Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs. 201800514

Bifunctionality from Synergy: CoP Nanoparticles Embedded in Amorphous CoOx Nanoplates with Heterostructures for Highly Efficient Water Electrolysis

Jie Yu, Yijun Zhong, Xinhao Wu, Jaka Sunarso, Meng Ni, Wei Zhou,* and Zongping Shao*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

Bifunctionality from synergy: CoP nanoparticles embedded in amorphous CoOx nanoplates with heterostructures for highly efficient water electrolysis

Jie Yu, Yijun Zhong, Xinhao Wu, Jaka Sunarso, Meng Ni, Wei Zhou* and Zongping Shao*

Figure S1. SEM image of the CoP b-plate that features disintegrated platelets.

Figure S2. The qualitative determination of gas components (H_2O) of CoCo-LDH plate and CoP@a-CoOx plate during the thermal decomposition process.

Figure S3. Nitrogen adsorption-desorption isotherms of **a**) the CoCo-LDH plate; **b**) the CoP@a-CoOx plate; **c**) the CoCo-LDH-Ar plate; and **d**) the CoP b-plate.

Figure S4. Overpotentials at the current densities of **a**, **d**) 10; **b**, **e**) 50; and **c**, **f**)100 mA cm⁻² for both **a-c**) OER and **d-f**) HER among different catalysts, respectively. Error bars represent standard deviations from at least three independent measurements.

Figure S5. Powder XRD patterns of the CoP@a-CoOx-5 plate, the CoP@a-CoOx plate, and the CoP@a-CoOx-20 plate samples.

Figure S6. TEM images of a) CoP@a-CoOx-5 plate; and b) CoP@a-CoOx-20 plate.

Figure S7. High resolution XPS spectra of **a**) Co 2p; and **b**) P 2p for CoP@a-CoOx-5 plate, CoP@a-CoOx plate, and CoP@a-CoOx-20 plate.

Figure S8. a) OER polarization curves of the CoP@a-CoOx-5 plate, the CoP@a-CoOx plate, and the CoP@a-CoOx-20 plate samples loaded on the carbon cloth substrate in an O₂-saturated 1 M KOH solution; obtained using a 5 mV s⁻¹ scan rate; b) HER polarization curves of the CoP@a-CoOx-5 plate, the CoP@a-CoOx plate, and the CoP@a-CoOx-20 plate samples loaded on the carbon cloth substrate in an Ar-saturated 1 M KOH solution; obtained using a 5 mV s⁻¹ scan rate.

Figure S9. Overpotentials at the current densities of **a**, **d**) 10; **b**, **e**) 50; and **c**, **f**)100 mA cm⁻² for both **a-c**) OER and **d-f**) HER among the CoP@a-CoOx-5 plate, the CoP@a-CoOx plate, and the CoP@a-CoOx-20 plate samples, respectively. Error bars represent standard deviations from at least three independent measurements.

Figure S10. Cyclic voltammetry profiles for **a**) **and c**) the CoP@a-CoOx-5 plate/C; and **b**) **and d**) the CoP@a-CoOx-20 plate/C at different scan rates (i.e., 4-12 mV s⁻¹) in a 1 M KOH solution; and **e**) linear fitting of the capacitive currents versus CV scan rates for the CoP@a-CoOx-5 plate/C, CoP@a-CoOx plate/C, and CoP@a-CoOx-20 plate/C samples for OER and HER.

Figure S11. Cyclic voltammetry profiles for **a**) and **d**) the CoP@a-CoOx plate/C; **b**) and **e**) the CoCo-LDH-Ar plate/C; and **c**) and **f**) the CoP b-plate/C at different scan rates (i.e., $4-12 \text{ mV s}^{-1}$) in a 1 M KOH solution; **a**), **b**), and **c**) OER; and **d**), **e**), and **f**) HER estimated ECSAs.

Figure S12. Nyquist plots of the CoP@a-CoOx plate, the CoCo-LDH-Ar plate, and the CoP b-plate catalysts obtained from EIS measurements at OER potential of 0.6 V vs. Ag|AgCl (3.5 M KCl) and HER potential of -1.3 V vs. Ag|AgCl (3.5 M KCl).

Figure S13. a) Powder XRD patterns of the CoP-p, and the a-CoOx-p samples; b) OER polarization curves; and c) HER polarization curves of CoP@a-CoOx plate, CoP-p, a-CoO_x-p, and the mixture of CoP-p and a-CoO_x-p.

Figure S14. Polarization curves of the CoP@a-CoOx plate/C \parallel CoP@a-CoOx plate/C-5 mg cm⁻² system, the CoP@a-CoOx plate/C \parallel CoP@a-CoOx plate/C-8 mg cm⁻² system, and the Pt/C(-) \parallel IrO₂/C(+)-8 mg cm⁻² system for overall electrochemical water splitting in a 1 M KOH solution.

Sample	$S_{BET}^{[a]} (m^2 g^{-1})$				
CoCo-LDH plate	61.1				
CoP@a-CoOx plate	18.2				
CoCo-LDH-Ar plate	37.0				
CoP b-plate	32.9				
CoP@a-CoOx-5 plate	21.4				
CoP@a-CoOx-20 plate 17.8					
[a] S _{BET} : specific surface area from BET method.					

Table S1. Specific surface areas for different samples.

Table S2. Comparison of selected non-precious OER electrocatalysts in an alkaline medium.

Catalyst	Electrolyte	Loading	Substrate	η_{10}	Tafel slope	References
		$(mg cm^{-2})$		(V)	$(mV dec^{-1})$	
CoP@a- CoOx plate	1 M KOH	1.5	Carbon cloth	0.23	67	This work
IrO ₂	1 M KOH	1.5	Carbon cloth	0.24	59	This work
CoP MNA	1 M KOH	6.2	Ni foam	0.29	65	<i>Adv. Funct. Mater.</i> 2015 , 25, 7337.
$\mathrm{Co}_4\mathrm{N}$	1 M KOH	0.82	Carbon cloth	0.26	44	Angew. Chem. Int. Ed. 2015 , 54, 14710.
NiCoP/CC	1 M KOH	2	Carbon cloth	0.24	64	ACS Catal. 2017 , 7, 4131.
Co _{1.04} Fe _{0.96} P	1 M KOH	1	Self- supported	0.27	30	Energy Environ. Sci. 2016 , 9, 2257.
a-NiFe- OH/NiFeP/NF	1 M KOH	1.8	Ni foam	0.20	39	ACS Energy Lett. 2017, 2, 1035.
CoN-1min	1 M KOH	1.5	Ni foam	0.29	70	Angew.Chem. Int. Ed. 2016 , 55,8670.
Fe-Ni oxides	1 M KOH	0.5	Carbon paper	>0.37	51	ACS Catal. 2012, 2, 1793.
Co-P film	1 M KOH	2.71	Cu foil	0.34	47	Angew. Chem. Int. Ed. 2015 , 54, 6251.
CoCo LDH	1 M KOH	1	Ni foam	0.39	59	<i>Nat. Commun.</i> 2014 , <i>5</i> , 4477.
Zn _{0.75} Co _{2.25} O ₄ nanowire array	1 M KOH	1	Ti foil	0.32	51	<i>Chem. Mater.</i> 2014 , <i>26</i> , 1889.

Table S3. Comparison of selected non-precious HER electrocatalysts in an alkaline medium.

-

	Catalyst	Electrolyte	Loading	Substrate	η_{10}	Tafel slope	References
--	----------	-------------	---------	-----------	-------------	-------------	------------

		$(mg cm^{-2})$		(V)	$(mV dec^{-1})$	
CoP@a-	1 M KOH	1.5	Carbon	0.13	89	This work
CoOx plate			cloth			
CoP/CC	1 M KOH	0.92	Carbon	0.21	129	J. Am. Chem. Soc. 2014,
			cloth			<i>136</i> , 7587.
Ni ₂ P	1 M KOH	176.9	Ti foil	0.07	118	Energy Environ. Sci. 2015,
						8, 1027.
NiO/Ni-CNT	1 M KOH	8	Ni foam	< 0.1	51	Nat. Commun. 2014, 5,
						4695.
WP NAs/CC	1 M KOH	2	Carbon	0.15	102	ACS Appl. Mater.
			cloth			Interfaces 2014, 6, 21874.
FeP NAs/CC	1 M KOH	1.5	Carbon	0.22	146	ACS Catal. 2014, 4, 4065.
			cloth			
HNDCM-	1 M KOH	42.8mg _{Co} /	Self-	0.13	64	ACS Nano 2017, 11, 4358.
Co/CoP		g _{total}	supported	5		
NiCo ₂ S ₄	1 M KOH		Ni foam	0.21	59	Adv. Funct. Mater. 2016,
NW/NF						26, 4661.
CP@Ni-P	1 M KOH	25.8	Carbon	0.12	85	Adv. Funct. Mater. 2016,
			paper			26, 4067.

Table S4. The actual content of the crystalline CoP nanoclusters in these heterostructure catalysts.

Sample	The content of CoP (wt %)
CoP@a-CoOx-5 plate	13.4
CoP@a-CoOx plate	37.2
CoP@a-CoOx-20 plate	42.3

To obtain the actual content of the crystalline CoP nanoclusters in these heterostructure catalysts, inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements were performed. Specifically, 20 mg of a catalyst was absolutely dissolved into a certain amount of concentrated nitric acid, and then it was diluted to 1 L with the addition of deionized water. The amount of cobalt and phosphorus in this solution was quantified using ICP-OES. For the CoP@a-CoOx plate sample, the amount of cobalt and phosphorus was 14.03 mg/L (14.03 ppm) and 2.56 mg/L (2.56 ppm) in the obtained solution, respectively. Thus, the actual content of the crystalline CoP nanoclusters in this hybrid can be calculated as follows: $2.56/30.97 \times (58.93+30.97)/20 = 37.2$ %.

Table S5. Comparison of the performance of the water-splitting catalysts in a 1.0 M KOH solution.

Anode	Cathode	Substrate	Loading (mg cm ⁻²)	η ₁₀ (V)	References
CoP@a-CoOx plate	CoP@a-CoOx plate	Carbon cloth	5	1.66	This work

IrO ₂ /C	Pt/C	Carbon cloth	5	1.59	This work
NiFe LDHs	NiFe LDHs	Ni foam		1.70	<i>Science</i> 2014 , <i>345</i> , 1593.
Co _{0.85} Se/NiFe- LDH	Co _{0.85} Se/NiFe- LDH	Exfoliated graphene foil	4	1.67	<i>Energy Environ. Sci.</i> 2016 , <i>9</i> , 478.
High-index faceted Ni ₃ S ₂ nanosheet	High-index faceted Ni ₃ S ₂ nanosheet	Ni foam	1.6	>1.7	J. Am. Chem. Soc. 2015, 137, 14023.
Co ₂ B-500	Co ₂ B-500/NG	Carbon cloth	5	1.81	<i>Adv. Energy Mater.</i> 2016 , <i>6</i> , 1502313.
Co-P	Co-P	Ni foam	2.6	~ 1.64	Angew. Chem. 2015, 127, 6349.
SNCF-NR	SNCF-NR	Ni foam	3	1.68	<i>Adv. Energy Mater.</i> 2017 , <i>7</i> , 1602122.
Co/CoP-5	Co/CoP-5	Ni foam	5	1.45	<i>Adv. Energy Mater.</i> 2017 , <i>7</i> , 1602355.
Ni/NiP	Ni/NiP	Ni foam	10.58	1.61	<i>Adv. Funct. Mater.</i> 2016 , <i>26</i> , 3314.
NiSe/NF	NiSe/NF	Ni foam	2.8	1.63	Angew. Chem. 2015 , 127, 9483.