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I. Supplemental information for TAD imaging data analysis

First, we state the reason for using an individual cell’s TAD Cartesian coordinates to display

all the 3D chromatin TAD positions. Instead of an average structure, cell no. 1, numbered

from 120 myofibroblast cells (Wang, S. et al. 2016), was selected for this purpose. As stated,

only 47 of these 120 cells have complete Cartesian coordinates. Ideally, we should use an

average of these 47 cells to closely represent the ensemble. However, one can obtain an average

of meaningful Cartesian coordinates only if we can properly remove both overall translational

and rotational degree of freedoms (DOFs). However, we could not properly separate internal

DOFs with overall rotations using Cartesian PCA as chromosome 21 is extremely flexible.

For instance, Chr21 of cell sample no. 105 is much larger in size compared to that of cell

no. 95. Another evidence is that, in Cartesian PCA (with the overall translational motions

already filtered), the top 3 eigenvalues are not much larger than the following eigenvalues.

Thus, there is not a very good separation of internal DOFs from global motions.

We also displayed the I-PCA results of TAD imaging data analysis here: the top three

I-PCs for Chr21 (Figure S1). The top two PCs for I-PCA from TAD data actually reveal

certain differences in fluctuation compared to that of MI-PCA. The top eigenvector clearly

displays an overall “breathing” motion in which corresponding contacts are being made and

broken in sync. Only when one inspects I-PC3 can one see the connection with the dominant

eigenvector of MI-PCA. This large difference between I-PCA and MI-PCA reflects the unique

properties of analyzing distances between TADs measured by microscopy. In contact matrix

analysis of Hi-C data or well-folded proteins, I-PCA and MI-PCA give fairly consistent results

at the top PCs.

We also studied the robustness of E-PCA results due to the small sample size. Since

we only have complete data for 47 cells, the noise level was initially a concern. Here, the

level of convergence was checked by performing the calculations on an arbitrary split of the

47 cells into two groups. The first group contains the first 23 cells, while the second group

contains the remaining 24 cells. A direct comparison between the corresponding elements

of the top eigenvectors is shown here (Figure S2). The dot product of these normalized top

eigenvectors is 0.834, demonstrating the robustness of the E-PCA analysis of this data. Ad-

ditional corroborative evidence is shown from the consistency between this result (using TAD

imagining data) and the result using Hi-C data (shown below in Section II of supplemental

information).
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Fig. S 1: The top three eigenvectors of I-PCA from TAD imaging data of Chr21.
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Fig. S 2: A direct comparison of E-PC1 components from two halves of TAD imaging data

for Chr21.
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II. Supplemental information for Hi-C data analysis

For the E-PCA analysis in Figure 4, with permission of the European Genome-phenome

Archive, we first downloaded and raw sequencing reads from Hi-C experiments on 8 blood

cell types published in Javierre et al., 2016. To this set, we added Hi-C data on GM12878 cells

from experiments performed in our own lab. We mapped, filtered, binned, and iteratively

corrected the Hi-C data as previously described (Imakaev et al., 2012). To explore structural

variations at the length scale of compartment organization, we used 250 kb binned contact

matrices for downstream MI-PCA, I-PCA, and E-PCA analyses. A 17 Mb section of Chr10

was chosen as an example region meeting the following criteria: 1) it is a long stretch of the

genome with no highly repetitive bins that needed to be excluded from the analysis, 2) it

contains numerous clearly defined A/B compartment switches, 3) it is from a chromosome

that is of intermediate length and gene density. To remove the dominant effects of the

strong Hi-C diagonal, variables were scaled to unit variance during E-PCA analyses. To

match standard MI-PCA analyses of Hi-C data, these analyses were performed on contact

matrices that had been normalized for the expected number of random contacts at each

genomic distance, as described previously (Crane et al., 2015) (Figure S3a). We note that the

resulting first principal component, typically descriptive of the A/B compartmentalization of

the chromosome structure, was very similar regardless of whether we used the mean contact

matrix across the 9 cell types or included all contact matrices in the I-PCA analysis (Figure

S3b). As with the E-PCA analyses on the raw contact matrices presented in Figure 4, E-PCA

analysis on the genomic distance normalized matrices also produced principal components

that segregate cells according to their place along the blood cell lineage (Figure S4a), with

the matrices representing the first two PCs quite similar to those obtained from unnormalized

contact matrices, just reversed in their importance (Figure S4b).

Due to the different resolution of the 250 kb binned contact data and the 34 TADs imaged

by Wang et al., the results from E-PCA analysis of the 250 kb binned Chr21 Hi-C matrices

were not directly comparable to the TAD E-PCA analysis. However, when we summed

the Hi-C contacts into the same genomic distance bins used for that imaging data, then

normalized each bin to account for their varying sizes, we found that the E-PCA results for

the 9 cell type Hi-C data were similar to those obtained from the imaging data (Figure S5).

In particular, the first PC reflects a separation of two major domains as the main motion

as in the TAD imaging data. This suggests that the motions of the chromosome within

and between single cells of the same cell type may be related to the changes in chromosome

folding between cell types.
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Fig. S 3: Comparing MI-PCA with I-PCA using Hi-C data of Chr10:1-17mb from 9 types

of blood cells. (a) Hi-C data are pre-processed starting from individual cell type contact

matrices (top left) by either directly calculating the contact distance decay normalized z-

Score matrices for each cell type (top right) or by first averaging all contact count matrices

(lower left) and then finding the distance normalized z-Score matrix (lower right). (b) The

entire set of individual cell type zScore matrices are used for I-PCA (top) while the averaged

distance normalized matrix is used for MI-PCA (bottom). The components of eigenvector

PC-1 plotted along Chr10 for MI-PCA and I-PCA show a similar pattern.
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Fig. S 4: E-PCA on 9 blood cell types using distance normalized z-Score matrices (as shown

in Fig S3a). (a) Plotting the projection of each cell type onto E-PC1 and E-PC2 from

distance-normalized Hi-C data separates cell types according to cell lineage as was observed

with non-distance normalized E-PCA results. (b) E-PCA displacement matrices are similar

to those calculated for non-distance normalized E-PCA results (Fig 4c), except that E-PC1

here is more similar to E-PC2 for the non-normalized data and vice-versa.
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Fig. S 5: E-PCA of Chr21 Hi-C data across 9 blood cell types, aggregated for comparison with

TAD imaging data. (a) Example Hi-C contact matrix from one of the 9 cell types, binned at

250 kb as for previous Chr10 analysis. (b) Hi-C contacts are summed into bins that match

the TAD coordinates used for imaging in IMR90 cells (top) and then normalized to correct

for varying genomic size of each TAD. Color scales as in Fig S3. (c) Normalized data for each

of 9 blood cell types was used as input to E-PCA, and the displacement matrices of the first

two PCs are shown here (comparable results to TAD imaging E-PCA on this same region).

Sub-compartment classifications (Rao et al.) for GM12878 are shown for reference.
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III. Supplemental information for protein simulation data analysis

Presented here is a direct comparison of the elements of the top eigenvectors (PC1 and PC2)

obtained from several methods of I-PCA. The top eigenvectors of implicit contact analyses (I-

PCA, MI-PCA, and one-frame version of MI-PCA/I-PCA) turned out to be nearly identical

for a highly structured biopolymer, such as the folded protein signaling complex in this case

(Figure S6). Only when we inspected the second dominant mode, PC2, specifically for the

RXR:CAR complex, we can see that part of the complex (CAR) shows noticeable differences

between I-PCA and MI-PCA (Figure S7). The highly consistent results between different

MI-PCA and I-PCA (as well as between results of RXR:TR and RXR:CAR) indicate that the

I-PCA method locates the consensus features of the ensemble. This forms a sharp contrast

with the calculations of E-PCA which had revealed drastic differences between RXR:TR and

RXR:CAR.

In addition to protein conformations obtained from all-atom simulation, we also present

here the I-PCA results obtained from an NMR ensemble, as shown in Figure S8. Total 50

models of hen lysozyme (PDB ID: 1E8L) were used to construct the contact matrices. The

top two I-PCs are compared with the corresponding 1-frame I-PCA (the first model). Again,

we see from Figure S8 that I-PCA results are similar to instant frame I-PCA.

Using data from RXR:TR (N=493), we demonstrate the I-PCA projection onto the top

two PCs here (Figure S9 a). Total 200 ns of simulation data with a snapshot frequency of

every 50 ps, we have T=4,000. Thus, total 493 x 4,000 points are shown (Figure S9 a). The

snapshot average version of the result (total 4,000 points) is shown in Figure S8 b. Using

mean contact matrix obtained from RXR:CAR (N=476) as a test system, we demonstrate

MI-PCA projection here. The results of the 476 rows of the mean matrix are projected onto

the top two PCs, shown in a conventional plot (PC1 vs PC2, Figure S9 c) and as a function of

the row index (Figure S9 d). It is interesting to point out that the projection is quite aligned

with eigenvector itself, as demonstrated using the ratio of PC1’s projection over the elements

of the eigenvector PC1 (Figure S9 e). This may be related to the nature of MI-PCA.
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Fig. S 6: The comparison of top eigenvectors using I-PCA, MI-PCA, and 1-frame PCA

(MI-PCA style with a single frame) for the RXR:TR system.
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Fig. S 7: The comparison of top eigenvectors using I-PCA and MI-PCA for the RXR:CAR

system.
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Fig. S 8: The I-PC1 and 1-frame PC1 of an NMR structure ensemble for hen lysozyme are

shown in (left panel). The corresponding PC2s are shown in (right panel), with 1-frame PC2

flipped for a better comparison. The corresponding 3D rendering of I-PCs are shown with

color-coded values (red to white to blue for negative to zero to positive).
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Fig. S 9: The I-PC projection for the RXR:TR system is shown in (a) and (b), with colors

indicating time blocks. The PC projection of the mean contact matrix for the RXR:CAR

system is shown in (c-e).
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