Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201800829

Encapsulation of CoS_x Nanocrystals into N/S Co-Doped Honeycomb-Like 3D Porous Carbon for High-Performance Lithium Storage

Bo Yin, Xinxin Cao, Anqiang Pan,* Zhigao Luo, Selvakumaran Dinesh, Jiande Lin, Yan Tang, Shuquan Liang,* and Guozhong Cao* Supporting Information for

Encapsulation of CoS_x Nanocrystals into N/S Co-Doped Honeycomb-Like

3D Porous Carbon for High-Performance Lithium Storage

Bo Yin, Xinxin Cao, Anqiang Pan*, Zhigao Luo, Selvakumaran Dinesh, Jiande Lin, Yan Tang, Shuquan Liang*, Guozhong Cao*

B. Yin, Dr. X. X. Cao, Prof. A. Q. Pan, Dr. Z. G. Luo, Dr. S. Dinesh, J. D. Lin, Prof. Y. Tang, Prof.
S. Q. Liang, Prof. G. Z. Cao
School of Material Science and Engineering
Central South University
Changsha 410083, China
Prof. G. Z. Cao
Department of Materials Science & Engineering
University of Washington
Seattle 98195, USA
E-mail: pananqiang@csu.edu.cn (A. Pan); lsq@csu.edu.cn (S.Q. Liang); gzcao@u.washington.edu (G.

Z. Cao)

Figure S1. SEM images of a, b) Co@PAN-A and c, d) Co@PAN-B.

Figure S2. SEM image of CS@PC composite at low magnification.

Figure S3. a, b) The SEM images and c, d) TEM images of PC.

Figure S4. The SEM image of CS sample.

Figure S5. Nitrogen adsorption-desorption isotherms of a) Co@PAN-A, b)Co@PAN-B and c)PC. d) The corresponding pore-size distributin curves of the three samples. e) Nitrogen adsorptiondesorption isotherm of CS sample and pore-size distribution (inset of e). f) The nitrogen adsorption isotherm of CS@PC at $P/P_0 < 0.05$ and micropore distribution (inset of f).

Table S1. Refined unit cell lattice parameters of CoS, Co_9S_8 , and $Co_{1-x}S$ in CoS_x composite and standard data of CoS (ICSD Card No. 624857), Co_9S_8 (ICSD Card No. 660368), and $Co_{1-x}S$ (ICSD Card No. 42703).

Sample	Lattice parameters					Phase content	wRp
Bunpie	a (nm)	b (nm)	c (nm)	γ (°)	$V(nm^3)$	(wt. %)	(%)
CoS in CoS_x composite	0.33720	0.33720	0.51724	120.000	0.05093	75.850	7.76
CoS	0.33680	0.33680	0.51700	120.000	0.05079	—	—
Co_9S_8 in CoS_x composite	0.99242	0.99242	0.99242	90.0000	0.97743	20.164	7.76
Co ₉ S ₈	0.99273	0.99273	0.99273	90.0000	0.97835	—	—
$Co_{1-x}S$ in CoS_x composite	0.35952	0.35952	0.58091	120.000	0.06503	3.986	7.76
Co _{1-x} S	0.36121	0.36121	0.57752	120.000	0.06525	—	—

Figure S6. The XRD patterns of a) 0.1CS, b) CS@PC and c) CS.

Figure S7. The XRD pattern of PC.

Figure S8. TG-DSC curves of a) PC and c) CS. XRD patterns of the residual material after TG-DSC tests of b) CS@PC and d) CS.

Figure S9. a) Typical XPS survey spectrum and the corresponding b) C 1s, c) S 2p, d) N 1s spectra of the pure carbon annealed with sulfur powder. The survey spectrum shows that the C, N, O, S element coexist in the carbon annealed with sulfur powder, except Co. The C 1s and N 1s spectra are similar to that of the CS@PC. And the high-resolution spectrum of S 2p has two main peaks at binding energy 163.8 eV and 164.9 eV, corresponding to C-S $2p_{3/2}$ and $2p_{1/2}$, respectively.

Samples	C _{xps} (At %)	N _{xps} (At %)	S_{xps} (At %)	O_{xps} (At %)	Co _{xps} (At %)
CS@PC	60.03	10.12	10.84	14.37	4.65
PC-S	72.67	15.76	7.27	4.3	0

Table S2. Elemental compositions of CS@PC and PC-S.

Figure S10. A survey of electrochemical properties of cobalt sulfide anodes in lithium ion batteries.

Figure S11. The cycling performance of the CS@PC electrode with 1.1 mg cm⁻² mass loading of the active material at the current density of 1000 mA g^{-1} between 0.01 and 3 V.

Figure S12. a, b) SEM images of CS@PC after 500 cycles at 1000 mA g^{-1} at different magnifications. c) The EDX spectrum of the selected region in the picture a (red dotted circle).

Samples	$R_{s}\left(\Omega ight)$	$R_{\rm f}(\Omega)$	$R_{ct}\left(\Omega ight)$
CS@PC	4.779	10.86	138.1
PC	4.713	5.539	106.4
CS	4.775	13.5	276.7

Table S3. The EIS fitting parameters of CS@PC, PC and CS samples.

The calculation formula is shown as follows:

$$D = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$
 Equation S1

Where R represents the gas constant, T is the test temperature, A is the surface area of electrode, F is the Farady constant, *n* represents the number of electrons per molecule attending the charge-discharge reaction, C is the concentration of lithium ion in our composite electrode, and σ is the slop of the line Z['] - $\omega^{-1/2}$ (shown in Figure 7b).

Figure S13. E vs. t curves of CS@PC electrode for a single GITT during discharge process.

The lithium diffusion coefficient was measured by using Galvanostatic intermittent titration technique (GITT) and calculated based on equation S2 as follows.

$$D = \frac{4L^2}{\pi\tau} \left(\frac{\Delta E_s}{\Delta E_t}\right)^2$$
 Equation S2

Where t is the duration of the current pluse (s), τ is the relaxation time (s), and ΔE_s is the steady-state potential (V) by the current pluse. ΔE_t is the potential change (V) during the constant current pluse after eliminating the *i*R drop (Figure S13). L is lithium ion diffusion length (cm); for compact electrode, it is equal to thickness of electrode.

References

- [1] R. Jin, J. Zhou, Y. Guan, H. Liu, G. Chen, J. Mater. Chem. A 2014, 2, 13241.
- [2] Y. Wang, J. Wu, Y. Tang, X. Lü, C. Yang, M. Qin, F. Huang, X. Li, X. Zhang, ACS Appl. Mater. Interfaces 2012, 4, 4246.
- [3] Y. Ko, S. Choi, S. Park, Y. Kang, Chem. -Asian J. 2014, 9, 572.
- [4] X. Zhang, X. Liu, G. Wang, H. Wang, J. Colloid Interface Sci. 2017, 505, 23.
- [5] J. Guo, F. Li, Y. Sun, X. Zhang, L. Tang, Electrochim. Acta 2015, 167, 32.
- [6] F. Han, C. Zhang, B. Sun, W. Tang, J. Yang, X. Li, Carbon 2017, 118, 731.
- [7] Z.P. Li, W. Li, H. Xue, W. Kang, X. Yang, M. Sun, Y. Tang, C. Lee, RSC Adv. 2014, 4, 37180.
- [8] Z. Huang, Y. Wang, J. Wong, W. Shi, H. Yang, Electrochim. Acta 2015,167, 388.
- [9] F. Han, C. Tan, Z. Gao, J. Power Sources 2017, 339, 41.