Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201800559

A Dual-Salt Gel Polymer Electrolyte with 3D Cross-Linked Polymer Network for Dendrite-Free Lithium Metal Batteries

Wei Fan, Nian-Wu Li, Xiuling Zhang, Shuyu Zhao, Ran Cao, Yingying Yin, Yi Xing, Jiaona Wang, Yu-Guo Guo,* and Congju Li*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

A Dual-Salt Gel Polymer Electrolyte with 3D cross-linked Polymer Network for Dendrite-Free Lithium Metal Batteries

Wei Fan^{1,⊥}, Nian-Wu Li^{1,⊥}, Xiuling Zhang^{1,⊥}, Shuyu Zhao², Ran Cao¹, Yingying Yin¹, Yi Xing², Jiaona Wang⁴, Yu-Guo Guo^{3,*}, Congju Li^{1,2,*}

Supporting information

Figure S1. Combustion testing of a) Commercial PE separator, b) PGE membrane. Comparison photographs of the thermal shrinkage of the 3D cross-linking membrane (left) and a commercial separator (right) c)before and d) after exposure to 150 °C for 10 min.

Figure S2. a) SEM of morphology of GPE; b) EDS map of P-K; c) S-K of surface section.

Figure S3. Charging-Discharging curves of the fifth and tenth cycle of Li|NCM at 0.5C at 25 °C. The charging-discharging range is 3.0V-4.3V.

Figure S4. Polarization test by using Li|GPE|Li symmetric cells and liquid electrolyte

	Ionic conductivity (mS/cm)
PEGDA:ETPTA=1:1	0.04
PEGDA:ETPTA=3:2	0.25
PEGDA:ETPTA=4:1	0.56
ЕТРТА	0.18

Figure S5. Ionic conductivity of different polymer constitution.

	LiPF ₆	LiTFSI	Dual Li salts
Ionic conductivity			
(mS/cm)	0.12	0.16	0.56

Figure S6. Ionic onductivity of different Li salt constitution.

Figure S7. Impedance response with time evolution of the Li|GPE|Li.

Figure S8. Battery performance of PEGDA based GPEs at the rate of 0.2 C at 20 °C.

Figure S9. Structural illustration of GPE battery.

	Thermal safety (°C)	Ion Conductivity(mS/cm)	\mathbf{Li}^+
			transference
PVA-CN solid electrolyte ^[1]	160	0.3 at room temperature	0.57
PPC polymer electrolyte ^[2]	-	0.3 at 20°C	-
PINs ^[3]	250	0.532 at 20°C	-
PVDF/PEO SPE ^[4]	158	0.303 at room temperature	-
PVDF/HEC/PVDF ^[5]	290	0.88 at room temperature	0.57
TPU/PEO SPE ^[6]	314	0.53 at 60°C	0.31
PEGDA-ETPTA GPE	280	0.56 at room temperature	0.72

Figure S10. Physical and electrochemical properties of our produced GPE and other GPEs.

References

[1] Zhou, D.; He, Y.-B.; Liu, R.; Liu, M.; Du, H.; Li, B.; Cai, Q.; Yang, Q.-H.; Kang, F. Adv. Energy Mater. **2015**, *5*, (15), 1500353.

[2] Zhang, J.; Zhao, J.; Yue, L.; Wang, Q.; Chai, J.; Liu, Z.; Zhou, X.; Li, H.; Guo, Y.; Cui, G.; Chen, L. Adv. Energy Mater. 2015, 5, (24), 1501082.

[3] Zhang, P.; Li, M.; Yang, B.; Fang, Y.; Jiang, X.; Veith, G. M.; Sun, X. G.; Dai, S. Adv. Mater. **2015**, 27, (48), 8088-94.

[4] Deng, F.; Wang, X.; He, D.; Hu, J.; Gong, C.; Ye, Y. S.; Xie, X.; Xue, Z. J. Membr. Sci.2015, 491, 82-89.

[5] Zhang, M. Y.; Li, M. X.; Chang, Z.; Wang, Y. F.; Gao, J.; Zhu, Y. S.; Wu, Y. P.; Huang, W. Electrochim. Acta 2017, 245, 752-759.

[6] Tao, C.; Gao, M.-H.; Yin, B.-H.; Li, B.; Huang, Y.-P.; Xu, G.; Bao, J.-J. Electrochim. Acta **2017**, 257, 31-39.