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Supplementary Methods 

 

1. TCGA data collection 
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We collected six non-silent somatic mutation datasets of Pan-Cancer and 19 datasets of individual 

cancer types from the TCGA database. The Pan-Cancer datasets were combined from various 

TCGA cohorts, produced by different research groups named AWG, bcgsc, bcm, broad, ucsc and 

wustl (Supplementary Table S1). The 19 datasets of individual cancer types (Supplementary Table 

S2) consist of bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical 

squamous cell carcinoma & endocervical adenocarcinoma (CESC), colon & rectum 

adenocarcinoma (COADREAD), glioblastoma multiforme (GBM), head & neck squamous cell 

carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma 

(KIRP), acute myeloid leukemia (LAML), brain lower grade glioma (LGG), lung adenocarcinoma 

(LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), 

pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), skin cutaneous melanoma 

(SKCM), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), and uterine corpus 

endometrioid carcinoma (UCEC).  

 

2. Reference cancer gene sets 

To accurately assess the methods for identifying candidate cancer genes, ideally, we need an 

unbiased comprehensive known cancer gene set. Unfortunately, such a gold-standard set of 

cancer genes is currently unavailable. Alternatively, we collected five different cancer gene sets 

from different sources to minimize the possible bias caused by a single reference gene set. First, 

we downloaded 616 cancer genes from the Cancer Genome Census (CGC) database (v78, 

September 2016),[1] which is one of the world's largest and most comprehensive resources for 

exploring the impact of somatic mutations on cancer in human. While CGC is widely used as one 

of the most well-known and confident cancer gene sets, it is heavily biased towards cancer genes 

through chromosomal translocation (about 58.6% of CGC genes). There are many mutation types 

in CGC, including translocation, amplification, large deletion, frame shift, splice site, missense 

mutation and so on. To reduce the impact of CGC’s bias caused by structural rearrangement, we 

generated a second reference cancer gene set containing 245 genes mutated mainly by point 

mutations, CGCpointMut, a subset of CGC. The third reference gene set contains 125 genes 

altered by intragenic mutations, promoting or driving tumorigenesis.[2] A gene was classified as an 

oncogene if >20% of the recorded mutations were at recurrent positions and are missense, and 

as a tumor suppressor gene if >20% of the recorded mutations were inactivating. The “20/20 

rule” (Rule2020) is suitable as a cancer gene set, although all well-documented cancer genes far 

surpassed these criteria. Notably, most of those genes have been added into the updated CGC 

sets. The fourth reference gene set is composed of 291 high-confidence candidate driver genes 

(HCD) provided by a rule-based method,[3] whose most genes had signals of positive selection in 

at least one methods out of four: MuSiC,[4] OncodriveFM,[5] OncodriveCLUST[6] and ActiveDriver.[7] 

Finally, this candidate cancer gene set containing 797 orthologous genes of mouse cancer genes 

identified by insertional mutagenesis in mice (MouseMut)[8, 9] was for reference only as they are 

yet not extensively validated. The overlaps of the five reference gene sets were illustrated by a 

Venn diagram using the “VennDiagram” package in R (Supplementary Figure S24).[10]  

 

3. Evaluation criteria  

We evaluated the performance of the methods for prioritizing candidate genes using the 

following measures: the ROC analysis and AUC scores for recovering known cancer genes in the 



reference sets, and the F1 score and the cumulative number of known cancer genes recovered in 

top-ranked candidate genes. The ROC and AUC score assess both the sensitivity and specificity of 

a method in distinguishing drivers from passengers at the overall level. The F1 score and the 

cumulative number of recovered known cancer genes in top-ranked candidates were used to 

assess the ability of a method to concentrate the real cancer genes in the top-ranked candidates. 

The F1 score combines precision and recall with equal weight, and is defined as, 

precision=
min( , )R P

TP

N N
, recall=

R

TP

N
, F1 score=2

precision recall

precision recall





, 

where 
PN  is the total number of genes that are predicted as driver cancer genes, 

RN  the 

number of genes in the reference cancer gene set, and TP the number of the reference genes in 

the predicted genes. 

 

4. Comparison between MaxMIF and the Gene Gravity Model 

Although our Mutational Impact Function (MIF) was motivated by the “gravitation principle” 

presented in the Gene Gravity Model (GGM),[11] who had clearly demonstrated that interacting 

proteins tend to accumulate more mutations than random protein pairs, the mutational score M(i) 

and the biological distance ijr  in the two methods were produced by totally different strategies 

with different biological implications. First, in MaxMIF, the mutation-score considers all somatic 

mutation samples while balancing their contributions, thus it represents the overall level of 

mutations of the gene in the samples. In contrast, in GGM the mutation-score is the cumulative 

mutations computed by a random walk algorithm whose restart parameter needs to be selected 

without standard guidelines, thus its biological meaning is intuitively unclear. Second, in MaxMIF, 

the biological distances between two genes is their inverse path distances in the PPI 

(protein-protein interaction) networks, while in GGM, it is their inverse Pearson Correlation 

Coefficients (PCC) of the gene expression profiles of the two genes in the PPI networks. To see 

whether the inverse PPI distance is better than the inverse PCC, we compared the two ways of 

using “biological distance” by MaxMIF with HumanNet and STRINGv10 on six cancer types as 

used in GGM (BRCA, GBM, HNSC, KIRC, LUAD and LUSC), together with the same gene expression 

profiles as used in GGM. As shown in Supplementary Figures S26 and 27, inverse PCC almost 

consistently underperformed inverse path distances based on either the HumanNet or the 

STRINGv10 PPI networks. Third, opposite to GGM, in MaxMIF the maximal MIF value of a gene 

instead of the average MIF value among its’ neighbors in the PPI network is used as the finally 

score, which in our opinion better represents the functional impact on pathway level of the 

mutations. Most importantly, GGM collected the Cancer driver gene set (together with DNA 

repair gene set, Chromatin regulation factors set, Essential gene set and other cancer gene set) 

based on previous studies and analyzed the average Gene Gravity scores (GGS) on the level of the 

five gene sets, which are quite different from what we are doing.  

These differences might explain the remarkable difference in the performance between the two 

strategies (if it makes sense that GGM is treaded as a prioritizing method). As shown in 

Supplementary Figures S28 and S29, MaxMIF consistently outperforms GGM across the eight 

cancer types (used in GGM), in terms of the ROC curves, AUC scores, F1 scores and number of 



known cancer genes retrieved in their 20, 50, 100, 200, 500 top-ranked candidate genes, using 

either HumanNet or STRINGv10 networks validated on the CGC reference cancer gene set. Similar 

results were obtained when the other four reference cancer gene sets were used for validation 

(for AUC scores in Supplementary Figure S30 and others not shown due to space limitation). 

 

 

Supplementary Figures 

 

 

Supplementary Figure S1 Comparison between MaxMIF and MUFFINN on the bcgsc Pan-Cancer 

datasets. All the results of the methods were based on the bcgsc Pan-Cancer dataset, using the 

HumanNet (H) or STRINGv10 (S) networks, and the CGC reference cancer gene set. (a) ROC curves of 

the three methods. The AUC scores of the ROC curves are shown in the legends. TNR, true negative 

rate, represents specificity; TPR, true positive rate, represents sensitivity. (b) Cumulative number of 

known cancer genes recovered in the indicated number of top-ranked candidate genes. (c, d) F1 scores 

as a function of the number of top-ranked driver genes returned by the four methods.  

 



 

Supplementary Figure S2 Comparison between MaxMIF and MUFFINN on the bcm Pan-Cancer 

datasets. All the results of the methods were based on the bcm Pan-Cancer dataset, using the 

HumanNet (H) or STRINGv10 (S) networks, and the CGC reference cancer gene set. (a) ROC curves of 

the three methods. The AUC scores of the ROC curves are shown in the legends. TNR, true negative 

rate, represents specificity; TPR, true positive rate, represents sensitivity. (b) Cumulative number of 

known cancer genes recovered in the indicated number of top-ranked candidate genes. (c, d) F1 scores 

as a function of the number of top-ranked driver genes returned by the four methods. 

 



 

Supplementary Figure S3 Comparison between MaxMIF and MUFFINN on the broad Pan-Cancer 

datasets. All the results of the methods were based on the broad Pan-Cancer dataset, using the 

HumanNet (H) or STRINGv10 (S) networks, and the CGC reference cancer gene set. (a) ROC curves of 

the three methods. The AUC scores of the ROC curves are shown in the legends. TNR, true negative 

rate, represents specificity, TPR, true positive rate, represents sensitivity. (b) Cumulative number of 

known cancer genes recovered in the indicated number of top-ranked candidate genes. (c, d) F1 scores 

as a function of the number of top-ranked driver genes returned by the four methods. 

 



 

Supplementary Figure S4 Comparison between MaxMIF and MUFFINN on the ucsc Pan-Cancer 

datasets. All the results of the methods were based on the ucsc Pan-Cancer dataset, using the 

HumanNet (H) or STRINGv10 (S) networks, and the CGC reference cancer gene set. (a) ROC curves of 

the three methods. The AUC scores of the ROC curves are shown in the legends. TNR, true negative 

rate, represents specificity, TPR, true positive rate, represents sensitivity. (b) Cumulative number of 

known cancer genes recovered in the indicated number of top-ranked candidate genes. (c, d) F1 scores 

as a function of the number of top-ranked driver genes returned by the four methods. 

 



 

Supplementary Figure S5 Comparison between MaxMIF and MUFFINN on the wustl Pan-Cancer 

datasets. All the results of the methods were based on the wustl Pan-Cancer dataset, using the 

HumanNet (H) or STRINGv10 (S) networks, and the CGC reference cancer gene set. (a) ROC curves of 

the three methods. The AUC scores of the ROC curves are shown in the legends. TNR, true negative 

rate, represents specificity, TPR, true positive rate, represents sensitivity. (b) Cumulative number of 

known cancer genes recovered in the indicated number of top-ranked candidate genes. (c, d) F1 scores 

as a function of the number of top-ranked driver genes returned by the four methods. 

 



 
Supplementary Figure S6 Comparison of the AUC scores of the results between MaxMIF and 

MUFFINN (DNmax and DNsum) on the six Pan-Cancer datasets, using the HumanNet (H) or STRINGv10 

(S) networks, and the four reference cancer gene sets, i.e., CGCpointMut (a), Rule2020 (b), HCD (c) 

and MouseMut (d). 

 



 

Supplementary Figure S7 Comparison of ROC curves between MaxMIF and MUFFINN (with two 

algorithms DNmax and DNsum) on the AWG Pan-Cancer dataset, using the HumanNet (H) or 

STRINGv10 (S) networks, and the four reference cancer gene sets, i.e., CGCpointMut (a), Rule2020 (b), 

HCD (c) and MouseMut (d). The AUC scores of the ROC curves are shown in the legends. TNR, true 

negative rate, represents specificity; TPR, true positive rate, represents sensitivity. 

 



 

Supplementary Figure S8 Comparison of ROC curves between MaxMIF and MUFFINN (with two 

algorithms DNmax and DNsum) on the bcgsc Pan-Cancer dataset, using the HumanNet (H) or 

STRINGv10 (S) networks, and the four reference cancer gene sets, i.e., CGCpointMut (a), Rule2020 (b), 

HCD (c) and MouseMut (d). The AUC scores of the ROC curves are shown in the legends. TNR, true 

negative rate, represents specificity; TPR, true positive rate, represents sensitivity. 

 



 

Supplementary Figure S9 Comparison of ROC curves between MaxMIF and MUFFINN (with two 

algorithms DNmax and DNsum) on the bcm Pan-Cancer dataset, using the HumanNet (H) or 

STRINGv10 (S) networks, and the four reference cancer gene sets, i.e., CGCpointMut (a), Rule2020 (b), 

HCD (c) and MouseMut (d). The AUC scores of the ROC curves are shown in the legends. TNR, true 

negative rate, represents specificity; TPR, true positive rate, represents sensitivity. 

 



 

Supplementary Figure S10 Comparison of ROC curves between MaxMIF and MUFFINN (with two 

algorithms DNmax and DNsum) on the broad Pan-Cancer dataset, using the HumanNet (H) or 

STRINGv10 (S) networks, and the four reference cancer gene sets, i.e., CGCpointMut (a), Rule2020 (b), 

HCD (c) and MouseMut (d). The AUC scores of the ROC curves are shown in the legends. TNR, true 

negative rate, represents specificity; TPR, true positive rate, represents sensitivity. 

 



 

Supplementary Figure S11 Comparison of ROC curves between MaxMIF and MUFFINN (with two 

algorithms DNmax and DNsum) on the ucsc Pan-Cancer dataset, using the HumanNet (H) or 

STRINGv10 (S) networks, and the four reference cancer gene sets, i.e., CGCpointMut (a), Rule2020 (b), 

HCD (c) and MouseMut (d). The AUC scores of the ROC curves are shown in the legends. TNR, true 

negative rate, represents specificity; TPR, true positive rate, represents sensitivity. 

 



 

Supplementary Figure S12 Comparison of ROC curves between MaxMIF and MUFFINN (with two 

algorithms DNmax and DNsum) on the wustl Pan-Cancer dataset, using the HumanNet (H) or 

STRINGv10 (S) networks, and the four reference cancer gene sets, i.e., CGCpointMut (a), Rule2020 (b), 

HCD (c) and MouseMut (d). The AUC scores of the ROC curves are shown in the legends. TNR, true 

negative rate, represents specificity, TPR; true positive rate, represents sensitivity. 

 



 

Supplementary Figure S13 Comparison of the cumulative number of known cancer genes recovered 

in the indicated number of top-ranked candidate genes between MaxMIF and MUFFINN (with two 

algorithms DNmax and DNsum). The results are based on the six Pan-Cancer dataset, i.e., AWG (a), 

bcgsc (b), bcm (c), broad (d), ucsc (e) and wustl (f), using the HumanNet (H) or STRINGv10 (S) 

networks, and the four reference cancer gene sets, i.e., CGCpointMut (a-f1), Rule2020 (a-f2), HCD 

(a-f3) and MouseMut (a-f4). 

 



 

Supplementary Figure S14 Comparison between MaxMIF and ContrastRank. (a, b) F1 scores as a 

function of the number of top-ranked driver genes returned on the cancer cohorts LUAD and PRAD, 

using the HumanNet (H) or STRINGv10 (S) networks, and the CGC reference cancer gene set. 

Cumulative number of known cancer genes recovered in the indicated number of top-ranked 

candidate genes on the cancer cohorts LUAD and PRAD, using the HumanNet (H) or STRINGv10 (S) 

networks, and the CGC (c, d) and Rule2020 (e, f) reference cancer gene sets. 

 



 

Supplementary Figure S15 Comparison of the AUC scores over the 19 datasets among MaxMIF with 

the other methods, i.e., MUFFINN (with two algorithms DNmax and DNsum), MutSig2.0, MutSigCV, 

and Mutation_Assessor (Mut_Ass), using the HumanNet (H) or STRINGv10 (S) networks if method is 

network-based, and the four reference cancer gene sets, i.e., CGCpointMut (a), Rule2020 (b), HCD (c) 

and MouseMut (d). 

 



 
Supplementary Figure S16 Comparison of the average F1 scores as a function of the number of 

top-ranked genes returned among MaxMIF with the other methods, i.e., MUFFINN (with two 

algorithms DNmax and DNsum), MutSig2.0, MutSigCV, and Mutation_Assessor (Mut_Ass), across the 

19 datasets, using the HumanNet (H) or STRINGv10 (S) networks if method is network-based, and the 

four reference cancer gene sets, i.e., CGCpointMut (a, b), Rule2020 (c, d), HCD (e, f) and MouseMut (g, 

h). 

 



 

Supplementary Figure S17 Comparison of the cumulative number of known cancer genes recovered 

in top-ranked genes between using mutation-score (MS_based) and mutation frequency (F_based), 

based on the six Pan-Cancer datasets namely AWG, bcgsc, bcm, broad, ucsc and wustl, using the CGC 

and Rule2020 reference gene sets. 

 



 

Supplementary Figure S18 The overlaps of the five reference gene sets i.e., CGC, CGCpointMut, 

Rule2020, HCD and MouseMut. 

 



 

Supplementary Figure S19 Comparison of the ROC curves of MaxMIF with (red) or without (blue) a 

background mutation-score (BMS) based on a mutation dataset of 30 sample using the HumanNet (a, 

c) or STRINGv10 (b, d) networks, and the CGC (a, b) and Rule2020 (c, d) reference gene sets. 

 



 

Supplementary Figure S20 Comparison between different biological distances used in the MaxMIF 

model. The inverse PPI distance, and the inverse Pearson correlation coefficients of the corresponding 

gene expression profiles of the two genes in the STRINGv10 (PCC(S)) or HumanNet (PCC(H)) were 

compared in MaxMIF on six cancer types used in GGM (BRCA, GBM, HNSC, KIRC, LUAD and LUSC), in 

term of the cumulative number of known cancer genes recovered in top-ranked genes using the CGC 

and Rule2020 reference gene sets. 

 



 

Supplementary Figure S21 Comparison of ROC, AUC score and F1 score between MaxMIF and GGM. 

(a) ROC plots of the results of the two methods on BRCA, using the HumanNet (H) or STRINGv10 (S) 

networks, and the CGC reference cancer gene set. The AUC scores of the ROC curves are shown in the 

legends. TNR, true negative rate, represents specificity; TPR, true positive rate, represents sensitivity. 

(b) AUC scores of the results of the two methods on the eight cancer types (BRCA, GBM, HNSC, KIRC, 

LUAD, LUSC, OV and UCEC), validated on the CGC reference cancer gene set. (c, d) F1 scores as a 

function of the number of top-ranked driver genes returned by the two methods on BRCA and LUAD, 

using the HumanNet (H) or STRINGv10 (S) networks, and the CGC reference cancer gene set. 

 



 

Supplementary Figure S22 Comparison of the cumulative number of known cancer genes recovered 

in top-ranked genes between MaxMIF and GGM, based on the eight cancer types used in GGM (BRCA, 

GBM, HNSC, KIRC, LUAD, LUSC, OV and UCEC), using the HumanNet (H) or STRINGv10 (S) networks if 

method is network-based, and the CGC reference gene set. 

 



 

Supplementary Figure S23 Comparison of the AUC scores between MaxMIF and GGM on the eight 

cancer types. Cumulative number of known cancer genes recovered in the indicated number of 

top-ranked candidate genes, using the HumanNet (H) and STRINGv10 (S) networks, respectively, and 

the four reference cancer gene sets, i.e., CGCpointMut (a), Rule2020 (b), HCD (c) and MouseMut (d). 

The eight cancer types are BRCA, GBM, HNSC, KIRC, LUAD, LUSC, OV and UCEC. 

 

 

 

Supplementary Tables 

 

Supplementary Table S1 Summary of the six non-silent somatic mutation datasets of Pan-Cancer 

from TCGA. 

Datasets Sizes Organizations Methods Version 

AWG 4429 TCGA PANCANCER Analysis Working Group _ _ 2017-09-08 

bcgsc 3219 Michael Smith Genome Sciences Centre 

(British Columbia Genome Sciences Centre 

the BCGSC pipeline 

method 

2016-08-17 

bcm 4144 Baylor College of Medicine Human Genome the Baylor pipeline 2017-10-16 



Sequencing Center method 

broad 6333 Broad Institute Genome Sequencing Center the MuTect method 2016-08-17 

ucsc 2685 University of California Santa Cruz GDAC the RADIA method 2016-08-17 

wustl 1024 Washington University Genome Center the WashU pipeline method 2017-10-16 

 

Supplementary Table S2 Summary of the 19 somatic non-silent mutation datasets of individual 

cancer types from TCGA. 

Cohorts Team Sizes Cancer types  Version 

BLCA broad 396 bladder urothelial carcinoma 2018-01-12 

BRCA AWG 771 breast invasive carcinoma 2017-09-08 

CESC wustl 

194 

cervical squamous cell carcinoma & 

endocervical adenocarcinoma 

2018-01-10 

COADREAD AWG 224 colon & rectum adenocarcinoma 2017-09-08 

GBM AWG 291 glioblastoma multiforme 2017-09-08 

HNSC AWG 306 head & neck squamous cell carcinoma 2017-09-08 

KIRC AWG 417 kidney renal clear cell carcinoma 2017-09-08 

KIRP bcm 282 kidney renal papillary cell carcinoma 2018-01-12 

LAML AWG 196 acute myeloid leukemia 2017-09-08 

LGG bcm 289 brain lower grade glioma 2018-01-12 

LUAD broad 543 lung adenocarcinoma 2018-01-12 

LUSC AWG 178 lung squamous cell carcinoma 2017-09-08 

OV AWG 316 ovarian serous cystadenocarcinoma 2017-09-08 

PAAD bcgsc 147 pancreatic adenocarcinoma 2018-01-12 

PRAD broad 499 prostate adenocarcinoma 2018-01-12 

SKCM bcm 344 skin cutaneous melanoma 2018-01-12 

STAD bcm 379 stomach adenocarcinoma  2018-01-12 

THCA broad 504 thyroid carcinoma  2018-01-12 

UCEC AWG 248 uterine corpus endometrioid carcinoma 2017-09-08 

 

 

Supplementary Table S3 Potential novel cancer genes predicted by MaxMIF are enriched in GAD 

(Genetic Association Database). P values were computed using the Fisher’s exact test, and FDR 

(false discovery rate) were the adjusted P values by Benjamini-Hochberg correction for multiple 

hypothesis tests.  

Terms Count P value FDR Genes (Entrez ID) 

Breast Cancer 11 1.67E-07 6.22E-05 
1457, 5291, 580, 1111, 3667, 5888, 3643, 8202, 

1950, 5591, 5469 

breast cancer    9 6.95E-06 1.30E-03 
5599, 580, 1111, 3667, 5888, 8202, 1950, 5591, 

5469 

epithelial ovarian cancer  6 2.33E-05 2.17E-03 580, 1111, 5888, 3643, 8202, 1950 

lung cancer  8 6.71E-05 4.17E-03 580, 1111, 3667, 5888, 3643, 8202, 1950, 5591 

Bladder Cancer 8 7.86E-05 4.18E-03 580, 1111, 3667, 5888, 3643, 8202, 1950, 5591 

Colorectal Cancer 7 1.99E-04 8.23E-03 1457, 2908, 1111, 3667, 5888, 3643, 1950 

prostate cancer 7 5.24E-04 1.76E-02 2908, 3667, 5888, 8202, 1950, 5591, 5469 



Lung Cancer 7 1.16E-03 3.53E-02 580, 1111, 3667, 5888, 3643, 8202, 1950 

brain cancer 3 3.91E-03 8.24E-02 5888, 1950, 5591 

esophageal 

adenocarcinoma 
5 5.65E-03 9.58E-02 580, 1111, 3667, 5888, 1950 

ovarian cancer 5 6.80E-03 1.05E-01 5888, 7297, 8202, 1950, 5610 

Brain Neoplasms|Glioma 3 8.25E-03 1.16E-01 5888, 1950, 5591 

Adenocarcinoma|pancre-

atic neoplasm|Pancreatic 

Neoplasms 

2 3.28E-02 3.06E-01 3667, 8471 

ovarian cancer   3 3.63E-02 3.26E-01 580, 5888, 1950 

Carcinoma, Papillary| 

Thyroid Neoplasms 
2 4.28E-02 3.49E-01 5888, 5591 
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