Supplementary Materials and Methods

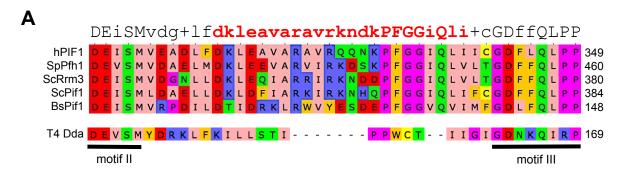
Strains	Genotype	Reference
W303	MAT a /MATα leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11, 15 RAD5+	(1)
YCG59	W303 PIF1/pif1::NatMX6 DNA2/dna2::KanMX6	This study
YPH500	MATα ura3-52 lys2-801_amber ade2-101_ochre trp1Δ63 his3Δ200 leu2Δ1	(2)
MBY77	YPH500 hxt13::URA3 pif1::His3MX6	M. Bochman

Supplemental Table 1. S. cerevisiae strains used in this study

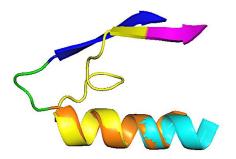
Supplemental Table 2. Plasmids used in this study

Name	Plasmid information	Reference		
pVS102	CEN ARS TRP1 PIF1 promoter PIF1	(3)		
pMB13	CEN ARS TRP1	M. Bochman		
pMB282	pMB13 RRM3 promoter PIF1 C-terminal 3xFLAG	(4)		
pCG17	pMB282 PIF1 promoter PIF1 C-terminal 3xFLAG	This study		
pCG18	pCG17-Pif1-K264A	This study		
pCG19	pCG17-Pif1-SM∆6	This study		
pCG20	pCG17-Pif1- SM∆21	This study		
pCG22	pCG17-Pif1-P367A	This study		
pCG23	pCG17-Pif1-L354P	This study		
pCG24	pCG17-Pif1-F368A	This study		
pCG25	pCG17-Pif1-G369A	This study		
pCG26	pCG17-Pif1-I371A	This study		
pCG27	pCG17-Pif1-G370A	This study		
pCG30	pCG17-Pif1-L354A	This study		
pCG41	pCG17-Pif1-SM6A	This study		
pCG45	pCG17-Pif1-Q372A	This study		
pCG46	pCG17-Dda α -helix	This study		
pCG47	pCG17-Pif1-SM6G	This study		
pCG48	pCG17-BsPif1-SM	This study		
pCG50	pCG17-Pif1-SM15A	This study		

Supplemental Figure 1. (A) Sequence alignment of Pif1-family helicases and T4 phage Dda. **(B)** Structural alignment of homology model of ScPif1 and T4 phage Dda helicase (PDB: 3upu). ScPif1 and Dda are both SFI DNA helicases. In ScPif1, the SM is located between helicase motifs II and III and folds into an α -helix with an extended loop. Structural analyses (5) show that the Dda helicase has α -helix and loop located between helicase motifs II and III. In the Dda α -helix allele, the sequence of the Dda helix replaces that of the ScPif1 α -helix.

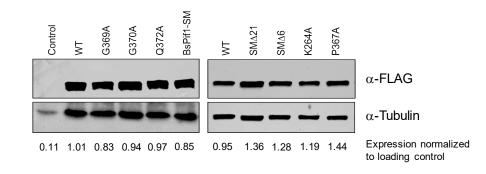

Supplemental Figure 2. (A) Western blot analysis of 3xFLAG tagged WT and ScPif1 mutant proteins after resolution on a 5% SDS-PAGE gel as described in Materials and Methods. The protein expression was quantified by normalizing to the signal of the tubulin loading control. (B) Growth rate of WT and SM mutants grown in minimal media. Saturated cells were diluted to a starting OD660 of 0.05 and incubated at 30°C. The OD was measured hourly for up to ten hours and then the doubling time was calculated.

Supplemental Figure 3. Analysis of telomere lengths in cells expressing different *PIF1* alleles. Genomic DNA was isolated from three or more independent isolates. **(A)** Lanes contain DNA from WT (lanes 1, 16), *pif1* Δ (lanes 2, 15), Q372A (lanes 3-5), SM6G (lanes 6-8), BsPif1-SM (lanes 9-11), and Dda α -helix (lanes 12-14). **(B)** Lanes contain DNA from SM6A (lanes 1-3), F368A (lanes 4-6), G370A (lanes 7-9), and I371A (lanes 10-12). **(C)** Lanes contain DNA from WT (lanes 1-3), SM Δ 21 (lanes 4-6), SM Δ 6 (lanes 7-9), SM15A (lanes 10-12), P367A (lanes 12-15), and G369A (lanes 16-18). **(D)** Lanes contain DNA from WT (lanes 1-13). Average telomere lengths measured from these telomere blots were used to generate the graph in Figure 4B.


REFERENCES

- 1. Thomas,B.J. and Rothstein,R. (1989) Elevated recombination rates in transcriptionally active DNA. *Cell*, **56**, 619–630.
- 2. Sikorski,R.S. and Hieter,P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. *Genetics*, **122**, 19–27.
- 3. Schulz,V.P. and Zakian,V.A. (1994) The Saccharomyces Pif1 DNA Helicase Inhibits Telomere Elongation and De Novo Telomere Formation. *Cell*, **76**, 145–155.
- Paeschke,K., Bochman,M.L., Garcia,P.D., Cejka,P., Friedman,K.L., Kowalczykowski,S.C. and Zakian,V.A. (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. *Nature*, 497, 458–462.
- He,X., Byrd,A.K., Yun,M.-K., Pemble,C.W., Harrison,D., Yeruva,L., Dahl,C., Kreuzer,K.N., Raney,K.D. and White,S.W. (2012) The T4 phage SF1B helicase Dda is structurally optimized to perform DNA strand separation. *Structure*, **20**, 1189–200.

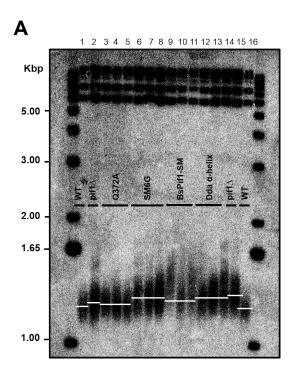
Supplemental Figure 1

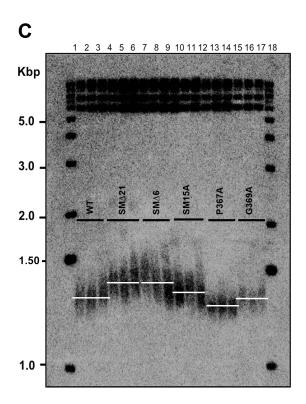


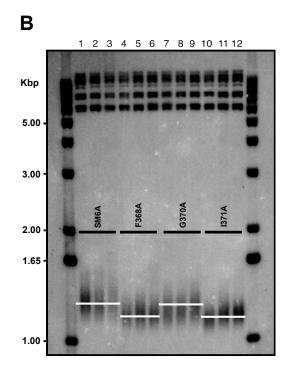
В		α- helix	loop	β-sheet
	ScPif1 T4 Dda	AELLDKLDFIARKIR RKLFKLFKILLSTI-	~	~

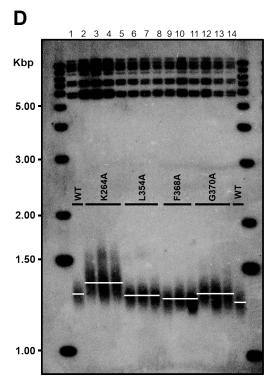
Geronimo et al.


Supplemental Figure 2


В


Α


Generation time (minutes) in minimal media



Supplemental Figure 3

Geronimo et al.