 26 7.1 Ourmbinger et al. (2014) 27 3.2 Grand et al. (2013) 115 4.3 Gumbinger et al. (2014) 26 2.1 Horing et al. (1966) 26 3.3 Jabaudon et al. (2014) 15 8 Horing et al. (1966) 26 3.3 Jabaudon et al. (2014) 14 4.7 Koustask et al. (1966) 26 3.3 Jabaudon et al. (2014) 14 4.7 Koustask et al. (2013) 60 1.7 Rizes et al. (2013) 60 1.7 <td>aniyet.a.(2010) 420 2.5 2.50 2.50 2.50 2.50 2.50 2.50 2.5</td>	aniyet.a.(2010) 420 2.5 2.50 2.50 2.50 2.50 2.50 2.50 2.5
Ballies Bole et al. (2013) Ballies Bole et al. (2014) Ballies Bole et al. (2015) Ballies Bole et al. (2015) Ballies Bole et al. (2016) Ballies Bole et al. (2017) Bole et al. (2017) Bole et al. (2017) Bole et al. (2018) Bole et al. (2018) Bole et al. (2019) Bole et al. (2011) Bole et al. (2014) Bole et al. (2015) Bole et al. (2014) Bole et al. (2015) Bole et al. (2016) Bole et al. (2016) Bole et al. (2017) Bole et al. (2016) Bole et al. (2017) Bole et al. (2017)	6L.d. (2012) 140 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Deatable of at (2011) 264 6.3 0.34 0.50 28.41 0.94 0.50 28.41 7.47 4.32 28.41 11.04	nemy et al. (2003) 60 13.3 53.4, 1
Dargapolitic di (2011) 31 22.4 Dournet al. (2028) 126 7.14 (3.22, 13.37) Dournet al. (2013) 126 7.14 (3.22, 13.37) Grandrat al. (2014) 129 1 Grandrat al. (2015) 21 22.4 Grandrat al. (2016) 126 4.3 Grandrat al. (2017) 126 4.3 Grandrat al. (2018) 26.2 4.3 Grandrat al. (2019) 26 4.3 Hornig et al. (2014) 26 2.1 Hornig et al. (2015) 50 6 Hornig et al. (2014) 149 4.7 Koudstake et al. (2013) 60 1.7 Rizos et al. (2012) 135 6 Briter et al. (2013) 60 1.7 Rizos et al. (2012) 24 2.4 Schucher et al. (2013) 6 1.6 Shard et al. (2012) 245	eu-Dolle et al. (2013) 224 0.3 0.4 (3.0, 9.
Dispanse t. al. (2006) 7.1 7.14 (3.22, 13.3) Gladstone et. al. (2013) 00 21 22.8 (1.50, 6.00) Gladstone et. al. (2013) 115 4.3 4.22 (2.13, 6.73) Gunde et. al. (2011) 122 4.22 (2.13, 6.73) 4.22 (2.13, 6.73) Gunde et. al. (2012) 26 4.23 4.23 (2.3, 5.73) Gunde et. al. (2014) 95 2.1 4.23 (2.3, 5.73) Hornik et. al. (1986) 26 3.3 3.37 (1.00, 6.75) Jabaudon et al. (2014) 149 4.7 4.70 (1.31, 9.44) Koustask et. al. (2013) 60 5.00 (1.44, 11.26) 5.00 (1.44, 11.26) Lazzaro et. al. (2012) 133 6 6.02 (2.63, 11.51) Marina et. al. (2013) 60 1.7 71.5 5.45 Riter et. al. (2012) 136 6 2.22 (1.52, 4.89) Scharett al. (2012) 56 2.2 2.24 (1.04, 3.70) Scharett al. (2014) 14 2.54 1.67 (0.04, 8.34) Scharett al. (2013) 60 1.7 71.5 Scharett al. (2014) 142 2.4 2.24 (1.63, 7.40)	zastal (2011) 400 10
Porsecut et. al. (2013) 60 21 Gladstone et. al. (2014) 177 3.2 Grand et. al. (2013) 1135 4.3 Gumbinger et. al. (2011) 12 4.2 Gumbinger et. al. (2013) 26 4.2.3 Hendrik et. al. (2014) 26 4.2.3 Hendrik et. al. (2013) 50 8 Homping et. al. (2014) 196 2.8 Jabaudon et al. (2014) 196 2.8 Jabaudon et al. (2014) 149 4.7 Koudstak et. al. (1986) 26 3.3 Jabaudon et. al. (2012) 133 6 Manina et. al. (2013) 60 1.7 Rizes et. al. (2012) 133 6 Manina et. al. (2015) 274 1.5 Scharet et. al. (2012) 45 2.1 Scharet et. al. (2014) 144 2.4 Scharet et. al. (2014) 1.4 2.5 Scharet et. al. (2015) 274 1.5 Scharet et. al. (2015) 274 1.5 Scharet et. al. (2014) 1.4 2.4 Scharet et. al. (2012)	
Gladstone et. al. (2014) 277 3.2 Grand et. al. (2013) 135 4.3 Gumbinger et. al. (2011) 192 1 Gumbinger et. al. (2014) 192 4.2 Hendrik et. al. (2014) 56 4.2 Higgins et. al. (2014) 55 2.1 Higgins et. al. (2015) 50 8 Jabaudon et. al. (2014) 55 2.1 Jabaudon et. al. (1996) 288 3.2 Jabaudon et. al. (1996) 100 5 Jabaudon et. al. (1986) 100 5 Jabaudon et. al. (2014) 114 25.4 Jabaudon et. al. (2013) 60 1.7 Rices et. al. (2013) 60 1.7 Rices et. al. (2014) 114 25.4 Schucter et. al. (2013) 66 1.5 Schucter et. al. (2014) 1.5 5 Schucter et. al. (2014) 1.5 2.2 Schucter et. al. (2014)	ca et. al. (2013) 80 21 21.25 (12.89)
Grond et. al. (2013) 1135 4.3 Gunbinger et. al. (2014) 26 4.2.3 Hendrike et. al. (2013) 50 8 Hendrike et. al. (2014) 15 2.1 Jona et. al. (2015) 50 8 Hornig et. al. (2014) 169 2.8 Jona et. al. (2014) 169 2.8 Jona et. al. (2014) 149 4.7 Koutstak et. al. (1986) 0.6 3.3 Jabaudon et al. (2014) 149 4.7 Koutstak et. al. (1986) 0.6 5.00 (16.4, 11.28) Lazzaro et. al. (2012) 133 6 6.02 (2.83, 11.51) Lazzaro et. al. (2012) 133 6 6.02 (2.63, 11.51) Salvatori et. al. (2015) 274 1.5 5.4 Salvatori et. al. (2015) 274 1.5 1.46 (0.40, 3.70) Scharer et. al. (2015) 274 2.2 2.2 2.24 (1.6, 7.88) Scharer et. al. (2014) 142 2.4 6 5.4 6.01 (2.01, 13.66) Scharer et. al. (2012) 236 2.2 2.24 (1.6, 3.88) 2.21 (0.6, 7.23)	one et. al. (2014) 277 3.2 - 3.25 (1.50, 6
Gumbinger et al. (2011) 192 1 Mundje et al. (2014) 95 2.1 Hendrik et al. (2014) 95 2.1 Hordjik et al. (2015) 50 8 Hordjik et al. (2016) 288 3.3 Jabudno Hal. (2014) 95 2.1 Jabudno Hal. (2014) 95 2.1 Jabudno Hal. (2014) 95 3.3 Jabudno Hal. (2014) 100 5 Lazzaro Hal. (2014) 114 25.4 Rifer et al. (2012) 133 6 Salvatori et al. (2015) 26 6.02 (22.3) 11.51 Salvatori et al. (2015) 274 1.5 Salvatori et al. (2016) 274 1.5 Scharer et al. (2015) 274 1.5 Scharer et al. (2014) 2.4 2.12 (2014, 3.84) Scharer et al. (2014) 2.4 2.42 (17.5, 3.84) Scharer et al. (2012) 364 6 Shardari et al. (2012) 364 2.2 Suborissi et al. (2017) 284 2.12 (2017, 3.84) <t< td=""><td>et. al. (2013) 1135 4.3 📥 4.32 (3.21, 5.</td></t<>	et. al. (2013) 1135 4.3 📥 4.32 (3.21, 5.
Gunalp et al. (2006) 26 42.3 Hendrik et al. (2014) 95 2.11 Horgins et al. (2013) 50 8 Hornig et al. (2014) 196 2.81 Jabaudon et al. (2013) 50 8 Koutstak et al. (1986) 2.88 3.373 (180.6.75) Jabaudon et al. (2014) 149 4.7 Koutstak et al. (1986) 0.6 5.00 (164.11.22) Lazzaro et al. (2012) 133 6 6.02 (2.83, 11.51) Schaar et al. (2015) 274 1.5 5.4 Schaar et al. (2014) 1.4 2.5 1.46 (0.40, 3.70) Schaar et al. (2015) 274 1.5 1.46 (0.40, 3.70) Schaar et al. (2014) 1.5 5.4 6.01 (2.01, 13.66) Schaar et al. (2014) 2.4 6 5.10 (2.01, 13.65) Schaar et al. (2014) 2.4 6 5.10 (2.01, 13.65) Schaar et al. (2014) 2.4 6 5.10 (2.01, 13.65) Schaar et al. (2012) 2.4 2.4 6 Schaar et al. (2012)	inger et. al. (2011) 192 1 1.04 (0.13, 3.
Hendrik et. al. (2014) 95 2.1 Hornig et. al. (1986) 268 3.3 Jabaudon et. al. (1986) 100 5 Lazzan et. al. (2024) 149 4.7 Koudstaak et. al. (1986) 100 5 Lazzan et. al. (2024) 149 4.7 Koudstaak et. al. (1986) 100 5 Lazzan et. al. (2012) 133 6 Hitter et. al. (2013) 60 1.7 Hitter et. al. (2013) 60 1.7 Koudstaak et. al. (1986) 100 5 Lazzan et. al. (2014) 114 25.4 Hitter et. al. (2015) 274 1.5 Salvatori et. al. (2012) 496 2.8 Salvatori et. al. (2012) 496 2.4 Salvatori et. al. (2012) 496 4.5 Salvatori et. al. (2012) 4.5 Salvatori et. al. (2013) 4.6 Salvatori et. al. (2013) 4.6 Salvatori et. al. (2013) 4.6 Salvatori et. al. (2014) 5.5 Salvatori et. al. (2015) 5.1 Wohlaht et. al. (2013) 5.1 Wohlaht et. al. (2015) 5.1 Wohlaht et. al. (2013) 5.1 Wohlaht et. al. (2015) 5.2 Wohlaht et. al. (2015	p et. al. (2006) 26 42.3 42.31 42.31 (23.35,
Higgins et.al. (2013) 50 8 8.00 (2.22, 19.23) Hinging et.al. (1996) 2.68 3.37 (1.10, 6.75) Jabaudon et.al. (2014) 149 4.7 Koudstak et.al. (1986) 0.0 5.00 (1.64, 11.28) Lazzaro et.al. (2012) 133 6 Manina et.al. (2014) 114 2.54 Riter et.al. (2015) 60 1.7 Ritzos et.al. (2012) 496 2.8 Salvatori et.al. (2015) 274 1.5 Scharert al. (2004) 425 2.1 Scharert al. (2015) 274 1.5 Scharert al. (2014) 1.6 2.2 Scharert al. (2015) 274 1.5 Scharert al. (2014) 456 2.4 Schurbert et.al. (2015) 274 1.5 Scharert al. (2014) 56 2.2 Scharert al. (2015) 24 2.2 Scharert al. (2012) 364 6 Sharater al. (2012) 354 6 Starterberg et.al. (2012) 354 6 Vandherer et.al. (2017) 308 8.4	ikx et. al. (2014) 95 2.1 2.11 (0.26, 7.
Hornig et al. (1996) 268 3.3 Jabaudon et al. (2004) 149 4.7 Koudstaak et al. (1986) 100 5 Lazaro et al. (2012) 133 6 Riter et al. (2013) 60 1.7 Riter et al. (2013) 60 1.7 Riter et al. (2013) 60 1.7 Schaer et al. (2014) 425 2.1 Schaer et al. (2015) 236 2.2 Schaer et al. (2012) 236 5.1 Wohlhahr et al. (2013) 224 1.2.5 Schaer et al. (2012) 256 5.4 Schaer et al. (2014) 224 1.2.5 Schaer et al. (2015) 224 1.2.5 Schaer et al. (2016) 224 1.2.5 Schaer et al. (2017) 308 8.4 Tagawa et al. (2017) 308 8.4 Wohlhahr et al. (2013) 224 1.2.5 Wohlhahr et al. (2013) 224 1.2.5 Schaer et al. (2014) 32 5.4 Schaer et al. (2014) 32 5.4 Schaer et al. (2015) 224 0.2 Schaer et al. (2017) 308 8.4 Schaer et al. (2018) 324 3.5 Schaer et al. (2018) 324 3.5 Schae	s et. al. (2013) 50 8 8.00 (2.22, 19
Jabaudon et al. (2004) 149 4.7 Vocutstak et al. (1986) 00 5 Lazzaro et al. (2012) 133 6 Manina et al. (2013) 60 1.7 Riter et al. (2013) 60 1.7 Riter et al. (2012) 946 2.8 Salvatori et al. (2012) 946 2.8 Salvatori et al. (2015) 274 1.5 Schaert et al. (2004) 425 2.1 Schuchtert et al. (1999) 62 6 Schuchtert et al. (2014) 56 2.2 Schuchtert et al. (2014) 455 2.4 Schuchtert et al. (2014) 65 4 Shart et al. (2012) 536 2.2 Salvatori et al. (2012) 536 2.2 Subards et al. (2012) 536 2.2 Subards et al. (2012) 545 6 Starter et al. (2012) 545 6 Vanhter et al. (2014) 52 5.0 Vanhter et al. (2014) 55 5.77 Vanhter et al. (2013)	jet.al. (1996) 268 3.3 🔶 3.73 (1.80, 6.
Koudstaket al. (1986) 100 5 5.00 (1.64, 11.28) Lazzaro et al. (2012) 13 6 6.20 (2.83, 11.51) Marina et al. (2013) 60 1.7 4.63 (1.64, 11.28) Riter et al. (2013) 60 1.7 4.64 (1.28) Schaer et al. (2013) 60 1.7 4.64 (1.64, 3.70) Schaer et al. (2014) 4.65 2.8 2.82 (1.55, 4.69) Schaer et al. (2014) 4.65 2.1 2.1 Schaer et al. (2014) 4.65 2.4 1.61 (0.04, 3.70) Schaer et al. (2014) 4.65 2.4 1.61 (0.20, 11.366) Shadraf et al. (2014) 4.65 2.4 1.08 (0.35, 2.49) Schaer et al. (2010) 2.44 1.65, 882 1.25 (8.47, 17.56) Schaer et al. (2010) 2.44 1.65, 882 1.25 (8.47, 17.56) Schaer et al. (2010) 2.44 1.65, 942 1.25 (8.47, 17.56) Schaer et al. (2017) 3.68 4.65, 9421 1.5 (2.07, 0.32) Vandther et al. (2013) 2.44 1.62, 93, 838 5.1 (2.08, 453, 10.2)	don et al. (2004) 149 4.7 - 4.70 (1.91, 9.
Lazzaro et. al. (2012) 133 6 Marina et. al. (2014) 114 25.4 Ritler et. al. (2013) 60 1.7 Ritzos et. al. (2012) 496 2.8 Salvatori et. al. (2015) 274 1.5 Scharet et. al. (2004) 425 2.1 Schuchert et. al. (2004) 425 2.1 Schuchert et. al. (2004) 425 2.1 Schuchert et. al. (2004) 426 2.4 Schuchert et. al. (2004) 426 2.4 Schuchert et. al. (2012) 536 2.2 Schuchert et. al. (2012) 536 2.2 Schuchert et. al. (2012) 536 2.2 Schuchert et. al. (2012) 536 3.2 Starberberg et. al. (2010) 224 12.5 Starberberg et. al. (2010) 224 12.5 Starberberg et. al. (2010) 328 6.6 Yandhert et. al. (2013) 224 12.5 Vandhert et. al. (2014) 136 5.1 Wohlhahrt et. al. (2013) 224 12.9 Vandhert et. al. (2013) 224 12.9 Vandhert et. al. (2014) 136 5.1 Wohlhahrt et. al. (2013) 224 12.9 Schucher et. al. (2014) 224 12.9 Schucher et. al. (2014) 224 12.9 Vandher et. al. (2015) 244 0.5 Schucher et. al. (2015) 244 12.9 Vandher et. al. (2015) 244 12.9 Schucher et. al. (2015) 244 12.9 Vandher et. al. (2015) 245 12.9 Vandher et. al	taak et. al. (1986) 100 5 5.00 (1.64, 1
Manina et al. (2014) 114 25.4 (17,75,34.45) Ritzer et al. (2013) 60 1.7 1.457 (0.04, 8.94) Rizos et al. (2012) 496 2.8 2.82 (1.55, 4.69) Salvatori et al. (2015) 2.7 1.5 2.82 (1.65, 4.69) Schaar et al. (2010) 425 2.1 2.1 (2.07, 3.88) Schaar et al. (2014) 425 2.1 2.1 (2.07, 3.88) Schaar et al. (2014) 465 2.4 1.08 (0.35, 2.49) Shibazaki et al. (2012) 246 2.24 1.16, 3.88) Sobocinski et al. (2012) 244 1.25 2.24 (1.16, 3.88) Subarenberg et al. (2012) 244 1.25 2.24 (1.16, 3.88) Subarenberg et al. (2012) 354 6 0.56 (0.07, 2.03) Tagawa et al. (2017) 308 8.4 5.1 3.57 (1.21, 15.39) Vanchter et al. (2014) 136 5.1 4.55 (2.07, 10.27) 3.57 (12.11, 15.39) Vanchter et al. (2017) 138 5.1 4.55 (2.08, 4.98) 4.55 (2.08, 4.98, 6.50) Vandarburde et al. (2013)	ro et. al. (2012) 133 6 6.02 (2.63, 1
Ritter et al. (2013) 60 1.7 1.67 (0.04, 8.84) Ritzos et al. (2012) 496 2.8 2.82 (155, 4.69) Salvatori et al. (2015) 274 1.5 1.46 (0.40, 3.70) Scharet et al. (2004) 425 2.1 4.26 (0.75, 3.68) Schuchert et al. (1999) 82 6 6.10 (2.01, 13.66) Shibzarki et al. (2012) 536 2.2 2.24 (1.16, 3.88) Sobcinski et al. (2012) 536 2.2 2.24 (1.16, 3.88) Suissa et al. (2012) 536 2.2 2.24 (1.16, 3.88) Suissa et al. (2012) 346 6 0.56 (0.07, 2.03) Taskare et. al. (2017) 308 8.4 8.44 (5.59, 12.12) Taskare et. al. (2013) 24 1.2.9 5.77 (12.1, 15.95) Vandherr et. al. (2013) 24 1.2.9 4.455 (2.09, 10.32) Vandherr et. al. (2013) 24 1.2.9 4.55 (2.09, 10.32) Vandarbur et. al. (2013) 24 0 5.50 (2.59, 36.88) Subtoriul (Vandard et. al. (2013) 24 0 5.50 (2.59, 36.88) Subtoriul (Vandard et. al. (2033) 24 0 5.5	a et. al. (2014) 114 25.4
Hizos et al. (2012) 496 2.8 2.82 (1.55, 4.69) Savlatori et al. (2015) 2.74 1.5 2.14 (0.40, 3.70) Schaer et al. (2014) 425 2.1 2.12 (0.67, 3.88) Shubret et al. (2014) 425 2.1 2.12 (0.67, 3.88) Shubret et al. (2014) 465 2.4 1.08 (0.35, 2.49) Shibazaki et al. (2012) 249 2.2 2.24 (1.16, 3.88) Suborent et al. (2012) 249 2.5 2.12 (0.67, 4.58) Subarenberg et al. (2012) 354 6 0.56 (0.07, 2.03) Tagawa et al. (2012) 354 6 0.56 (0.07, 2.03) Tagawa et al. (2017) 386 8.4 5.57 (1.21, 15.95) Vanchter et al. (2017) 398 8.4 5.1 4.55 (2.0, 9, 10.22) Vanchter et al. (2017) 136 5.1 4.55 (2.0, 9, 10.22) 1.259 (8.48, 18.06) Wohlmahr et al. (2013) 24 12.9 2.50 2.20 (1.0, 8.45) 1.259 (2.84, 18.06) Wohlmahr et al. (2013) 24 12.9 2.50 2.50 (2.52) 1.55 (2.29, 6.58) 2.50 (2.52) (5.29, 6.58) 2.50 (1.52, 9.568) 2.50 (1.52, 9.5	et. al. (2013) 60 1.7 1.67 (0.04, 8
Salvator et. al. (2015) 2/4 1.5 Scharet et. al. (204) 42 2.1 Schuchet et. al. (205) 24 2 Stahrenberg et. al. (2010) 24 12.5 Schuchet et. al. (2012) 25 6 Vandet et. al. (2012) 25 5.1 Wohlnhart et. al. (2013) 224 12.5 Vandet et. al. (2014) 136 5.1 Wohlnhart et. al. (2013) 224 12.5 Vandet et. al. (2014) 136 5.1 Wohlnhart et. al. (2013) 224 12.5 Vandet et. al. (2014) 136 5.1 Wohlnhart et. al. (2013) 224 12.5 Scharet et. al. (2014) 224 12.5 Vandet et. al. (2014) 136 5.1 Wohlnhart et. al. (2013) 224 12.9 Vandet et. al. (2014) 136 5.1 Wohlnhart et. al. (2013) 224 12.9 Vandet et. al. (2014) 244 12.9 Vandet et. al. (2015) 241 0 Scharet et. (2015) 241 0 Scharet et. al. (2015) 241 0 Scharet et. (2015) 241 0 Scharet et. (2015) 241 0 Scharet et. (2015) 241 0 Scharet et.	et. al. (2012) 496 2.8 -
Calimit and (CAM) 4C3 2.1 1.0 0.25, 2.4 1.0 0.0 0.25, 2.4 1.0 0.0 0.25, 2.4 1.0 0.0 0.25, 2.4 1.0 0.0 0.2 2.2 2.2 2.2 1.0 0.6 0	on et. al. (2015) 274 1.5 1.46 (0.40, 3)
Schubering is dir. (1999) Vic. 0 5 0 101 (2011, 1366) Shibazaki et. al. (2012) 536 2.2 2.24 (116, 3.88) 2.21 (166, 4.82) Schuberski et. al. (2012) 536 2.2 2.24 (116, 3.88) 2.21 (106, 4.82) Stahrenberg et. al. (2010) 224 1.25 12.50 (8.47, 177.56) 12.50 (8.47, 177.56) Stahrenberg et. al. (2017) 308 8.4 8.44 (5.59, 12.12) 12.57 (12.11, 15.95) Yandherr et. al. (2013) 224 1.2 5.77 (12.11, 15.95) 5.77 (12.11, 15.95) Vandherr et. al. (2013) 224 1.2 4.55 (2.09, 10.32) 12.59 (8.49, 18.06) Vandharr et. al. (2013) 224 1.2 4.55 (2.09, 10.32) 12.59 (8.49, 18.06) Vandarie et. al. (2013) 24 1.2 4.55 (2.09, 10.32) 12.59 (5.89, 16.29) 12.59 (5.89, 16.29) Vandarie et. al. (2013) 24 1.2 4.55 (2.09, 10.32) 12.59 (5.89, 16.29) 12.59 (5.89, 15.29) 12.59 (5.84, 18.06) Vandarie et. al. (2009) 241 0 5.50 (4.25, 15.29, 36.98) 5.50 (4.25, 15.29, 36.98)	tet.at. (2004) 420 2.1 2.12 (0.97, 3)
Charactic at al. (2012) Constraints Constraint	non et. a. (1999) 02 0 0.10(2.01, h
Stahrenberg et. al. (2012) 244 24 241 (110, 080) Stahrenberg et. al. (2010) 244 12.5 (210, 08, 422) 12.5 Stahrenberg et. al. (2010) 244 12.5 (210, 08, 422) 12.5 Stahrenberg et. al. (2010) 306 8.4 38.4 5.77 (121, 15.96) Tagawa et. al. (2014) 36 5.1 84.4 (5.59, 12.12) 34.4 Wachter et. al. (2013) 224 12.9 4.55 (2.09, 10.32) Yadgawa et. al. (2013) 224 12.9 4.55 (2.09, 10.32) Yadgawa et. al. (2013) 224 12.9 4.55 (2.09, 10.32) Yadgawa et. al. (2013) 244 0 5.200 (15.29, 36.98) Schabert et. al. (203) 241 0 5.59 (3.68, 6.53) Schabert et. al. (203) 241 0 5.54 (4.36, 6.63)	artic an (2007) 700 2.4 1.00 (0.35, 2. zakiel al (2012) 536 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
Southerneberg at L(2016) 2-24 12.5 12.55 (624, 17.55) Suissa et al. (2012) 354 .6 0.56 (0.07, 2.03) Tagawa et al. (2017) 308 8.44 .65, 12.12) Thakkare et al. (2014) 52 5.0 .5.77 (12.1; 15.95) Vandebroucke et al. (2017) 198 5 .5.15 (2.09, 10.32) Wachter et al. (2017) 198 5 .4.55 (2.10, 8.45) Vandebroucke et al. (2017) 198 5 .4.55 (2.10, 8.45) Wohlmhart et al. (2013) 224 12.9 .4.55 (2.10, 8.45) Vadogwave et al. (2013) 224 12.9 .2.5 (2.2, 9.6.39) Scharet et al. (2009) 241 0 .5.49 (4.26, 6.6.3) Subtal (17.2 = 7.45%, p. = 0.0) .4.6.6 .5.49 (4.26, 6.6.3)	constant an (εντε) στο ε.ε. 2.24 (1.10, δ. incluidad (2012) 240 2
Suissa et. al. (2012) 354 6 0.56 (0.07, 2.03) Tagawa et. al. (2007) 308 8.4 8.44 (5.59, 12.12) Thaskar et. al. (2013) 25 5.0 5.77 (12.11, 15.35) Vandetroucke et. al. (2017) 196 5.1 4.55 (2.10, 10.32) Wohlhamt et. al. (2013) 224 12.9 4.55 (2.10, 8.45) Vandgawa et. al. (2013) 82 25 25.00 Schaer et. al. (2013) 24 0 5.10 (2.59, 6.58) Schaer et. al. (2030) 241 0 5.49 (4.36, 6.63) Subtolal (V2-2 A.745%, p. = 0.0) 5.49 (4.36, 6.63) 5.49 (4.36, 6.63)	2.01 (0.06.4) 224 125 2.01 (0.06.4) 125 2.01 (0.06.4)
Tagawa et. al. (2007) 308 8.4 8.44 (5.59, 12.12) Thakkar et. al. (2014) 52 5.0 5.77 (12.1; 15.95) Vandebrucket et. al. (2014) 52 5.0 5.77 (12.1; 15.95) Wachter et. al. (2017) 198 5 4.55 (2.10, 8.45) Vandebrucket et. al. (2013) 68 25 4.55 (2.10, 8.45) Yadogawa et. al. (2013) 68 25 25.00 (15.29, 36.98) Schaer et. al. (2009) 241 0 (Excluded) Subtal (1/2 = 8.745%, p. = 0.00) \$4 5.494 (4.36, 6.63)	Lat al (2012) 354 6 056 0072
Thaskine st. al. (2014) 52 5.0 5.77 (121 (15.82)) Vandebroucke et. al. (2004) 136 5.1 5.1 (20.9, 10.32) Wachter et. al. (2017) 198 5 4.55 (2.10, 8.45) Wohlnahr et. al. (2013) 224 12.9 12.95 (28.4, 18.06) Vandagware et. al. (2013) 68 25 25.00 (15.29, 65.89) Schaer et. al. (2009) 241 0 (Excluded) Subtolal (V2-28.745%, p. =0.0) 64 5.49(4.86, 66.33)	and al. (2007) 308 8.4 - 0.00(0), 12 - 0.00(
Vandebroucke et. al. (2004) 136 5.1 5.15 (2.09, 10.32) Wachter et. al. (2017) 196 5 4.55 (2.10, 8.45) Vohlhaht et. al. (2013) 24 12.95 (8.48, 18.06) 12.95 (8.48, 18.06) Yadogawa et. al. (2013) 68 25 25.00 (15.29, 36.98) 25.00 (15.29, 36.98) Schaer et. al. (2009) 241 0 (Excluded) 5.494 (4.36, 6.63)	aret.al.(2014) 52 5.8 5.77 (1.21.11
Wachter et. al. (2017) 198 5 Wohlhahrt et. al. (2013) 224 12.9 Yadogawa et. al. (2013) 68 25 Schaer et. al. (2009) 241 0 Subtolat (V2 = 67.45%, p. = 0.0) 64	broucke et. al. (2004) 136 5.1 515 515 515 515 515 515 515 515 515
Wohlhahrt et. al. (2013) 224 12.9 12.95 (8.84, 18.06) Yadogawa et. al. (2013) 68 25 25.00 (15.29, 68.94) Schaer et. al. (2009) 241 0 (Excluded) Subtrati (IV2 = 87.45%, p = 0.00) \$5.49 (4.28, 6.63) 5.49 (4.28, 6.63)	ter et. al. (2017) 198 5 4.55 (2.10. 8
Yadogawa et. al. (2013) 68 25 Schaer et. al. (2029) 241 0 Subtal (1/2 = 67.45%, p. 0.0) ♦ 5.494 (4.36, 6.63)	ahrt et. al. (2013) 224 12.9 12.95 (8.84.
Schaer et. al. (2009) 241 0 (Excluded) Subtotal (I^2 = 87.45%, p = 0.00) ♦ 5.49 (4.36, 6.63)	awa et. al. (2013) 68 25 25.00 (15.29)
Subtotal (l*2 = 87.45%, p = 0.00) 5.49 (4.36, 6.63)	r et. al. (2009) 241 0 (Excluded)
	ial (1^2 = 87.45%, p = 0.00) 5.49 (4.36, 6.

Figure 2

152x159mm (300 x 300 DPI)

Study	Sample size (n)	New AF detectior rate (%)	ES (95% CI)	% Weigh
Multiple ECG Recordings				
Engdahl et. al. (2013)	848	4.7	4.72 (3.39, 6.37)	17.05
Halcox et. al. (2017)	501	3.8	3.79 (2.30, 5.86)	15.63
Hendrikx et. al. (2013)	928	3.8	3.77 (2.64, 5.21)	18.21
Hendrikx et. al. (2014)	95	9.5	9,47 (4,42, 17,22)	3.48
Hendrikx et. al. (2017)	201	6.5	6.47 (3.49, 10.81)	7.98
Ramkumar et. al. (2017)	204	9.8	9.80 (6.09, 14.73)	6.21
Sobocinski et. al. (2012)	249	6	6.02 (3.41, 9.74)	9.47
Svennberg et. al. (2015)	7173	3	• 3.04 (2.65, 3.46)	21.97
Subtotal (I ² = 73.78%, p =	0.00)		♦ 4.78 (3.58, 5.97)	100.0
Holter				
Alhadramy et. al. (2010)	426	2.5	2.58 (1.30, 4.57)	5.31
Atmuri et. al. (2012)	140	8.6	8.57 (4.51, 14.49)	2.96
Barthelemy et. al. (2003)	60	13.3	13.33 (5.94, 24.59)	1.34
Beaulieu-Boire et. al. (2013))284	6.3		4.29
Dogan et. al. (2011)	400	10	——— 10.00 (7.24, 13.37)	4.20
Douen et. al. (2008)	126	7.1	7.14 (3.32, 13.13)	3.05
Fonseca et. al. (2013)	80	21	—— 21.25 (12.89, 31.83)	1.26
Gladstone et. al. (2014)	277	3.2		4.89
Gumbinger et. al. (2011)	192	1	1.04 (0.13, 3.71)	5.35
Gunalp et. al. (2006)	26	42.3	42.31 (23.35, 63.08)	0.34
Hendrikx et. al. (2014)	95	2.1	2.11 (0.26, 7.40)	4.24
Hornig et. al. (1996)	268	3.3	3.73 (1.80, 6.75)	4.74
Jabaudon et al. (2004)	149	4.7	4.70 (1.91, 9.44)	3.84
Koudstaak et. al. (1986)	100	5	5.00 (1.64, 11.28)	3.20
_azzaro et. al. (2012)	133	6		3.36
Rizos et. al. (2012)	496	2.8	• 2.82 (1.55, 4.69)	5.34
Schaer et. al. (2004)	425	2.1	2.12 (0.97, 3.98)	5.40
Shafqat et. al. (2004)	465	2.4	▲ 1.08 (0.35, 2.49)	5.63
Shibazaki et. al. (2012)	536	2.2	• 2.24 (1.16, 3.88)	5.47
Sobocinski et. al. (2012)	249	2	2.01 (0.66, 4.62)	5.14
Suissa et. al. (2012)	354	.6	0.56 (0.07, 2.03)	5.70
fagawa et. al. (2007)	308	8.4	8.44 (5.59, 12.12)	4.07
Thakkar et. al. (2014)	52	5.8	5.77 (1.21, 15.95)	2.07
/andebroucke et. al. (2004)	136	5.1	5.15 (2.09, 10.32)	3.60
Vachter et. al. (2017)	198	5	4.55 (2.10, 8.45)	4.23
Yadogawa et. al. (2013)	68	25	25.00 (15.29, 36.98)	1.01
Schaer et. al. (2009)	241	0	(Excluded)	
Subtotal (I ² = 84.75%, p =	0.00)		♦ 4.59 (3.45, 5.72)	100.0

Figure 3

201x183mm (300 x 300 DPI)

125x84mm (300 x 300 DPI)

Study	Year		20 (03/000)
Single Lead ECG Monitorin	2		
Doliwa et. al. (2009)	2009		3.48 (0.29, 6.67)
Sobocinski et. al. (2012)	2012		3.37 (0.03, 6.71)
Claes et al (2012)	2012		3 28 (0.58, 5.98)
Samolet al (2012)	2012		3 24 (0.69, 5.79)
Foodabliet al. (2013)	2013		3.84 (-1.38, 9.08)
Hendriky et al. (2013)	2013		3 72 (-0 90 8 34)
ouros et el (2014)	2014		4 20 / 6 70 15 10
Jondificulation (2014)	2014		4.20 (-6.70, 15.10)
Nemphora et al. (2014)	2014		3.29 (-0.34, 7.13)
Sverniberg et. al. (2015)	2015		
roletti et. al. (2016)	2016		4.06 (-3.13, 11.25)
Raasenbrood et. al. (2016)	2016		4.17 (-2.04, 10.38)
Jnan et al. (2016)	2016		3.48 (-0.17, 7.13)
Sattipaglia et. al. (2016)	2016		3.31 (0.83, 5.80)
Ramkumar et. al. (2017)	2017		3.31 (0.36, 6.25)
tendrikx et. al. (2017)	2017		3.24 (0.48, 5.99)
Chan et al. (2016)	2017		3.36 (0.91, 5.81)
inan et. al. (2017)	2017		3.41 (1.00, 5.82)
Halcox et. al. (2017)	2017		3.40 (1.07, 5.74)
Holter Monitoring			
(oudstaak et, al. (1986)	1986		2.73 (-0.98, 6.43)
fornig et. al. (1996)	1996	—	2,81 (-0.60, 6.22)
Schuchert et. al. (1999)	1999		2.88 (-0.05, 5.81)
Barthelemy et al. (2003)	2003		2 47 (-2 58 7 52)
labaudon et al. (2004)	2004		2.64 (-1.62, 6.90)
Chapter at al (2004)	2004		2.96 (0.16, 5.77)
Chafaot et. al. (2004)	2004		2.07 (0.26 5.77)
(ondebreueke et al. (2004)	2004		3.67 (0.36, 3.76)
Currele et al. (2004)	2004		2.35 (1.14, 4.02)
Sunaper, al. (2006)	2006		2.69 (1.06, 4.29)
agawa et. al. (2007)	2007		2.54 (1.06, 4.02)
Jouen et. al. (2008)	2008		2.54 (1.24, 3.85)
stahrenberg et. al. (2010)	2010		2.95 (0.60, 5.30)
Alhadramy et. al. (2010)	2010		3.10 (1.26, 4.95)
Bumbinger et. al. (2011)	2011		3.08 (1.20, 4.96)
Dangayach et. al. (2011)	2011		2.94 (1.23, 4.66)
Dogan et. al. (2011)	2011		2.54 (1.22, 3.86)
Rizos et. al. (2012)	2012	→	2.90 (-0.32, 6.11)
azzaro et. al. (2012)	2012	 →→	3.04 (0.48, 5.59)
Sobocinski et. al. (2012)	2012		3.13 (1.33, 4.94)
Shibazaki et. al. (2012)	2012		2.56 (1.10, 4.03)
Atmuri et. al. (2012)	2012		2.51 (1.14, 3.88)
Suissa et. al. (2012)	2012	↓ →	2.58 (1.29, 3.87)
Grond et. al. (2013)	2013	Ⅰ →→	3.04 (0.57, 5.52)
Ritter et. al. (2013)	2013	→	3.04 (0.78, 5.29)
liggins et. al. (2013)	2013	→→	2.98 (0.86, 5.11)
Fonseca et. al. (2013)	2013	↓	2.61 (1.06, 4.16)
adogawa et. al. (2013)	2013	I →	2.51 (1.11, 3.90)
Beaulieu-Boire et. al. (2013)	2013	→	2.55 (1.21, 3.89)
Vohlhahrt et. al. (2013)	2013	→	2.57 (1.29, 3.84)
Gladstone et. al. (2014)	2014		3.43 (-5.48, 12.33)
lendrikx et. al. (2014)	2014	→	3.04 (0.98, 5.09)
hakkar et. al. (2014)	2014	→	3.02 (1.05, 4.99)
Manina et. al. (2014)	2014	↓	2.54 (1.03, 4.04)
Salvatori et. al. (2015)	2015		2.54 (1.18, 3.90)
Vachter et. al. (2017)	2017		3.02 (1.11, 4.94)
	2017		0.02 (111, 1.04)

Cumulative random-effects meta-analysis of AF Detection using Holter and Portable ECG Monitoring

Figure 5

203x241mm (300 x 300 DPI)

2 3	Supplementary Table 1.								
4 5	Database: Ovid MEDLINE								
6	Search Strategy:								
7 8									
9 10 11	1 exp Atrial Fibrillation/ (46578)								
12	2 atrial fibrillation.tw. (48670)								
13 14	3 AF.tw. (26772)								
15	4 Mass Screening/ (94291)								
16 17	5 1 or 2 or 3 (69465)								
18 19	6 screening.tw. (382365)								
20	7 Monitoring, Ambulatory/ (7308)								
21 22	8 Electrocardiography/ (185379)								
23 24	9 Electrocardiography, Ambulatory/ or Arrhythmias, Cardiac/ or Electrocardiography/ (232205)								
25	10 monitoring.tw. (353950)								
26 27	11 Diagnosis/ (17394)								
28	12 electrocardiography tw (11752)								
30	13 ECG tw (52917)								
31 32	14 - 7 or 9 or 12 or 12 (259115)								
33	15 - 4 er 6 er 10 er 11 (760528)								
34 35									
36 37	16 5 and 14 and 15 (1684)								
38									
39 40									
41 42									
42 43									
44 45									
46									
47 48									
49 50									
51									
52 53									
54									
55 56									
57 58									
59									
60									

Supplementary Table 2.

Author	Year	Reason for exclusion
Barrett et. al.	2014	Primary outcome not AF detection
Bhatt et. al.	2011	28 day event recorder used for AF detection
Kamel et. al.	2013	21 day mobile cardiac outpatient telemetry unit used for AF detection
Miller et. al.	2013	30 day mobile cardiac outpatient telemetry unit used for AF detection
Rabenstein et. al.	2013	21 day mobile cardiac outpatient telemetry unit used for AF detection
Tayal et. al.	2008	21 day mobile cardiac outpatient telemetry unit used for AF detection
Flint et. al.	2012	30 day event recorder used for AF detection
Christensen et. al.	2014	Implantable loop recorder used for AF detection
Cotter et. al.	2013	Implantable loop recorder used for AF detection
Dion et. al.	2010	Implantable loop recorder used for AF detection
Sanna et. al.	2014	Implantable cardiac monitor used for AF detection
Merce et. al.	2013	Implantable loop recorder used for AF detection
Elijovich et. al.	2009	30 day event recorder used for AF detection
Wallmann et. al.	2007	Serial 7 day event recorders used for AF detection
Kral et. al.	2015	Substudy (poster) only investigating patients <40 yrs
Lip et. al.	2016	AF detection not primary objective
Anczykowski et. al.	2016	Trans-telephonic event recorder used for arrhythmia detection
Baturova et. al.	2016	AF detection not primary objective
Yu et. al.	2009	Retrospective review with missing demographic data and AF detection not primary objective
Destaghe et. al.	2016	Primary purpose was assessing test performance of 2 different ECG devices
Lowres et. al.	2016	Post cardiothoracic surgery patients with known episode of AF post-op
Benito et. al.	2015	12 lead ECG used for screening
Bury et. al.	2012	3 lead ECG used for screening
Turakhia et. al.	2015	Wearable patch used for ambulatory monitoring
Tieleman et. al.	2014	AF screening not primary objective
Rabenstein et. al.	2015	Review article
Sposato et. al.	2015	Review article
Schnabel et. al.	2009	Main aim was to develop an AF risk score
Chamberlain et. al.	2011	Main aim was to develop an AF risk score
Lowres et. al.	2013	Review article
de Vito et. al.	2014	AF in post orthopaedic surgery patients with inpatient monitoring
Magee et. al.	2007	Post cardiothoracic surgery patients with inpatient monitoring
Her et. al.	2013	Post cardiothoracic surgery patients with inpatient monitoring
Freedman et. al.	2016	Editorial article
Turakhia et. al.	2016	Review article
Levin et. al.	2015	Cost analysis primary objective
Fitzmaurice et. al.	2007	Pulse palpation used for AF detection
Rhys et. al.	2013	Pulse palpation used for AF detection
Ziegler et. al.	2010	Used implantable devices for AF detection
Akiyama et. al.	2017	Wearable patch used for AF detection
Thom et. al.	2016	Review article
Engdahl et. al.	2017	Trial design paper
Rojo-Martinez et. al.	2013	Implantable cardiac monitor used for AF detection
*		· -
D · · · ·		
---------------------	------	--
Poisson et. al.	2011	Review article
Etgen et. al.	2013	Implantable cardiac monitor used for AF detection
Marazzi et. al.	2012	Blood Pressure monitor used for AF detection
Wiesel et. al.	2014	Blood Pressure monitor used for AF detection
Lewis et. al.	2011	Finger probe plethysmography used for AF detection
McManus et. al.	2016	Iphone based plethymography used for AF detection
Shanmugam et. al.	2012	Heart failure patients with cardiac resynchronization therapy
Keach et. al.	2015	Review article
Borian et, al.	2014	Implantable devices used for AF detection
Alonso et. al.	2013	Primary aim was to determine clinical score to assess AF risk
Steven et. al.	2016	Trial design paper - wearable sensors for AF detection
Lau et. al.	2013	Primary aim was to determine accuracy of AF algorithm
Gaillard et al.	2010	Transtelephonic monitoring used for AF detection
Orlov et. al.	2007	AF detection based on patients with permanent pacemakers
Martinez et. al.	2014	Primary aim was to determine prognosis of patients with subclinical AF
Wang et al.	2017	Trial design paper
Supplementary Table	e 3.	
Supplementary Tabl	e 3.	

Study	Objective and outcome described	Appropriate reporting of comorbidities	Inclusion criteria specified	Incomplete Outcome Data	Efforts to reduce bias	Limitations discussed	External validity of study discussed
Lowres et. al. (2014)	Yes	Yes	Yes	No	No	No	Yes
Svennberg et. al. (2015)	Yes	Yes	Yes	No	No	Yes	Yes
Proietti et. al.	Ves	Ves	Ves	No	No	Ves	Ves
Kaasenbrood et. al. (2016)	Yes	No	Yes	Yes	No	Yes	No
Engdahl et. al. (2013)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Hendrikx et. al. (2013)	Yes	Yes	Yes	No	No	Yes	Yes
Hendrikx et. al. (2014)	Yes	Yes	Yes	No	No	Yes	Yes
Chan et al. (2016)	Yes	Yes	Yes	Yes	No	No	Yes
Sobocinski et. al. (2012)	Yes	Yes	Yes	No	No	Yes	Yes
Doliwa et. al. (2009)	Yes	No	Yes	No	No	Yes	Yes
Ramkumar et. al. (2017)	Yes	Yes	Yes	No	No	Yes	Yes
Hendrikx et. al. (2017)	Yes	Yes	Yes	No	No	Yes	Yes
Claes et. al. (2011)	Yes	Yes	Yes	Yes	No	Yes	Yes
Samol et. al. (2012)	Yes	Yes	Yes	No	No	Yes	Yes
Battipaglia et. al. (2016)	Yes	No	No	No	Yes	Yes	Yes
Chan et al. (2016)	Yes	Yes	Yes	No	Yes	Yes	Yes
Chan et al. (2017)	Yes	No	Yes	No	No	Yes	Yes
Halcox et. al. (2017)	Yes	Yes	Yes	No	No	Yes	Yes
Gladstone et. al. (2014)	Yes	Yes	Yes	No	Yes	Yes	Yes
Barthelemy et. al. (2003)	Yes	Yes	Yes	No	Yes	No	No
Jabaudon et al. (2004)	Yes	Yes	Yes	No	No	No	Yes
Koudstaal et. al. (1986)	Yes	No	Yes	No	No	No	No
Hornig et. al. (1996)	Yes	No	Yes	No	Yes	No	Yes
Rizos et. al. (2012)	Yes	Yes	Yes	No	Yes	Yes	Yes
Schuchert et. al. (1999)	Yes	No	Yes	No	No	No	No
Schaer et. al. (2009)	Yes	Yes	Yes	No	No	Yes	Yes
Schaer et. al. (2004)	Yes	No	Yes	No	No	Yes	Yes
Shafqat et. al. (2004)	Yes	No	Yes	No	No	No	Yes
Lazzaro et. al. (2012)	Yes	Yes	Yes	No	No	Yes	Yes
Grond et. al. (2013)	Yes	Yes	Yes	Yes	Yes	No	Yes
Stahrenberg et. al. (2010)	Yes	Yes	Yes	Yes	Yes	No	Yes
Ritter et. al. (2013)	Yes	Yes	Yes	No	No	No	Yes
Higgins et. al. (2013)	Yes	No	Yes	No	Yes	Yes	Yes

BMJ Open

BMJ Open

2								
3 4	Thakkar et. al. (2014)	Yes	Yes	Yes	No	Yes	Yes	Yes
5	Wachter et. al. (2017)	Yes						
6 7	Gumbinger et. al. (2012)							
8	Alhadramy et.	Yes	No	Yes	No	Yes	No	Yes
9 10	al. (2010) Dangayach et.	Yes	Yes	Yes	No	Yes	Yes	Yes
11	al. (2011) Gunalp et al	Yes	Yes	Yes	No	Yes	No	Yes
12 13	(2006)	Yes	No	Yes	No	Yes	No	No
14	(2013)	Yes	Yes	Yes	No	Yes	Yes	Yes
15 16	(2014)	Yes	No	Yes	No	Yes	No	Yes
17	Tagawa et. al. (2007)	Yes	No	Yes	No	Yes	Yes	Yes
18 19	Shibazaki et. al. (2012)	Yes	Yes	Yes	No	Yes	Yes	Yes
20	Vandebroucke		0					
21 22	et. al. (2004) Yodogawa et.	Yes	No	Yes	No	No	Yes	Yes
23	al. (2013) Atmuri et. al.	Yes	No	Yes	No	Yes	Yes	Yes
24 25	(2012) Salvatori et al	Yes	No	Yes	No	No	Yes	Yes
26	(2015)	Yes	Yes	Yes	No	Yes	No	Yes
27 28	Beaulieu-Boire et. al. (2013)	Yes	Yes	Yes	No	Yes	Yes	Yes
29 30	Dogan et. al. (2011)	Yes	No	Yes	No	No	Yes	No
31	Douen et. al. (2008)	Yes	No	Yes	No	Yes	No	No
32 33	Suissa et. al. (2012)	Yes	No	Yes	No	Yes	Yes	Yes
34	Wohlhahrt et. al. (2013)	Yes	Yes	Yes	No	Yes	Yes	Yes
35 36								
37								
38 39								
40								
41 42								
43								
44 45								
46								
47 48								
49								
50 51								

to beet terien only

Supplementary Figure 1.

PRISMA 2009 Checklist

4 5 Section/topic	tion/topic # Checklist item							
TITLE								
³ Title	1	Identify the report as a systematic review, meta-analysis, or both.	1					
ABSTRACT								
Structured summary	tructured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.							
Rationale	3	Describe the rationale for the review in the context of what is already known.	4					
8 Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4					
22 Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5					
24 25 26	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5					
27 Information sources 28	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5					
29 30 31	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5					
32 Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5					
³⁴ Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5					
7 Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5/6					
 ³⁹ Risk of bias in individual ⁴⁰ studies 	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6					
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6					
⁴³ Synthesis of results 44 45	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	6					

Page 40 of 41

Page 41 of 41

PRISMA 2009 Checklist

Page 1 of 2

5 6 7	Section/topic	#	Checklist item	Reported on page #			
, 8 9	Risk of bias across studies	15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).					
10 11	Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	6			
13	RESULTS						
14	Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6			
17 17	Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	6-11			
19	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	6-11			
20 21 22	Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	6-11			
23	Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	11/12			
25	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	11/12			
26	Additional analysis	alysis 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]		11/12			
28	DISCUSSION						
29 30 31	Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12			
32 33	Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15			
34 35	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	16			
36	FUNDING						
38	Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	16/17			
4()						

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml