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1 Background

1.1 The pairwise sequentially Markovian coalescent (PSMC)

The pairwise sequentially Markovian coalescent (PSMC (Li & Durbin, 2011)) is a widely
adopted coalescent-based hidden Markov model (HMM) that describes the ancestral
relationship of a pair of haploid individuals at all sites along their genome. We provide
a high-level description of this approach, upon which our model and several recent
extensions have been built.

The vector of observations in the HMM is obtained from the genotypes of a pair of
haploid individuals that are randomly sampled from a population. For a sequence of
length `, observations xi, i 2 {1 . . . `}, have value 1 if the two individuals have discordant
genotypes (they are heterozygous at the site) or 0 if they have identical genotypes
(they are homozygous at the site). At each site along the genome, the hidden state
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ti 2 {1 . . . d} of the Markov chain represents the time to most recent common ancestor
(TMRCA) of the pair of haploid individuals at site i. Time is measured in generations
(or in coalescent units) and is discretized into a predefined set of d possible time intervals.
The probability of observing a heterozygous site for the pair of individuals given their
TMRCA is t is expressed as P (x = 1|t, µ) = 1 � e�2µti , where µ is the per generation,
per base pair mutation rate, which is assumed to be constant along the genome and
throughout time. Conversely, for a homozygous site, P (x = 0|t, µ) = e�2µti . The initial
state probabilities for the HMM are obtained from the coalescent distribution induced
by the e↵ective size history of the population from which the two individuals were
sampled. Transition probabilities between discrete TMRCA states along the genome are
obtained using the sequentially Markovian coalescent (SMC) model, which provides a
Markovian approximation to the coalescent process (McVean & Cardin, 2005) described
as a sequence of recombination and coalescent events along the genome (Wiuf & Hein,
1999). Details of the transition model can be found in (Li & Durbin, 2011). The
PSMC enables all usual applications of HMMs (Rabiner, 1989), including inferring the
posterior probability of TMRCA at each site in the genome (posterior decoding), and
learning the model’s hyperparameters, namely the population’s size history, mutation,
and recombination rates.

1.2 Related work on coalescent HMMs

The CoalHMM model (Hobolth et al. , 2007) is one of the earliest coalescent HMMs,
although its fundamental di↵erence compared to the PSMC and derived approaches is
that it operates at phylogenetic time scales, rather than population genetic time scales.
The MSMC approach (Schi↵els & Durbin, 2014), extended the PSMC to analysis of
multiple haploid individuals. The hidden states of the MSMC model represent the time
of the earliest coalescent event in the set of analyzed individuals, a modification that
leads to increased insight into recent time scales. Another improvement of the MSMC
over the PSMC is the use of the SMC’ model (Marjoram & Wall, 2006) in computing
transition probabilities, which leads to increased accuracy compared to the SMC model
(Hobolth & Jensen, 2014; Wilton et al. , 2015). When two individuals are analyzed, the
MSMC approach reduces to the PSMC approach, though with the improved SMC’ tran-
sition model. The DiCal model (Sheehan et al. , 2013; Tataru et al. , 2014; Steinrücken
et al. , 2015) is another coalescent HMM approach that enables simultaneous analysis
of multiple samples, and explicit modeling of complex demographic scenarios. This ap-
proach relies on the conditional sampling distribution (CSD, (Paul et al. , 2011)), which
approximates the full coalescent process by focusing on the conditional distribution of
the n-th haploid individual given (n � 1) individuals have been observed. When two
individuals are analyzed, the DiCal approach reduces to the PSMC model. The com-
putational burden of both the MSMC and the DiCal approach limits their use to no
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more than ⇠10 haploid individuals. The recently developed SMC++ method (Terhorst
et al. , 2017), extends the PSMC approach by incorporating knowledge of the frequency
of the analyzed genetic polymorphisms in the emission model the of HMM, e↵ectively
utilizing genotype information from multiple samples while computing posterior coales-
cent probabilities for a single pair of haploid individuals. To achieve this, the SMC++
approach crucially relies on the notion of “conditioned sample frequency spectrum”
(CSFS, see section 2.1 for an overview, and (Terhorst et al. , 2017) for details). As in
the MSMC approach, the transion model of the SMC++ provides an improvement over
the PSMC’s approximation of the full coalescent process. The SMC++ adopts the con-
ditional Simonsen-Churchil model (CSC) proposed in (Hobolth & Jensen, 2014), which
is superior to the SMC’ approach, as it considers the possibility of multiple recombi-
nation events occurring between two sites without a↵ecting the TMRCA for a pair of
analyzed individuals.

1.3 Computational cost and phasing requirements of other methods

Standard computation of posterior probabilities via the forward-backward algorithm,
which we will simply refer to as “posterior decoding” in the remainder of this note,
has cost O(d2`) for d hidden states and an observation sequence of length ` (Rabiner,
1989). The standard forward-backward calculations adopted in the PSMC and MSMC
methods therefore lead to O(d2`) computational cost to estimate posterior coalescent
probabilities for a set of d discretized TMRCA intervals and a sequence of length `
base pairs. PSMC reduces computational costs by pooling sites in blocks of 100 base
pairs, while MSMC uses precomputation and caching to improve run time. The DiCal
method (Steinrücken et al. , 2015) uses a “locus-skipping” approach (Paul & Song, 2012),
which enables running the forward-backward algorithm in time O(d2`p), where `p is the
set of loci that are polymorphic in the analyzed samples. This leads to substantial
speed-ups, since usually ` � `p. A previous version of DiCal utilizes properties of the
SMC model to reduce the run-time complexity of the forward-backward algorithm to
O(d`) (Harris et al. , 2014). These approaches, however, are limited to use within
the CSD model, which reduces to the SMC model when two haplotypes are analyzed.
Compared to the SMC’ and the CSC model, the SMC provides a less accurate Markovian
approximation of the coalescent (Hobolth & Jensen, 2014; Wilton et al. , 2015). The
SMC++ approach, which utilizes the more accurate CSC model, implements a novel
“locus-skipping” approach that enables computing the forward-backward dynamics in
time O(d3`p).

The coalescent HMM approaches discussed thus far require the availabulity of accu-
rate phasing information in order to perform TMRCA posterior decoding for haplotypes
from distinct diploid individuals. Accurate computational phasing, however, cannot be
achieved in modern sequencing data sets, particularly for rare variants. This often limits
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the application of coalescent HMM approaches to the maternal and paternal haplotypes
within unphased diploid individuals, or results in noisy estimates of TMRCA distribu-
tions in the presence of pervasive phasing errors (Terhorst et al. , 2017). Although the
SMC++ approach provides an e↵ective way of pooling information from the genotype of
multiple unphased individuals from a sample, TMRCA decoding for pairs of haplotypes
sampled across di↵erent diploid individuals still requires access to phasing information.

2 The ascertained sequentially Markovian coalescent

Here, we develop the Ascertained Sequentially Markovian Coalescent (ASMC). The
ASMC is most closely related to the SMC++ (Terhorst et al. , 2017), and makes the
following methodological innovations:

• The ability to perform posterior decoding using a non-random subset of genomic
variants, such as the subset of common variants that are genotyped using SNP
array technologies.

• A new formulation of the forward-backward algorithm that requires O(d`p) com-
putation under the conditional Simonsen-Churchil transition model (Hobolth &
Jensen, 2014).

These two advances enable performing high-troughput coalescent-based analysis of relat-
edness in large SNP array data sets, which are now widely available and often comprise
several tens or hundreds of thousand samples. Furthermore, owing to recent advances
in computational phasing algorithms (Loh et al. , 2016a; Loh et al. , 2016b; O’Connell
et al. , 2016), large cohorts such as the UK Biobank can now be computationally phased
with very high accuracy, with switch error rates in the order of 0.3% (one every ⇠10
cM). This creates the possibility of analyzing coalescent times for potentially all pairs of
haploid individuals in the sample, with negligible e↵ects of phasing errors. The dramatic
speedup achieved by ASMC also makes analysis of all pairs of available haploid genomes
feasible in sequencing data sets, whenever high-quality phasing information is available.

2.1 ASMC emission

The emission model of a coalescent HMM approach for the inference of TMRCA in
non-randomly ascertained genotype data, such as SNP array data, needs to tackle two
key technical challenges, namely

1. The information content of the observed genotype data with respect to the coa-
lescent time of the analyzed individuals is greatly reduced, as the vast majority of
genotype variants are unobserved.
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2. The set of observed variants are not randonly ascertained from the underlying
sequencing variants. This ascertainment leads to significant bias in TMRCA in-
ference if not accounted for.

To address these challenges, the ASMC adopts and extends the “conditioned sample
frequency spectrum” (CSFS) model (Terhorst et al. , 2017). In addition to modeling
allele sharing at each genomic site along the genome of the analyzed pair of individuals,
as done in the PSMC approach, the CSFS enables taking into account the total number
of individuals carrying each derived allele in a population sample. Modeling of allele
frequencies using the CSFS allows to (1) increase the informativeness of the observations,
enabling inference of TMRCA despite a substantial reduction in genotyped variants
(2) remove biases due to frequency-based ascertainment, by explicitly modeling the
probability of observing a variant in the data provided it is polymorphic at a given
frequency in the analyzed sample.

The CSFS model can be briefly described as follows. Having obtained a set of
(n+2) haploid samples from a panmictic population with known demographic history, we
denote 2 of these samples as “distinguished”, and the remaining n as “undistinguished”.
Given that the pair of distinguished lineages coalesce at time ⌧ at a site along the
genome, the CSFS expresses the probability that exactly d out of the two distinguished
individuals and u out of the n undistinguished individuals carry a mutated allele. We
denote this probability as CSFS(⌧)d,u, so that a CSFS(⌧) is a 2 ⇥ n table where
entry {d, u} corresponds to the probabily that d derived alleles are observed in the two
distinguished samples, and u derived alleles are found in the n undistinguished samples
(the value of n is dropped to simplify the notation). Details on the derivation of the
CSFS for a given demographic model can be found in (Terhorst et al. , 2017). We note
that in this paper we are mainly concerned with the task of decoding TMRCA along
the genome of a pair of haploid individuals, and we will and adopt a demographic model
inferred from previous analysis of whole-genome sequencing data.

Assume now that variants in the observed data set have been genotyped based on
their frequency in a population sample, in other words, that the probability of observing
a variant in the data can be expressed as P (obs|d+u). The ascertained conditioned site
frequency spectrum is then obtained as ACSFS(⌧)d,u = CSFS(⌧)d,u ⇥ P (obs|d+ u)⇥
norm, where norm is a normalizing constant such that

P2
d=0

Pn
u=0ACSFS(⌧)d,u = 1.

In practice, we need to estimate P (obs|d + u), and we do so by computing P̂ (obs|d +
u) = SFSa(d+ u)/SFSs(d+ u), where SFSa(x) and SFSa(x) represent counts for the
number of sites polymorphic in x individuals for a sample of size n + 2. Note that the
normalization of SFSa(·) and SFSs(·), which should take into account terms related
to e.g. the population mutation rate, is irrelevant, as these scaling constants vanish
when the ACSFS is renormalized. To estimate the ascertained SFSa(·), we compute
the sample frequency spectrum in the analyzed data. The sequence-level site frequency

5



spectrum, SFSs(·) is obtained using the population demographic model, which is known
and provided in input. The unconditioned site frequency spectrum may be obtained from
the CSFS as SFSs(x) =

R1
⌧=0 ⌘(⌧)

P
d,u|d+u=xCSFS(⌧)d,u where ⌘(⌧) is the coalescent

probability for the known demographic model at time ⌧ .

2.2 ASMC transition

The transition model of a coalescent HMM dealing with sparsely ascertained data needs
to account for the increased distance between observed markers. Observed variants in
common SNP array data sets, for instance, are separated by several kilobases on av-
erage. The SMC transition model (McVean & Cardin, 2005) originally adopted in the
PSMC approach (Li & Durbin, 2011) becomes particularly inaccurate in this setting, as
it postulates that at most one recombination event may occur between two contiguous
sites. Furthermore, the SMC assumes that any recombination event leads to a change in
the value of the TMRCA, whereas the full coalescent model admits the possibility that
a recombination event between two loci is followed by a coalescent event to the same
lineage such that the TMRCA remains unchanged. This modeling limitation is miti-
gated in the improved SMC’ model (Marjoram & Wall, 2006), which allows for multiple
recombination and coalescent events between two loci, and is adopted (though allowing
for at most one recombination event) in the MSMC approach (Schi↵els & Durbin, 2014).
The ASMC transition model adopts the “conditional Simonsen-Churchil” model (CSC)
described in (Hobolth & Jensen, 2014), also implemented in the SMC++ approach (Ter-
horst et al. , 2017). The CSC further improves modeling of recurring recombination and
coalescent events between a pair of sites that are separated by large genetic distances,
such as markers in SNP array data.

2.3 A general linear time forward-backward algorithm

Although several computational improvements have been proposed in previous coales-
cent HMM methods (see Section 1.3), further speed-ups are required for the analysis of
all pairs of haploid samples in large data sets under the CSC model. We thus devise
a new algorithm that enables performing forward-backward posterior calculations using
the CSC transition model in time O(d`p), where `p is a set of observed loci for which
we want to estimate TMRCA, and d is the number of discrete hidden TMRCA states.
We start by introducing the Conditional Simonsen-Churchill model (Hobolth & Jensen,
2014), making use of the notation reported in Table 1.

2.3.1 The conditional Simonsen-Churchill model

Consider two loci at recombination distance ⇢/2 in a population of constant size N ,
corresponding to a per-generation coalescent rate of ⌘. In (Hobolth & Jensen, 2014),
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Table 1: Table of notation for current section

⇢ , Recombination rate
⌘t or ⌘(t) , Coalescent rate at time t

Nt , Population size at time t
MSMC , Transition rate for the SMC model
MSMC0 , Transition rate for the SMC’ model
MCSC , Transition rate for the conditional Simonsen-Churchil model

etMi,j , Entry {i, j} for the matrix exponential of tM

⌦(t) , Cumulative transition probability after compressing to 3
states

C(t) , Cumulative transition probability before compressing to 3
states

[⌦(t)]i,j , Entry {i, j} for the cumulative transition probability

q(t|s) , Transition probability for locus 1 at time s and locus 2 at
time t

⇡(s, t) , Coalescent probability between time s and t
⇡̃(s, t) , Probability of not having coalesced between time s and t
⇧(s, t) , Cumulative coalescent probability between time s and t
Q(t|s) , Cumulative transition probability for locus 1 at time s and

locus 2 at time t
Ru , Time range Ru = [Tu, Tu+1)
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Figure 1: The conditional Simonsen-Churchil model (modified from Figure 1b of
(Hobolth & Jensen, 2014)). Four relevant states from the full CSC model are labeled
using letters within each circle.

the Markov chain of Figure 1 was used to descibe the distribution of ancestry at one
locus conditional on the ancestry at the other locus. The transition matrix for this
model is

MCSC =

2

664

�⇢ ⇢ 0 0
⌘ �(2⌘ + ⇢/2) ⇢/2 ⌘
0 4⌘ �5⌘ ⌘
0 0 0 0

3

775 , (1)

where each row and colum of the matrix represents one of the four states for which t < s
(circles labeled with letters to the left of the vertical bar in Figure 1). Although the CSC
model has four states, we will be mostly concerned with the probability that the Markov
chain is in one of the three numbered states in Figure 1, that is, it will be irrelevant for
our calculations whether at a given point in time the exact state of the chain is either
state B or C within the dashed box. We thus define the matrix ⌦(t), whose first row
is [⌦(t)]1• = [C(t)AA, C(t)AB + C(t)AC , C(t)AD], where C(t)i,j = etMi,j is the cumulative
probability of transitioning from state i to state j after time t, for i, j 2 {A,B,C,D}.
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For completion, we note that although we are mostly concerned with the CSC model,
the discussion below also applies to the SMC and SMC’ models, which may be seen as
special cases of the CSC where states B and C have been collapsed, with updated rate
matrices

MSMC =

2

4
�⇢ ⇢ 0
0 �⌘ ⌘
0 0 0

3

5 (2)

MSMC0 =

2

4
�⇢ ⇢ 0
⌘ �2⌘ ⌘
0 0 0

3

5 . (3)

Note that MSMC0 actually represents a process that is similar, but slightly di↵erent
from the SMC’, as discussed in (Wilton et al. , 2015). Thus, [⌦(t)]11 will hold the
probability that no recombination occurred from time 0 to time t or, for the SMC’ and
CSC models, that at least one recombination occurred, but the lineages colasced back
to state 1. [⌦(t)]12 respresents the probability that recombination occurred after time 0,
but the lineages have not recoalesced back to state 1 or to a state such that the right tree
has coalesced (state 3). [⌦(t)]13 represents the probability that the right tree is lower
than the left tree, i.e. the two lineages coalesced at time t < s. Using these quantities,
we can write the transition distribution for the height of the right tree, t, conditional on
knowing the height of the left tree, s as

q(t|s) =

8
><

>:

⌘ [⌦(t)]12 if t < s,

[⌦(s)]11 if t = s,

⇡(s, t) [⌦(s)]12 if t > s,

(4)

where ⇡(s, t) is the coalescent probability between time s and t. This probability is
computed as

R t
s ⌘(t)t dt = ⌘e�(t�s)⌘ for a constant population size with coalescent rate

⌘. Equation 4 is normalized, since
Z s

0
⌘ [⌦(t)]12 dt = [⌦(s)]13 , (5)

Z 1

s
⇡(s, t) [⌦(s)]12 dt = [⌦(s)]12 , (6)

and [⌦(s)]11 + [⌦(s)]12 + [⌦(s)]13 = 1.

2.3.1.1 Piecewise constant demographic model
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If the population size is piecewise constant, for each time period k ranging in Rk 2

[Tk, Tk+1), there is a di↵erent transition rate matrix Mk. If t is contained in the interval
Rk, then the state matrix at time t can be computed as

C(t) =

"
k�1Y

i=1

e(Ti+1�Ti)Mi

#
e(t�Tk)Mk . (7)

For a piece-wise constant model, the coalescent probability after time s can be similarly
computed as

⇡(s, t) = ⌘t

v|t2RvY

i=u|s2Ru

exp {�⌘i [m(t, Ti+1)�M(s, Ti)]}

= ⌘t exp

8
<

:

v|t2RvX

i=u|s2Ru

⌘i [M(s, Ti)�m(t, Ti+1)]

9
=

; ,

(8)

whereM(...) andm(...) indicate maximum and minimum, respectively. The rate
R Ti+1

Ti
⌘(t)t dt =

R Ti+1

Ti
⌘it dt = ⌘i (Ti+1 � Ti) in the argument of the exponential should be substituted

with the appropriate rate for inhomogeneous (e.g. exponential) models. We indicate
the probability of not having coalesced at time t with

⇡̃(s, t) = ⌘�1
t ⇡(s, t)

= exp

8
<

:

v|t2RvX

i=u|s2Ru

⌘i [M(s, Ti)�m(t, Ti+1)]

9
=

; .
(9)

and the cumulative coalescent probability with

⇧(s, t) = 1� ⇡̃(s, t). (10)

Using the quantities above, the transition probability for tree heights is still given by

q(t|s) =

8
><

>:

⌘t [⌦(t)]12 if t < s,

[⌦(s)]11 if t = s,

⇡(s, t) [⌦(s)]12 if t > s.

(11)

2.3.1.2 Discretization
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Using Equation 5, the cumulative transition probability is

Q(t|s) =

8
><

>:

[⌦(t)]13 if t < s,

[⌦(s)]11 + [⌦(s)]13 if t = s,

[⌦(s)]11 +⇧(s, t) [⌦(s)]12 + [⌦(s)]13 if t > s.

(12)

The probability of transitioning between time s and the time range Ru is then obtained
as Q(Tu+1|s) � Q(Tu|s). The same approach can be used to further partition time
in discrete states that do not necessarily correspond to population size changes. If
we assume time has been discretized into d intervals, then we can obtain a transition
matrix T such that entry Ti,j corresponds to the probability of transitioning from time
interval i to time interval j. Each entry of the transition matrix is then obtained as
Ti,j = Q(Tj+1|si) � Q(Tj |si), where we indicated the expected coalescent time within
interval Ri as si.

2.3.2 Linear time computation of posterior coalescent times

We now describe a forward-backward algorithm to compute posterior coalescent proba-
bilities in time O(d`p), where d is the number of discrete coalescent time intervals, and
`p is the number of sites for which we wish to obtain TMRCA estimates (e.g. the set of
observed sites). We use the notation reported in Table 2

2.3.2.1 Forward probabilities

We want to compute ↵0
i, the forward probability at position p for state i, given a

vector of forward probabilities for position p� 1 (which we denote as ↵k, dropping the
position index to simplify notation). Using standard considerations from hidden Markov
models, this can be obtained as ↵0

i = ⇠i
Pd

k=1 ↵kTk,i = ⇠iAi, where ⇠i represents the
emission probability for the observation at position p (dropped to simplify the notation)
given state i. Because this operation involves a vector-matrix multiplication, the cost of
computing Ai =

Pd
k=1 ↵kTk,i is linear in d, and because d forward probabilities need to

be computed, the overall cost will be quadratic in d. However, we note that the entries
below the diagonal in T are all identical, since Q(t|s) in Eq. 12 does not depend on s
for t < s. Furthermore, the ratio of subsequent columns in the transition matrix can be
computed as

Ti,j+1/Ti,j =
⇡̃(Tj , Tj+1) [1� ⇡̃(Tj+1, Tj+2)]

[1� ⇡̃(Tj , Tj+1)]
(13)

(see Appendix). This ratio does not depend on i, so that it will be the same for all
rows of the T matrix, as long as the entries are above the diagonal. Taken together,
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Table 2: Table of notation for current section

p , Positions along the sequence
↵0
k , Forward probability for state k at position p

↵k , Forward probability for state k at position p� 1
⇠k , Emission probability for state k at position p (for forward

calculations) and at p+ 1 (for backward calculations)
Ti,j , HMM transition probability from discrete time i to discrete

time j
d , Number of discrete states (time intervals) in the HMM

Ai , Pd
k=1 ↵kTk,i

Ti , Start time for discrete interval i
Ti+1 , End time for discrete interval i
Di , Diagonal entry of the transition matrix
Ui , Entries above the diagonal for the transition matrix
Bi , Entries below the diagonal for the transition matrix

A#
i , Pi�1

k=1 ↵kTk,i in forward calculations

A"
i , Pd

k=i+1 ↵kTk,i in forward calculations

↵̂i , Pd
k=i+1 ↵k

�k , Backward probability for state k at position p+ 1
�0
k , Backward probability for state k at position p
vi , ⇠i�i in backward calculations

B#
i , Pi�1

k=1 vkTi,k in backward calculations

B"
i , Pd

k=i+1 vkTi,k in backward calculations
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these observations imply that the sum Ai =
Pd

k=1 ↵kTk,i can be computed recursively
in constant time. We assume the following quantities have been precomputed (in time
linear in d), and are available for the computation of Ai:

• The diagonal entries of the transition matrix Di = Ti,i for i 2 [1, d].

• The elements right above the diagonal Ui = Ti�1,i, for i 2 [2, d].

• The elements right below the diagonal Bi = Ti+1,i for i 2 [1, d� 1].

• The cumulative sum of the ↵ vector of forward probabilities from the previous
position, ↵̂i =

Pd
k=i+1 ↵k.

We now rewrite the previous sum as

Ai =
dX

k=1

↵kTk,i

=
i�1X

k=1

↵kTk,i + ↵iTi,i +
dX

k=i+1

↵kTk,i

= A"
i + ↵iDi +A#

i

(14)

Then, the quantities A"
i and A#

i can be computed in constant time as follows:

• A"
i = Bi↵̂i

• A#
i+1 = ↵iUi +

Ti,j+1

Ti,j
A#

i , for i 2 [2, d], after having set A#
1 = 0.

Having computed the above quantities (in time linear in d), all entries Ai = A"
i +

↵iDi + A#
i can be computed in linear time. The final forward vector is obtained multi-

plying the emission probabilities to obtain ↵0
i = ⇠iAi.

2.3.2.2 Backward probabilities

The linear-time backward calculations can be obtained in a similar way. In this
case, given ⇠, the emission probability vector at sequence position p + 1, and �, the
backward probability vector for position p+1, we want to compute �0

i =
Pd

k=1 Ti,k⇠k�k,
the backward probablity at state i, position p. We again use observations (1) and (2)
from the previous section to e�ciently compute this sum. It is convenient to define the
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vector v such that vi = ⇠i�i. As in the previous case, we rewrite the above sum as

�0
i =

dX

k=1

vkTi,k

=
i�1X

k=1

vkTi,k + viTi,i +
dX

k=i+1

vkTi,k

= B#
i + viDi +B"

i

(15)

We have previously noted that the ratio of subsequent columns above the diagonal is
constant (see Appendix). We now note that the same holds for the ratio of columns. In
particular, it can be shown (see Appendix), that

Ti,j/Ti+1,j =
[⌦(si+1)]12

[⌦(si)]12 ⇡̃(si, si+1)
8i > j. (16)

Using this result, the quantities B#
i and B"

i can be e�ciently computed as

• B#
i =

Pi�1
k=0Bk�1vk�1, having set B#

1 = 0.

• B"
i = vi+1Ui +

Ti,j

Ti+1,j
B"

i+1, having set B"
d = 0.

From these quantities, we can then obtain �0
i = B#

i +viDi+B"
i . Note that these calcula-

tions hold for the SMC, SMC’ and CSC models, provided the corresponding transition
matrices are used to compute entries of the ⌦ vector. Inhomegeneous (e.g. exponential)
models can be handled by computing the corresponding coalescent quantities in the
above calculations.

2.3.2.3 Approximate decoding for stretches of identical observations

When ascertained data is analyzed and no information on the sequence content be-
tween observed `p markers is available, the linear time algorithm described above yields
exact posterior TMRCA probabilities. Using a locus-skipping approximation, it is also
possible to use the same linear-time forward-backward algorithm for the analysis of se-
quencing data, where we wish to obtain TMRCA estimates for `p loci (e.g. polymorphic
loci), while accounting for the fact that all sites between any other two contiguous ob-
servations share the same emission probabilities (e.g. they are all monomorphic in the
analyzed sample, or homozygous if frequency information is not used in the emission
model). To this end we note that the forward step of the forward-backward algorithm
between two sites separated by a stretch of n identical observations requires computing

14



the product ↵0 = ↵(TEs)nTEp, where T is the transition matrix between two sites in
the region, Es is a diagonal matrix with the emission probability for a given emission
character (e.g. homozygous/monomorphic site), and Ep is a diagonal matrix with emis-
sion for the site at position p in the sequence. We observe that, for relatively small
genetic distances between the two observed sites, and for realistic demographic models,
the matrix T is close to diagonal. Thus, we can use the commutative property of di-
agonal matrices to approximate the product (TEs)n as TnEn

s . Having done that, we
can now rely on the previosly described linear time algorithm to compute the prod-
uct ↵(TEs)nTEp ⇠ ↵TnEn

s TEp. In the ASMC program, the matrices Tn and En
s are

precomputed (in linear time) and stored so that these need not be computed for each
analyzed haploid pair. Note that the ASMC uses genetic distances from a human recom-
bination map, rather than assuming a constant recombination rate along the genome, so
that the matrix Tn will actually depend on genomic position, while the emission matrix
En

s will only depend on the number of loci between a pair of sites.

Appendix

Ratio of columns in the ASMC transition matrix

Ti,j+1/Ti,j =
⇡̃(Tj ,Tj+1)[1�⇡̃(Tj+1,Tj+2)]

[1�⇡̃(Tj ,Tj+1)]
8j > i. Proof:

Ti,j = Q(Tj+1|si)�Q(Tj |si)

= ([⌦(si)]11 +⇧(si, Tj+1) [⌦(si)]12 + [⌦(si)]13)� ([⌦(si)]11 +⇧(si, Tj) [⌦(si)]12 + [⌦(si)]13)

= ⇧(si, Tj+1) [⌦(si)]12 �⇧(si, Tj) [⌦(si)]12
= [⌦(si)]12 (⇧(si, Tj+1)�⇧(si, Tj))

= [⌦(si)]12 [(1� ⇡̃(si, Tj+1))� (1� ⇡̃(si, Tj))]

= [⌦(si)]12 [⇡̃(si, Tj)� ⇡̃(si, Tj+1)]

= [⌦(si)]12 [⇡̃(si, Tj)� ⇡̃(si, Tj)⇡̃(Tj , Tj+1)]

= [⌦(si)]12 ⇡̃(si, Tj) [1� ⇡̃(Tj , Tj+1)] ,

(17)

which implies

Ti,j+1

Ti,j
=

[⌦(si)]12 ⇡̃(si, Tj+1) [1� ⇡̃(Tj+1, Tj+2)]

[⌦(si)]12 ⇡̃(si, Tj) [1� ⇡̃(Tj , Tj+1)]

=
[⌦(si)]12 ⇡̃(si, Tj)⇡̃(Tj , Tj+1) [1� ⇡̃(Tj+1, Tj+2)]

[⌦(si)]12 ⇡̃(si, Tj) [1� ⇡̃(Tj , Tj+1)]

=
⇡̃(Tj , Tj+1) [1� ⇡̃(Tj+1, Tj+2)]

[1� ⇡̃(Tj , Tj+1)]

(18)
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Ratio of rows in the ASMC transition matrix

Ti+1,j/Ti,j =
[⌦(si)]12⇡̃(si,si+1)

[⌦(si+1)]12
8i > j. Again, using

Ti,j = [⌦(si)]12 ⇡̃(si, Tj) [1� ⇡̃(Tj , Tj+1)] , (19)

we have

Ti+1,j

Ti,j
=

[⌦(si)]12 ⇡̃(si, si+1)⇡̃(si+1, Tj) [1� ⇡̃(Tj , Tj+1)]

[⌦(si+1)]12 ⇡̃(si+1, Tj) [1� ⇡̃(Tj , Tj+1)]

=
[⌦(si)]12 ⇡̃(si, si+1)

[⌦(si+1)]12

(20)

Above diagonal elements

Ti,i = Q(Ti+1|si)�Q(Ti|si)

= [⌦(si)]11 +⇧(si, Ti+1) [⌦(si)]12 + [⌦(si)]13 � [⌦(Ti)]13
(21)

and

Ti,i+1 = Q(Ti+2|si)�Q(Ti+1|si)

= [⌦(si)]12 ⇡̃(si, Ti+1) [1� ⇡̃(Ti+1, Ti+2)] .
(22)
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Supplementary Information 
 

This section provides additional details on simulations involving natural selection. 
 

DRCT simulations 
 

We used the simulation setup recently adopted by Field et al.1 to test the sensitivity of the DRCT 

statistic in detecting recent positive selection, and its specificity to recent time scales. We 

simulated several replicates for a region of 10Mb and 6,000 haploid individuals from a European 

demographic model2, using the COSI2 coalescent simulator3. An allele at the center of the region 

was simulated to undergo recent positive selection, reaching a high present-day frequency of 0.7. 

We used the simuPOP4 software to obtain allele frequency trajectories under additive selection 

models, for several values of the selection coefficient. To test for specificity to recent time 

scales, we varied the period during which selection was active, posing no constraints on whether 

selection acted on a novel allele or on standing variation. 

 

To assess power, we simulated 50 independent replicates for positive selection occurring in the 

past 200 generations (or ~6,000 years), using selection coefficients S=0.01, 0.03, 0.05, 0.1. We 

detected positive selection using either iHS (ref. 5), SDS (ref. 1), or DRC150 (Supplementary 

Figure 6a). The iHS statistic was computed using the Selscan software6 with default parameters. 

We computed the iHS statistic at either the sequenced causal variant (iHSsequence), or averaged at 

SNPs within a 0.05 cM window around the causal variant in simulated SNP array data (iHSarray), 

which we obtained from simulated sequencing data as detailed above for neutral simulations. 

The DRC150 statistic was similarly computed by averaging within a 0.05 cM window on SNP 

array data. The SDS statistic was computed at the sequenced causal variant (SDSsequence). We 

found the DRC150 statistic computed on SNP array data to be highly sensitive to recent positive 

selection starting at S=0.03. Similar results for DRC20 are also reported in Supplementary 

Figure 12a. 

 

To assess the specificity of DRC150 to recent time scale, we simulated selection starting at time -

∞ and ending at a generation in {0, 50, 100, 200, 400, 600, 800, 1000, 1500, 2000} 

(Supplementary Figure 6b). We observed the DRC150 statistic to be mostly sensitive to 



selection acting during the past ~700 generations (or ~20,000 years), a similar time-span 

compared to the iHS statistic computed at the sequenced causal variant, which was however 

generally less sensitive, while the SDS statistic computed at the sequenced causal variant was 

only sensitive to extremely recent positive selection, as previously shown1. We also report 

DRC20 results in Supplementary Figure 12b. 

 

We performed additional simulation to evaluate the calibration of the null model. We observed 

an excellent fit for the DRC20 statistic (Supplementary Figure 13a), and only moderate inflation 

for the DRC150 statistic (Supplementary Figure 13b). The amount of inflation observed in the 

empirical null model obtained using the DRC150 statistic within the UKBB data set was 

consistent with our coalescent simulations (Supplementary Figure 13c,d). We note that for very 

small values of T the independence assumption is more accurately met, so that the DRCT statistic 

is well approximated using a Normal distribution (see Supplementary Figure 14 for DRC20). 

We expect the moderate amount of inflation observed in neutral simulations for the DRC150 

statistic to be counterbalanced in real data analysis by the conservative use of a Bonferroni 

significance threshold and the fitting of null model parameters using an empirical distribution of 

test statistics, which is likely to result in over-dispersion of the null model due to signals of 

positive selection that are too weak to be detected. Consistent with this hypothesis, genome-wide 

significant loci (Table 1) and suggestive loci (Supplementary Table 6) contain several regions 

of known recent adaptation. 

 

ASMCavg simulations 
 

We performed forward-in-time simulations using the SLiM software7 (v1.8) to test the effects of 

negative (background) or positive selection on the ASMCavg annotation. We simulated 3 Mb for 

a population of 10,000 diploid individuals, with recombination rate 1×10-8 and mutation rate 

1.65×10-8 per base pair, per generation. Simulations were run forward in time for 200,000 

generations. Within each genome, we simulated 3 equidistant 100 Kb-long regions undergoing 

either positive or negative selection. Selection coefficients for new mutations in regions 

undergoing negative selection were sampled from a gamma distribution with shape 0.2 and mean 

-5×10-4, while positively selected regions had selection coefficients sampled from an exponential 

distribution with mean 10-4. Within these regions, new mutations were neutral with probability 



0.4, or under selection with probability 0.6. The dominance coefficient was set to 0.5 in all cases. 

We computed the ASMCavg annotation as previously described, using 300 haploid samples in 

each simulation. We simulated 50 independent replicates for positive and negative selection, as 

well as 100 neutral regions. Results are shown in Supplementary Figure 8. 

  



Supplementary Figures and Tables 
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Supplementary Figure 1 – ASMC performance in simulations as a function of marker 
density. (A) r2, as a function of marker density, between true average TMRCA within the 
simulated region and average TMRCA inferred using the maximum-a-posteriori (MAP) of the 
posterior distribution computed by ASMC. ASMC-seq represents the accuracy obtained using 
ASMC on WGS data. (B) We measure RMSE between true TMRCA at each site, and the 
TMRCA inferred by ASMC using the posterior mean on either SNP array or WGS data. We 
report the percent difference in per-site RMSE between analysis of SNP array data and WGS 
data (C) We measure RMSE between true TMRCA at each site, and the TMRCA inferred by 
ASMC using the MAP on either SNP array or WGS data. We report the percent difference in 
per-site RMSE between analysis of SNP array data and WGS data. In all panels dots and error 
bars represent average and SE from 10 independent simulations.



 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 2 - Robustness to deviations from frequency-based ascertainment. 
Approximately 25% of the variants found on the UK Biobank Axiom Array were selected based 
on their functional relevance, particularly in coding regions, while the remaining ~75% were 
ascertained based on frequency. To mimic this ascertainment scheme in our simulations, we 
randomly sampled ~25% of the markers from 10Kb-long genes placed every 200Kb, while the 
remaining variants were sampled to match the UK Biobank frequency spectrum as in standard 
simulations. Simulations were performed using the standard setup and 30 discretization intervals 
for TMRCA inference. Lines represent average values from 20 independent simulations, shaded 
regions indicate 95% confidence intervals . We observed minimal deviation between coalescence 
densities inferred within and outside the simulated gene regions.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 3 – Effects of ancestry-specific SNP ascertainment. We simulated two 
populations that split 2,000 generations in the past. The two populations have identical, 
European-like effective size histories after the split, and a symmetric migration rate of 0.0, 
0.00003, or 0.01. To simulate the effects of population-specific ascertainment of variants on 
array data, we selected SNPs from one of the two populations (pop1), matching the frequency 
spectrum observed in the UK Biobank dataset. SNPs in this set are expected to have drifted to 
different frequencies in the other population (pop2). The top plot shows allele frequency spectra 
for several real and simulated populations. We report frequency spectra for the UK Biobank 
(UKBB); 1,000 Genomes Project (1KG) European (CEU) and Yoruba (YRI) populations, for 
which only UKBB SNPs on Chromosome 2 are considered; simulated populations pop1 and 
pop2, with SNPs sampled as previously described. As expected, the simulated population pop2 
exhibits a depletion of informative markers similar to what would be observed as a result of 
ancestry-specific SNP ascertainment for different continental populations. In the bottom plot, we 
used ASMC to infer coalescence times in both populations independently. We report a 
comparison (pop2/pop1 ratio) of the inferred average genome-wide coalescence density as a 
function of time for the two populations. Because the two populations have identical 
demographic history, the true expected ratio is 1. Ancestry-specific ascertainment, however, 
introduces a substantial depletion of informative markers for pop2, which leads to an upward 
bias in coalescence times inferred in pop2. The magnitude of the bias is mediated by the amount 
of post-split migration across the two groups. Lines represent averages from 25 independent 
simulations, gray bands represent one SD.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 4 – Effects of ASMC-seq transition approximation. When computing 
forward-backward probabilities in WGS data, ASMC-seq makes the approximation TE# $ ≅
T$E#$, where n is the number of sites between two consecutive observations in the sequencing 
data, E0 is a diagonal matrix reflecting emission probabilities for n monomorphic sites, and T is 
the transition matrix between two sites at distance n, which is close to diagonal with off-diagonal 
entries growing with n. Exact calculations are obtained for n=1 (or when ASMC is run on SNP 
array data), while an approximation is made for n>1. To measure the extent to which this 
approximation affects inference accuracy, we measured the per-site RMSE between true 
TMRCA and TMRCA inferred using either maximum-a-posteriori (MAP) or posterior mean. We 
simulated 100 European samples in a 10 Mb region at the beginning of Chromosome 2 (with 
recombination rate 2.18 cM per Mb), and randomly inserted monomorphic sites along the 
genome to measure accuracy at different values of n, running ASMC-seq with 30 time intervals. 
We report RMSE for different values of n, as a percentage of the RMSE measured for n=10. The 
red vertical bar represents the genotyping density observed for the GoNL data set (n=136). For 
MAP inference, the error linearly increased at a rate of ~0.01% per base pair, remaining below 
2% for a genotyping density similar to the GoNL data set. For posterior mean inference, a 
negligible difference in accuracy was observed for n<100, followed by a linear increase at an 
approximate rate of ~0.008% per base pair, and increased error below 0.5% at GoNL genotyping 
density. 
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Supplementary Figure 5 – Memory use of ASMC-seq and SMC++. Memory usage for the 
analysis of coalescence times in a 5Mb region using WGS data from 100 haploid individuals. 
Dots represent averages from 10 independent simulations, bars represent SE.
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Supplementary Figure 6 – Selection simulations for DRC150. (A) Simulation of different 
strengths of recent positive selection starting 200 generations in the past: iHS score [Voight et al. 
PLoS Biol. 2006] run on array data (iHSarray); iHS score on causal variant from sequencing data 
(iHSsequence); SDS score [Field et al. Science 2016] on causal variant from sequencing data 
(SDSsequence); DRC150 score on array data. Scores of each method are standardized with respect to 
corresponding scores obtained in neutral simulations. Bars indicate standard deviations. Reported 
values represent averages from 50 independent simulations, error bars represent SE. (B) 
Specificity to recent past for iHS and SDS run son sequencing data, and for DRC150. Simulation 
of selection starting at time -∞ stopping at the specified generation, followed by neutral drift. 
The DRC150 statistic is mostly sensitive to selection that has been active within the past ~700 
generations (or ~20,000 years). Dots represent averages from 50 independent simulations, error 
bars represent SE. Numerical results are reported in Supplementary Table 14.



 
Chr 6 
 
 
 
 
 
 
 
Chr 11 
 
 
 
 
 
 
 
 
Chr 11 
 
 
 
 
 
 
 
Chr 14 
 
 
 
 
 
 
 
Chr 16 
 
 
 
 
 
 
 



Chr 2 
 
 
 
 
 
 
 
 
Chr 17 
 
 
 
 
 
 
 
Chr 16 
 
 
 
 
 
 
 
Chr 22 
 
 
 
 
 
 
 
 
Chr 4 
 
 
 
 
 
 
 
 
 
Supplementary Figure 7 – Enrichment of coalescence density in the past 20,000 years. At 
each site along the regions (horizontal axis) we plot the enrichment for the density of 
coalescence events in the past ~20,000 years, computed as &'()*+,'+	./01,0/31

&'()*+,'+	4156317/81,0/31
. Time axes 

assumes a 30-year generation.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 8 – Effects of background and positive selection on the ASMCavg 
annotation. We used the SLiM software (v1.8) to simulate a 3 Mb genome for a population of 
10,000 diploid individuals, with recombination rate 1×10-8 and mutation rate 1.65×10-8 per base 
pair, per generation. Simulations were run forward in time for 200,000 generations. Within each 
genome, we simulated background selection (red lines, left plot) or positive selection (blue lines, 
right plot) in four 100-Kb long regions (delimited by vertical dashed lines in each plot, 
coordinates in Mb: 0.4 to 0.5, 1.4 to 1.5, and 2.4 to 2.5). Selection coefficients for new mutations 
in regions of background selection were sampled from a gamma distribution with shape 0.2 and 
mean -5×10-4, resulting in average selection coefficients S=-10-4. Selection coefficients for new 
mutations in positively selected regions were sampled from an exponential distribution with 
mean 10-4, resulting in average selection coefficients S=10-4. Within these regions, new 
mutations were neutral (S=0) with probability 0.4, and under selection with probability 0.6. 
Dominance coefficients were set to 0.5 in all cases. We performed 50 independent replicates for 
background and positive selection, and 100 additional neutral simulations (S=0 for all 
mutations). We computed the ASMCavg annotation as previously described, using 300 haploid 
samples in each simulation. Lines in the figures represent the value of the ratio Tsel/Tneut along 
the genome, where Tsel is the value of the ASMCavg annotation for a simulation involving 
background or positive selection, and Tneut is the value of the ASMCavg annotation, averaged 
across all neutral simulations. Within each plot, thin lines represent the results of 20 randomly 
selected individual simulations, thick lines represent the average across all 50 replicates 
involving selection. In all simulations, ASMCavg decreases in regions undergoing selection 
compared to neutral regions, with an average reduction of 32% for background selection (z-test z 
= -30.9), and a 22% reduction for positive selection (z = -16.0). Variance of the ASMCavg 
annotation within regions under selection is also lower (-33% on average for background 
selection, z = -19.3; -21% on average for positive selection, z = -9.2). Considering regions as a 
whole, simulations involving selection had a lower mean value of the ASMCavg annotation 
compared to neutral simulations (-6%, on average for background selection, z = -11.6; -5% on 
average for positive selection, z = -8.5); and slightly lower variance (-3%, on average for 
background selection, z = -2.9; -2%, for positive selection, z = -2.6).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 9 - S-LDSC analysis of ASMChet background selection annotation 
and disease heritability. We built an annotation, ASMChet, reflecting the average coalescence 
time for heterozygous individuals (i.e. chromosomes carrying discordant alleles) at each site. As 
for the ASMCavg annotation, ASMChet is quantile normalized using 10 MAF bins. ASMChet is 
expected to be proportional to the age of polymorphic alleles in the sample. Consistent with this 
expectation, in a joint S-LDSC analysis using the ASMChet annotation and the baselineLD 
model, we observed that the meta-analyzed τ* for the quantile normalized ARGWeaver allele 
age annotation was reduced from 0.250 (SE 0.012) to -0.046 (SE 0.018). We report τ* value of 
the ASMCavg annotation for 20 independent diseases and complex traits (sample sizes in 
Supplementary Table 8). Error bars represent SE of the τ* estimate. Dashed bars reflect values 
for six baselineLD annotations linked to background selection before the introduction of the 
ASMChet annotation. 
  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 10 - S-LDSC analysis of several annotations related to background 
selection. We built several annotations related to average coalescence time at each site, 
conditioning on the allele present on each analyzed chromosome from the GoNL data set. In 
addition to the ASMCavg annotation (see Online Methods), we computed average coalescence 
time for carriers of a minor allele (ASMCminor), carriers of a major allele (ASMCmajor), and an 
annotation containing the value of log(Tminor/Tmajor) at each site, i.e. the logarithm of the ratio of 
average coalescence time for individuals carrying a minor allele and individuals carrying a major 
allele (ASMCminor/major). All annotations were quantile normalized with respect to 10 MAF bins, 
as done for the ASMCavg annotation. We performed a joint S-LDSC analysis including these 
annotations, the SDS annotation from [Field et al. Science 2016], and all annotations from the 
baselineLD model, excluding the nucleotide diversity annotation, whose effects are subsumed by 
the ASMCavg annotation (see Figure 4). ASMChet was also excluded, as it was subsumed by 
ASMCavg. We report |τ*| values meta-analyzed across 20 independent traits (sample sizes in 
Suppleentary Table 8). Error bars represent SE of the τ* estimate. Dashed lines for the 
baselineLD annotations represent meta-analyzed |τ*| values in a joint S-LDSC analysis that does 
not include annotations represented in red.



 
 
Supplementary Figure 11 – Illustration of auPRC measure for IBD detection accuracy. We 
measured accuracy of IBD detection for ASMC and Beagle using the area under the precision-
recall curve (auPRC) for both programs. For both methods, recall can only be estimated within a 
limited precision range, due to the time-discretization used by ASMC, and the limited range of 
LOD-score thresholds allowed by Beagle. We thus compare the auPRC within the region where 
the precision and recall of both methods can be measured. In this example, ASMC’s  recall can 
be measured for values greater than 0.05, while Beagle’s recall can be measured for values 
smaller than 0.85. We thus compare the auPRC for the two methods in the range [0.05, 0.85] 
(blue vertical lines). Interpolation between pairs of observed precision/recall values was obtained 
using the method of [Davis and Goadrich, ICML 2006]. Results are from a single simulation of 
300 samples and 30Mb. Averages across multiple simulations are reported in Supplementary 
Table 1. 
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Supplementary Figure 12 – Selection simulations for DRC20. (A) Simulation of different 
strengths of recent positive selection starting 200 generations in the past: iHS score [Voight et al. 
PLoS Biol. 2006] run on array data (iHSarray); iHS score on causal variant from sequencing data 
(iHSsequence); SDS score [Field et al. Science 2016] on causal variant from sequencing data 
(SDSsequence); DRC20 score on array data. Scores of each method are standardized with respect to 
corresponding scores obtained in neutral simulations. Reported values represent averages from 
50 independent simulations, error bars represent SE. (B) Specificity to recent past for iHS and 
SDS run son sequencing data, and for DRC20. Simulation of selection starting at time -∞ 
stopping at the specified generation, followed by neutral drift. Dots represent averages from 50 
independent simulations, error bars represent SE.
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Supplementary Figure 13 – Empirical null model. (A) QQ plot for the DRC20 statistic in 
2,000 independent neutral coalescent simulations using the European demographic model of 
[Tennessen et al. Science 2012]. (B) QQ plot for the DRC150 statistic in 2,000 independent 
neutral coalescent simulations using the European demographic model of [Tennessen et al. 
Science 2012]. (C) Empirical distribution and Gamma-fit for the DRC150 statistic in the 
putatively neutral portion of the genome in the UKBB data set (11,221 observations from 0.05 
cM windows). (D) QQ plot for the DRC150 statistic in the putatively neutral portion of the 
genome in the UKBB data set (11,221 observations from 0.05 cM windows). All models are fit 
using a Gamma distribution with shape, location and scale parameters, using Python’s Scipy 
library (see URLs).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 14 – Empirical null model for the DRC20 statistic. QQ plot for the 
DRC20 statistic in 2,000 independent neutral coalescent simulations using the European 
demographic model of [Tennessen et al. Science 2012], fit using a Normal distribution.



Supplementary Table 1 – IBD detection. We report the difference in accuracy between ASMC- and Beagle-based IBD detection. 
IBD regions are defined using several time thresholds. We report the percent improvement for the area under the precision-recall 
curve (auPRC) of ASMC over Beagle. For both methods, precision can only be estimated within a limited recall range, due to the 
time-discretization used by ASMC, and the limited range of LOD-score thresholds allowed by Beagle. We thus compare the auPRC 
within the region where the precision and recall of both methods can be measured (“Average precision range” column, also see 
Supplementary Figure 11). Averages and SE in brackets were computed from 30 independent simulations. 
 

IBD time 
threshold 

Average 
recall range 

Avg auPRC within recall range Average percent auPRC improvement: 
100× auPRC	*+,- auPRC	./012/ − 1  ASMC Beagle 

25 [0.26, 0.98] 0.44 (0.01) 0.38 (0.01) 17.79 (2.18) 
50 [0.12, 0.95] 0.54 (0.01) 0.44 (0.01) 21.71 (1.22) 
75 [0.07, 0.90] 0.54 (0.01) 0.44 (0.01) 22.66 (1.11) 
100 [0.04, 0.86] 0.52 (0.00) 0.43 (0.00) 21.47 (0.95) 
150 [0.02, 0.77] 0.49 (0.00) 0.41 (0.00) 19.04 (0.81) 
200 [0.01, 0.70] 0.46 (0.00) 0.39 (0.00) 17.58 (0.53) 
400 [0.00, 0.49] 0.37 (0.00) 0.31 (0.00) 17.78 (0.39) 
600 [0.00, 0.36] 0.29 (0.00) 0.24 (0.00) 19.99 (0.37) 

 



Supplementary Table 2 – Effects of demographic model misspecification. We simulated 
batches of 300 haploid samples from the first 30Mb of a human Chromosome 2 and a European 
demographic model, and ran ASMC using 160 discretization intervals (see Online Methods, 
Discretization Intervals). ASMC was ran assuming a constant effective population size of 10,000 
diploid individuals, rather than the European model used to generate the data. We report percent 
difference in accuracy (RMSE and r2), compared to using the appropriate demographic model. 
We observed an increase in RMSE error compared to ASMC analysis using the correct 
demographic model, and no significant difference in r2. Averages (SE) were obtained from 10 
independent simulations. 
 

 % difference when using 
wrong demographic model 

RMSE of posterior mean estimate of TMRCA +29.18 (1.21) 
RMSE of maximum-a-posteriori estimate of TMRCA +82.29 (0.99) 
r2  of posterior mean estimate of TMRCA -0.43 (0.49) 
r2  of maximum-a-posteriori estimate of TMRCA +1.28 (1.29) 

 



Supplementary Table 3 – IBD detection when ASMC demographic model is incorrect. We report the difference in accuracy 
between ASMC- and Beagle-based IBD detection. IBD regions are defined using several time thresholds. We report the percent 
improvement for the area under the precision-recall curve (auPRC) of ASMC over Beagle. For both methods, precision can only be 
estimated within a limited recall range, due to the time-discretization used by ASMC, and the limited range of LOD-score thresholds 
allowed by Beagle. We thus compare the auPRC within the region where the precision and recall of both methods can be measured 
(“Average precision range” column, also see Supplementary Figure 11). Data were simulated under a European demographic model, 
but ASMC was run assuming a constant effective population size of 10,000 diploid individuals. This had negligible effects on 
accuracy, although the TMRCA bias introduced by this model misspecification slightly shifted the average precision range where 
ASMC’s AuPRC could be measured. Averages (SE) were computed from 30 independent simulations. 
 

IBD time 
threshold 

Average 
recall range 

 Avg auPRC within recall range Average percent AuPRC improvement: 
100× auPRC	*+,- auPRC	./012/ − 1  ASMC Beagle 

25 [0.32, 0.98] 0.38 (0.01) 0.32 (0.01) 19.83 (2.92) 
50 [0.15, 0.94] 0.51 (0.01) 0.41 (0.01) 24.80 (1.40) 
75 [0.08, 0.90] 0.53 (0.01) 0.42 (0.01) 26.72 (1.55) 
100 [0.05, 0.85] 0.53 (0.01) 0.42 (0.01) 26.94 (1.09) 
150 [0.03, 0.77] 0.51 (0.00) 0.40 (0.00) 25.49 (0.80) 
200 [0.02, 0.70] 0.48 (0.00) 0.39 (0.00) 23.79 (0.44) 
400 [0.01, 0.49] 0.37 (0.00) 0.31 (0.00) 18.88 (0.49) 
600 [0.00, 0.36] 0.28 (0.00) 0.24 (0.00) 17.68 (0.58) 



Supplementary Table 4 – Effects of noise in the recombination rate map. To mimic 
inaccuracies in the genetic map we simulated data using a human recombination map, and ran 
ASMC using a map with added noise. The recombination rate between each pair of contiguous 
markers in the map was altered by randomly adding or subtracting a specified percentage of its 
true value (% noise). We report accuracy using RMSE and r2. RMSE is measured between true 
and inferred TMRCA at each site, and “RMSE %” refers to the percent difference in RMSE 
between TMRCA inferred in SNP array data (UKBB density) using the indicated genetic map 
and TMRCA inferred in WGS data using the correct genetic map. Error attained using the true 
map is reported at the top for comparison. r2 indicates squared correlation between true and 
inferred average TMRCA in the simulated region. 300 haploid samples from the first 30Mb of a 
human Chromosome 2 and a European demographic model were simulated for each map type. 
ASMC was run using 160 discretization intervals (see Online Methods, Discretization 
Intervals). 
 

Map type MAP RMSE % Post. mean RMSE % MAP r2 Post. Mean r2 
True map +49.46 +45.15 0.85 0.90 
10% noise +51.74 +48.95 0.85 0.88 
20% noise +50.62 +48.08 0.86 0.89 
30% noise +51.16 +46.94 0.84 0.90 
40% noise +51.74 +45.55 0.85 0.89 
50% noise +53.89 +50.61 0.85 0.89 
60% noise +53.95 +50.55 0.85 0.88 
70% noise +50.09 +49.36 0.84 0.89 
80% noise +53.70 +52.18 0.84 0.87 
90% noise +55.72 +57.21 0.83 0.87 
100% noise +53.25 +52.76 0.83 0.88 

 
  



Supplementary Table 5 – Effects of the number of time discretization intervals. We 
estimated coalescence times at each locus using the standard setup using either the maximum-a-
posteriori (MAP) or the posterior mean of the inferred coalescence distributions. In each 
simulation, we run ASMC using a different number of discretization intervals, which are chosen 
such that the coalescence distribution is expected to be uniform in all intervals (see Online 
Methods). 300 haploid samples from the first 30Mb of a human Chromosome 2 and a European 
demographic model were simulated for each number of discretization intervals. We report the 
percent difference in RMSE accuracy between coalescence times inferred in SNP array data and 
WGS data, and the r2 between true and inferred average TMRCA in the regions. 
   

Discretization 
intervals 

MAP 
RMSE % 

Post. mean 
RMSE % MAP r2 Post. mean r2 

25 +11.47 +0.40 0.85 0.89 
50 +19.80 -1.42 0.85 0.90 
100 +33.63 +0.04 0.85 0.90 
200 +46.86 +0.79 0.83 0.89 
400 +58.29 +1.63 0.81 0.88 



Supplementary Table 6 – Suggestive selection loci. We report loci under suggestive selection (p < 10-4), as well as additional loci 
with elevated values of the DRC150 statistic in the UK Biobank data set (10-4 < p < 10-3). The DRC150 statistic of recent positive 
selection was computed using all individuals of British ancestry from the UK Biobank (n=113,851, divided in batches of ~10,000 
samples; see Online Methods for details on how p-values were computed). 
 
Chromosome Region (Mb) Min. p-value Top SNP Candidate gene(s) 

1 5.76-5.91 5.55×10-6 rs12144662 NPHP4, KCNAB2, CDH5, RPL22 
1 223.71-223.86 6.07×10-6 rs7525446 CAPN2, CAPN8 
1 235.15-235.17 6.47×10-4 rs35894003 RBM34, ARID4B, TOMM20 
1 236.69-236.91 2.30×10-5 rs2297860 ACTN2, HEATR1, LGALS8 
1 248.12-248.62 6.59×10-6 rs28625479 OR2L2, OR2L3, OR2L5, OR2M2, OR2M3, OR2M4, OR2M5, 

OR2M7, OR2T1, OR2T2, OR2T4, OR2T6, OR2T7, OR2AK2, 
OR2L13, OR2T12, OR2T33, OR14C36, LOC105373279 

3 48.48-50.34 1.89×10-4 rs146587089 CYB561D2, CACNA2D2, AMT, BSN, APEH, DAG1, GPX1, MST1, 
NAT6, QARS, RBM5, RBM6, RHOA, TCTA, TMA7, UBA7, UCN2, 
USP4, WDR6, ARIH2, ATRIP, CAMKV, CDHR4, GMPPB, GNAI2, 
GNAT1, HYAL1, HYAL3, IFRD2, IP6K1, IP6K2, LAMB2, 
MON1A, MST1R, NICN1, P4HTM, TRAIP, TREX1, USP19, 
AMIGO3, CCDC36, CCDC71, CELSR3, COL7A1, DALRD3, 
IMPDH2, LSMEM2, PFKFB4, QRICH1, RNF123, SEMA3F, 
SHISA5, TMEM89, UQCRC1, ARIH2OS, C3orf62, C3orf84, 
FAM212A, KLHDC8B, NCKIPSD, NDUFAF3, PRKAR2A, 
SLC26A6, SLC25A20, RP11-3B7.1, CTD-2330K9.3 

3 94.28-94.65 7.20×10-4 rs114565822  
4 3.80-3.88 6.13×10-6 rs28615087 ADRA2C, LINC00955 
4 24.96-24.98 3.58×10-4 rs74870548 LGI2, LOC102723675, CCDC149 
5 33.68-34.36 2.76×10-5 rs114118675 SLC45A28 
5 129.56-131.81 4.69×10-6 rs739718 SLC22A48 
5 180.02-180.10 5.24×10-4 rs6601131 FLT4 
6 139.41-139.55 6.37×10-4 rs76157938 HECA 
7 62.90-63.74 5.94×10-4 rs118009401 ZNF679, ZNF727 
8 11.70-11.87 1.37×10-4 rs4841682 CTSB, DEFB134, DEFB135, DEFB136, RP11-481A20.11 
8 17.95-18.22 1.48×10-4 rs28556847 NAT1 
8 73.99-74.03 3.89×10-4 rs6472748 SBSPON 
9 136.99-137.02 2.11×10-4 rs28650068 WDR5 
10 55.92-56.32 2.32×10-4 rs12762168 PCDH159 



11 120.16-120.17 7.95×10-4 rs2282537 POU2F3 
12 33.07-36.36 7.91×10-6 rs4579984 ALG10, SYT10 
12 53.17-53.17 9.71×10-4 rs1873647  
12 54.35-54.58 9.49×10-5 rs111779723 HOXC4, HOXC5, HOXC6, HOXC8, HOXC9, SMUG1, HOXC10, 

HOXC11, HOXC12, RP11-834C11.12 
12 55.44-55.97 1.17×10-4 rs61411633 OR6C1, OR6C2, OR6C3, OR6C4, OR6C6, OR9K2, OR10A7, 

OR2AP1, OR6C65, OR6C68, OR6C70, OR6C74, OR6C75, OR6C76 
12 111.72-113.21 2.16×10-4 rs10492023 ATXN2, SH2B3 
12 123.40-124.01 1.30×10-4 rs61742326 ABCB9, SBNO1, SETD8, OGFOD2, RILPL1, RILPL2, ARL6IP4, 

CDK2AP1, PITPNM2, SNRNP35, C12orf65, MPHOSPH9 
14 20.47-20.52 3.63×10-4 rs11158599 OR4Q2, OR4K13, OR4K14 
14 24.62-24.90 5.18×10-5 rs4982912 IPO4, IRF9, MDP1, NOP9, REC8, TGM1, ADCY4, CBLN3, CIDEB, 

DHRS1, GMPR2, LTB4R, NEDD8, PSME2, RIPK3, RNF31, TINF2, 
TSSK4, CHMP4A, LTB4R2, NFATC4, NYNRIN, TM9SF1, 
RABGGTA, NEDD8-MDP1, RP11-468E2.2, RP11-468E2.4, RP11-
934B9.3 

15 27.83-28.26 2.74×10-5 rs145242923 HERC2, OCA28 
16 0.20-0.32 6.89×10-4 Affx-80252323 HBM, HBZ, HBA1, HBA2, HBQ1, ITFG3, LUC7L, RGS11, 

ARHGDIG 
16 55.84-55.88 4.01×10-5 rs4784598 CES1, CES5A 
16 88.15-88.30 6.25×10-5 rs80193813  
17 7.33-7.61 2.69×10-4 rs62062590 CD68, FXR2, SAT2, SHBG, TP53, FGF11, MPDU1, SENP3, 

SOX15, ZBTB4, ATP1B2, CHRNB1, EIF4A1, POLR2A, WRAP53, 
SLC35G6, TMEM102, TNFSF12, TNFSF13, C17orf74, AC007421.1, 
TNFSF12-TNFSF13 

17 45.35-46.31 1.27×10-4 rs16957364 SP2, SP6, CBX1, PNPO, COPZ2, ITGB3, KPNB1, SCRN2, SKAP1, 
SNX11, TBX21, LRRC46, MRPL10, NFE2L1, NPEPPS, OSBPL7, 
PRR15L, TBKBP1, EFCAB13, CDK5RAP3 

20 17.76-17.84 7.02×10-4 rs2328224  
 
 



Supplementary Table 7 – Genome-wide c orrelation between ASMCavg and other annotations from the baselineLD model. 
 
  baselineLD annotation  Correlation with ASMCavg (r) 

B-statistic10 -0.28 
CpG content 0.03 

Recombination rate 0.07 
LLD-Africa11 0.08 

ARGWeaver allele age12 0.26 
Nucleotide diversity 0.50 



Supplementary Table 8 – Traits analyzed in S-LDSC analysis. We report phenotype name (and reference), number of samples in 
the study, Z-score for the trait’s heritability, and URL (if summary statistics are publicly available). 
 

Phenotype N h2 Z-score URL 
Age at menarche (UKBB) 74,944 18.27 . 
Age at menopause (UKBB) 44,410 9.87 . 
Anorexia13 32,143 9.58 http://www.med.unc.edu/pgc/downloads/ 
Autism spectrum14 10,263 8.72 http://www.med.unc.edu/pgc/files/resultfiles/pgcasdeuro.gz 
Blood pressure, diastolic (UKBB) 134,011 24.12 . 
BMI15 122,033 17.45 http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files 
Coronary artery disease16 77,210     8.47 http://www.cardiogramplusc4d.org/ 
Crohn's disease17 20,883 10.34 http://www.ibdgenetics.org/downloads.html 
Eczema (UKBB) 145,416 11.42 . 
Height (UKBB) 145,368 29.29 . 
LDL18 93,354 9.49 http://www.broadinstitute.org/mpg/pubs/lipids2010/ 
Lung FEV1/FVC ratio (UKBB) 123,935 22.04 . 
Lung forced expiratory volume 
(UKBB) 123,935 27.99 . 
Neuroticism19 170,911 9.54 http://ssgac.org/documents/ 
Putamen volume20 12,924 7.08 http://enigma.ini.usc.edu/wp-content/uploads/E2_EVIS 
Rheumatoid arthritis21 37,681 10.20 http://plaza.umin.ac.jp/yokada/datasource/software.html 
Schizophrenia22 70,100 21.82 http://www.med.unc.edu/pgc/downloads/ 
Smoking status (UKBB) 145,227 19.70 . 
Systemic lupus erythematosus23 14,267 6.37 https://www.immunobase.org/downloads/protected_data/GWAS_Data/ 
Years of education24 126,559 11.97 http://www.ssgac.org/ 

 



Supplementary Table 9 – Percent heritability explained by SNPs within annotation quintiles. We performed a joint analysis of 
ASMCTMRCA and other annotations in the baselineLD model using S-LDSC, and estimated the fraction of heritability explained by 
SNPs in each quintile of an annotation. The highest ratio between largest and smallest mean quintile effects was observed for the 
ASMCavg and nucleotide diversity annotations. The effect (measured using τ*, see Figure 4B) of the nucleotide diversity annotation, 
however, is subsumed by the ASMCavg annotation. 
 

Annotation % of heritability for SNPs in each quintile largest/smallest 1st  2nd  3rd  4th  5th 
ASMCavg 33.11 (0.53) 26.05 (0.21) 16.00 (0.39) 16.05 (0.22) 8.73 (0.51) 3.79 

Nucleotide diversity 31.53 (0.36) 24.37 (0.15) 20.40 (0.08) 15.44 (0.16) 8.31 (0.38) 3.79 
LLD-Africa11 29.12 (0.38) 23.89 (0.13) 20.45 (0.07) 16.58 (0.16) 9.94 (0.33) 2.93 

ARGWeaver allele age12 29.25 (0.68) 25.43 (0.23) 14.42 (0.31) 20.16 (0.27) 10.69 (0.63) 2.74 
CpG content 11.94 (0.21) 16.76 (0.16) 20.11 (0.13) 22.09 (0.12) 28.49 (0.40) 2.39 
B-statistic10 13.17 (0.30) 15.91 (0.14) 19.57 (0.09) 22.77 (0.12) 28.35 (0.38) 2.15 

Recombination rate 19.08 (0.29) 19.87 (0.20) 20.71 (0.19) 22.02 (0.15) 18.27 (0.62) 1.04 



Supplementary Table 10 – Effects of the number of samples used in the emission model. We 
simulated data using standard parameters, and measured accuracy of ASMC-inferred 
coalescence times using RMSE and r2, for either WGS and SNP array data. We estimated 
coalescence times at each locus using either the maximum-a-posteriori (MAP) or the posterior 
mean of the inferred coalescence distributions. In each simulation, we ran ASMC using 100 
discretization intervals and a different number of samples to compute the CSFS in the emission 
model. For RMSE, we report the percent difference in accuracy between coalescence times 
inferred in SNP array data and WGS data. Better RMSE or r2 performance results for better use 
of allele frequency information via the CSFS emission model. We observed that the performance 
plateaus when using more than 100 samples in the CSFS. Averages (SE) were computed using 5 
independent simulations. 
  

Individuals in the 
emission model 

MAP 
RMSE % 

Post. mean 
RMSE % MAP r2 Post. mean r2 

50 +62.92 (2.91) +52.24 (2.14) 0.750 (0.013) 0.818 (0.013) 
100 +51.54 (2.02) +45.74 (0.86) 0.829 (0.012) 0.888 (0.005) 
150 +54.75 (0.77) +49.61 (1.33) 0.824 (0.011) 0.879 (0.007) 
200 +51.59 (0.52) +43.45 (0.61) 0.814 (0.010) 0.874 (0.005) 
250 +55.21 (0.57) +47.46 (1.25) 0.834 (0.005) 0.885 (0.005) 
300 +55.92 (1.64) +48.17 (0.92) 0.830 (0.009) 0.887 (0.008) 

 



Supplementary Table 11 - ASMC accuracy in coalescent simulations.  Numerical values 
from Figure 1. Numbers in round brackets represent standard errors. The r2 attained by     
ASMC-seq using WGS data is 0.946 (0.017). Average SNP density observed in the UK Biobank 
data set was 225. TMRCA was inferred using the ASMC posterior mean coalescence time at 
each site within the simulated region. Averages (SE) were computed using 10 independent 
simulations. 

 
Density (SNPS/Mb) r2 between true and inferred average TMRCA 

21.7 0.619 (0.017) 
44.4 0.739 (0.007) 
89.6 0.817 (0.006) 
180.1 0.868 (0.008) 
361.0 0.892 (0.008) 
722.9 0.913 (0.007) 
1288.2 0.925 (0.004) 
1637.7 0.935 (0.005) 
1812.6 0.938 (0.005) 

 
 



Supplementary Table 12 – Computational cost of ASMC.  Numerical values from Figure 2 
and Supplementary Figure 5. Running times are extrapolated from those obtained in 5Mb long 
regions of WGS data, assuming a 3,235 Mb genome. Memory usage reflects analysis of a 5Mb 
region using WGS data from 100 haploid individuals. Averages (SE) were computed using 10 
independent simulations. 
 
TMRCA 
intervals 

Running time (seconds per genome) Memory usage (Gb) 
ASMC-seq SMC++ ASMC-seq SMC++ 

20 2.03 (0.05) 211 (30) 0.13 (0.0) 0.37 (0.03) 
40 3.12 (0.06) 1,150 (68) 0.24 (0.0) 0.83 (0.02) 
80 6.09 (0.21) 6,310 (115) 0.46 (0.01) 1.63 (0.02) 
160 12.18 (0.41) 43,879 (869) 0.9 (0.01) 3.67 (0.12) 
320 22.94 (0.97) 347,385 (13,505) 1.79 (0.03) 9.88 (0.31) 
640 46.77 (0.77) 2,649,817 (62,670) 3.55 (0.06) 21.67 (1.25) 

 



Supplementary Table 13 - S-LDSC analysis of ASMCavg background selection annotation 
and disease heritability.  Numerical values from Figure 4. (A) τ* value (SE) of the ASMCavg 
annotation for 20 independent diseases and complex traits (sample sizes in Supplementary Table 
8). (B) Absolute values of τ* (SE), meta-analyzed across 20 independent diseases and complex 
traits (sample sizes in Supplementary Table 8). τ* values were computed in a joint analysis 
conditioned on baselineLD annotations. Numerical values for Figure 4c can be found in 
Supplementary Table 9. 
 
A 

Trait τ* (SE) 
Rheumatoid Arthritis -1.687 (0.233) 

Crohns Disease -1.452 (0.263) 
LDL -1.327 (0.229) 

Eczema -1.268 (0.189) 
Age at Menopause -1.111 (0.188) 

Coronary Artery Disease -1.093 (0.241) 
Lupus -1.082 (0.241) 

Schizophrenia -0.917 (0.078) 
Diastolic -0.865 (0.091) 

Years of Education -0.86 (0.131) 
Height -0.825 (0.094) 
BMI -0.759 (0.087) 

FEV1FVC -0.752 (0.089) 
Smoking Status -0.707 (0.088) 

FVC -0.686 (0.072) 
Age at Menarche -0.678 (0.107) 

MeanPutamen -0.629 (0.217) 
Neuroticism -0.536 (0.118) 

Autism -0.451 (0.192) 
Anorexia -0.25 (0.142) 

Meta analysis -0.807 (0.01) 
 
B 
 

Annotation Annotation τ* (meta-analysis) Annotation τ* (meta-analysis) not 
including ASMCavg in the model 

ASMCavg -0.253 (0.010) N/A 
ARGWeaver allele 

age12 
-0.133 (0.013) -0.246 (0.012) 

LLD-Africa11 -0.199 (0.008) -0.185 (0.008) 
Recombination rate -0.223 (0.010) -0.207 (0.010) 
Nucleotide diversity -0.001 (0.008) -0.125 (0.008) 

B-statistic10 0.102 (0.006) 0.116 (0.006) 
CpG content 0.220 (0.009) 0.213 (0.009) 
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