Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.201301837

Rational Assembly of Optoplasmonic Hetero-nanoparticle Arrays with Tunable Photonic–Plasmonic Resonances

Yan Hong, Yue Qiu, Tianhong Chen, and Björn M. Reinhard*

Supporting Information

Rational Assembly of Optoplasmonic Hetero-Nanoparticle-Arrays with Tunable Photonic-

Plasmonic Resonances

By Yan Hong, Yue Qiu, Tianhong Chen, and Björn M. Reinhard*
[*] Y. Hong, Y. Qiu, T. Chen, Prof. B. M. Reinhard
Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA
E-mail: (bmr@bu.edu)

Figure. S1. Experimental and MSTM-simulated far field spectra of optoplasmonic array components. a) Spectra of Au clusters. For the MSTM result, a single Au trimer as described in the Methods section was simulated. b) Spectra of TiO_2 NP. The black curve represents the spectrum of an individual TiO_2 NP immobilized on glass substrate. The red curve is the MSTM simulation result for one $n_r = 1.80$ sphere (Diameter = 250nm) embedded in a medium with $n_r = 1.24$.

Figure S2: MSTM-simulated far-field scattering spectra of 8×8 arrays with $\theta^{det} = 0^{\circ}$ and $\varphi^{det} = 0^{\circ}$. (a),(d) Au NP cluster array (NCA). (b),(e) TiO₂ NP array. (c),(f) Optoplasmonic array. (a-c) were obtained for $\theta^{inc} = 60^{\circ}$ and $\varphi^{inc} = 0^{\circ}$ to simulate the (1,0) mode. (d-f) were obtained for $\theta^{inc} = 60$ and $\varphi^{inc} = 45^{\circ}$ to simulate the (1,1) mode.

Figure S3: MSTM-simulated near field intensities of the hottest point as a function of the array length (number of binding sites along one axis) in an optoplasmonic array (black), 60 nm Au NP trimer NCA (red), and TiO₂ NP array (blue).