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S3 Text. Analysis of the SCA method

Statistical coupling analysis (SCA) is a benchmark co-evolution method which has been employed to
infer sectors of co-evolving residues with strong biochemical association in various protein families [1–4].
For the studied HIV and HCV proteins however, SCA produced sectors with little or no significant
association to known biochemical domains (S5 Fig). Here we provide further details of this method and
analyze fundamental differences with respect to the RoCA approach.

SCA is based on a conservation-weighted covariance matrix, ΩSCA, directly computed from the binary
MSA. In contrast, RoCA is based on the Pearson correlation matrix, computed from the phylogeny-filtered
MSA (Materials and Methods); note however that SCA does also filter the phylogenetic effect, in an
alternative but similar way, by discarding the leading eigenvector prior to forming sectors [1]. In the
subsequent description, to simplify the discussion, the covariance and correlation coefficients refer to those
computed from the (unfiltered) binary MSA and we use different notation to avoid potential confusion
with the corresponding quantities defined in Materials and Methods.

To specify the SCA matrix, first denote fi the mutation frequency at residue i, and fij the pairwise
mutation frequency at residues i and j. Also, let a denote the consensus amino acid at residue i, having
frequency gai = 1− fi, which we refer to as the “conservation” of residue i. With these definitions, the
entries of the SCA matrix ΩSCA are given by

ΩSCA
ij = φiφj |Ωij | , i, j = 1, 2, ...,M, (1)

where Ωij = fij − fifj represents the mutational covariance between residues i and j, while φi is a

residue-specific weight defined as φi = ln
gai (1−qa)
qa(1−gai ) . This weight involves the consensus frequency gai

as well as the quantity qa, representing the background frequency of amino acid a observed across all
proteins in nature. Based on ΩSCA, SCA employs spectral analysis with the aim of identifying correlated
groups of residues while simultaneously emphasizing those residues which are most conserved. The weight
φi varies with the frequency of the consensus amino acid at residue i, calibrated against how frequent this
amino acid is in nature. For our cases of interest, we always have gai > qa, and φi increases non-linearly
with increased conservation (i.e., as gai increases).

It is instructive to express the entries of the SCA matrix in terms of the correlation coefficients as

ΩSCA
ij = φiσi︸︷︷︸

wi

φjσj︸︷︷︸
wj

|Rij | , i, j = 1, 2, ...,M, (2)

1



where σi =
√
fi(1− fi) is the mutational standard deviation for residue i and Rij =

Ωij

σiσj
is the

correlation coefficient between residues i and j. In this representation, wi is seen as the weight (relative
to correlation) associated with residue i in the SCA matrix. By definition, the correlation coefficients
Rij are independent of conservation, hence these weights clearly quantify the role of conservation in
the SCA matrix construction. To shed light into such effect, consider the diagonal entries ΩSCA

ii = w2
i

(recall that Rii = 1). These are plotted in Fig A as a function of conservation gai , with the background
frequency qa set to the average value taken over all amino acids. (Note that qa is quite small for all
amino acids, ranging from 0.01 to 0.09 and, consequently, the trends observed in Fig A remain the same
for any specific choice of amino acid a.) As seen from the figure, for the range of conservation values
gai ∼[0.1, 0.75], which embraces those values generally observed for protein families (on which SCA was
applied), the SCA weights monotonically boost the more conserved residues, as expected. However, for
the much higher conservation levels observed in each of the viral proteins (i.e., gai > 0.8), the behavior
is dramatically different—the SCA weights in this case depress the most conserved residues. In this
sense, for the highly conserved viral proteins, the SCA matrix effectively behaves in a similar manner
to the classical covariance matrix, assigning higher weights to those residues with greater variability.
Consistent with these observations, the few SCA sectors that were found to associate to a biochemical
domain corresponded to those with the lowest mean conservation (Fig A). These results suggest that the
SCA matrix, at least in view of its original design objective of emphasizing mutational conservation, is
well suited for the co-evolutionary analysis of certain protein families, but not for the HIV and HCV
proteins under study.

SCA Implementation

For implementing SCA, we used the code provided in [1]. Note that a new implementation is also
available at http://systems.swmed.edu/rr_lab/ that involves forming sectors using the independent
components, obtained from independent component analysis. However, results obtained with both
implementations were nearly indistinguishable.
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Fig A. Weighting of the protein residues in SCA with respect to conservation. The left
y-axis (blue) plots the trend followed by the diagonal entries of the SCA matrix, w2

i , as a function of
conservation. The right y-axis plots the conservation of (A) three protein families that were analyzed
using the SCA method (G protein-coupled receptors [5], S1A serine proteases [1] and PDZ domain
family [3, 6]) (gray) and (B) the four internal viral proteins studied in this work (red). The black circle
indicates the median, the edges of the box represent the first and third quartiles, and whiskers extend to
span a 1.5 inter-quartile range from the edges.
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