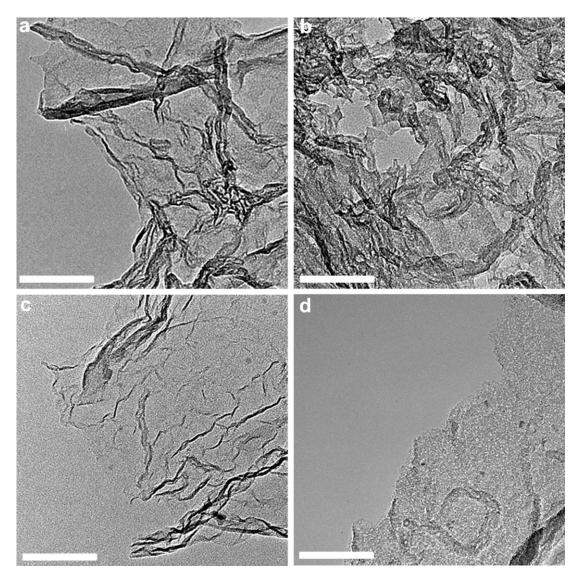
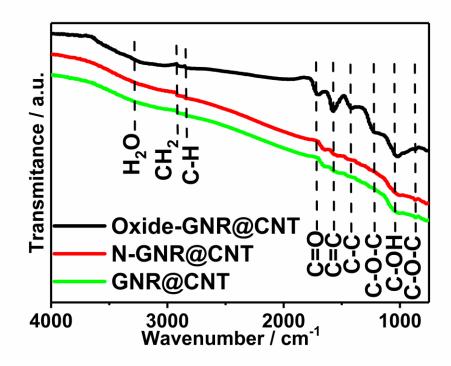
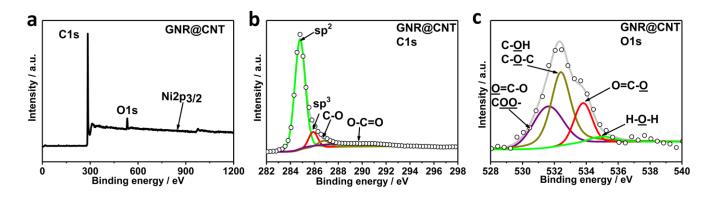

## **Supplementary Information**


Zigzag Carbon as Highly Efficient and Stable Electrocatalyst for Oxygen Reduction

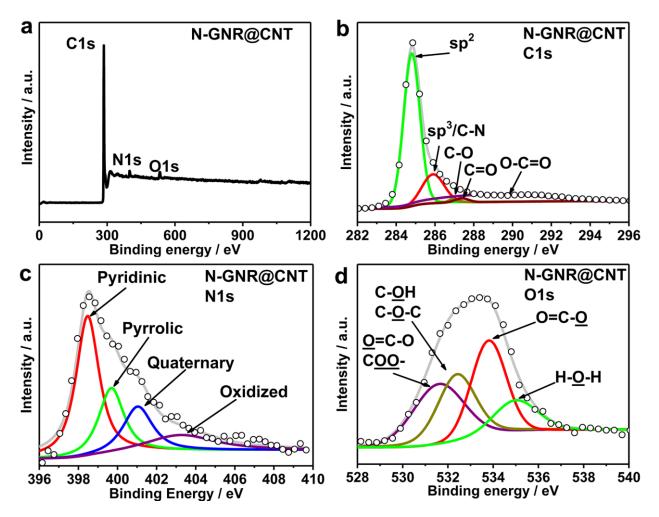
**Reaction in PEMFC** 


Xue et al.



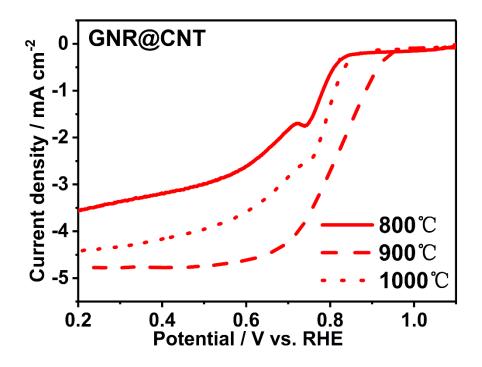

Supplementary Figure 1 | Morphologies of oxidized-GNR@CNT and oxidized-GNR before annealing. TEM images of (a-b) partially unzipped oxidized-GNR@CNT, and (c-d) fully unzipped oxidized-GNR. Scale bar in a, c is 100 nm, and in b, d is 10 nm.



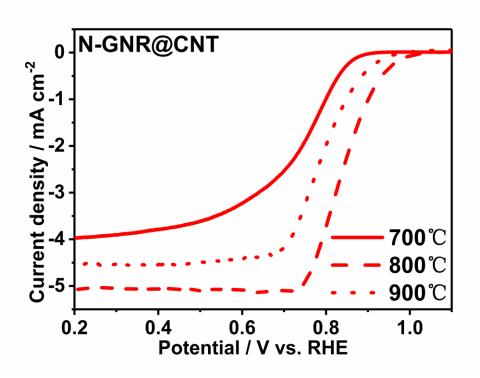

Supplementary Figure 2 | Morphologies of four samples after annealing. TEM images of (a) GNR@CNT, (b) N-GNR@CNT, (c) GNR and (d) N-GNR. Scale bar: 100 nm.



Supplementary Figure 3 | FT-IR spectra of Oxide-GNR@CNT, GNR@CNT and N-GNR@CNT.

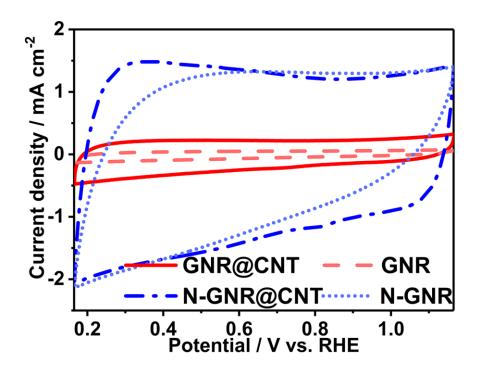



Supplementary Figure 4 | XPS spectra of GNR@CNT. (a) survey, and fine spectra of (b) C1s and (c) O1s.

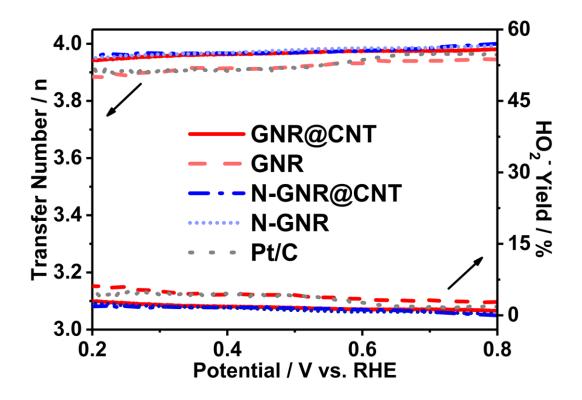



Supplementary Figure 5 | XPS spectra of N-GNR@CNT. (a) survey, and fine spectra of (b) C1s, (c)

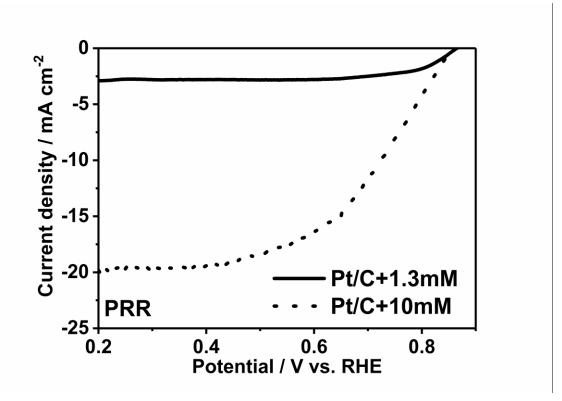
N1s and (d) O1s.



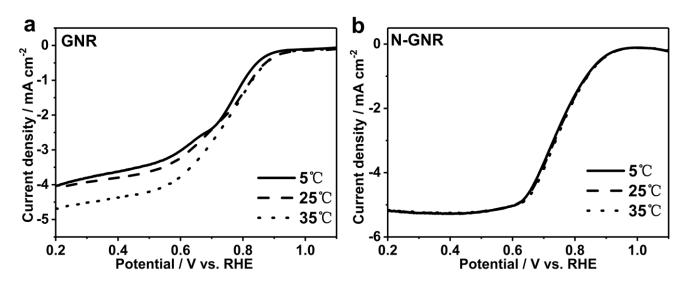

Supplementary Figure 6 | LSV curves of GNR@CNT annealed at different temperatures in Ar. The ORR were measured in  $O_2$ -saturated 0.1 M KOH at 1600 rpm. Scan rate: 10 mV s<sup>-1</sup>.



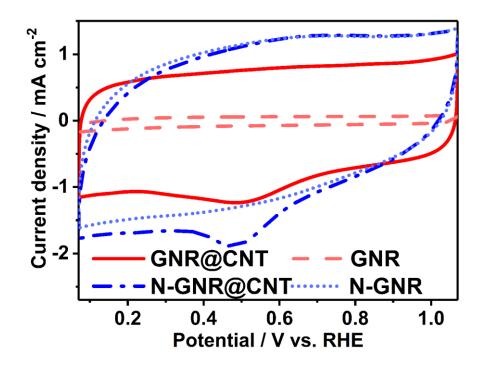

Supplementary Figure 7 | LSV curves of N-GNR@CNT annealed at different temperatures in NH<sub>3</sub>.


The ORR were measured in O<sub>2</sub>-saturated 0.1 M KOH at 1600 rpm. Scan rate: 10 mV s<sup>-1</sup>.

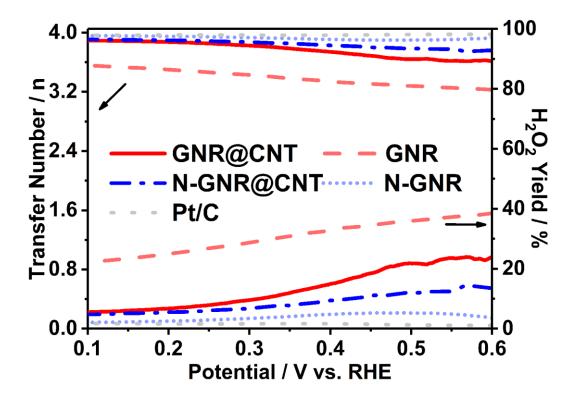



Supplementary Figure 8 | CV curves of four samples measured in N<sub>2</sub>-saturated 0.1 M KOH. Scan rate:  $50 \text{ mV s}^{-1}$ .

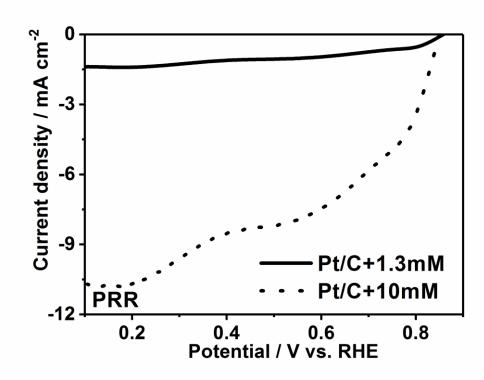



Supplementary Figure 9 | Electron transfer number and  $HO_2^-$  yield of GNR@CNT, GNR, N-GNR@CNT, N-GNR and Pt/C in O<sub>2</sub>-saturated 0.1 M KOH at 1600 rpm. Scan rate: 10 mV s<sup>-1</sup>.

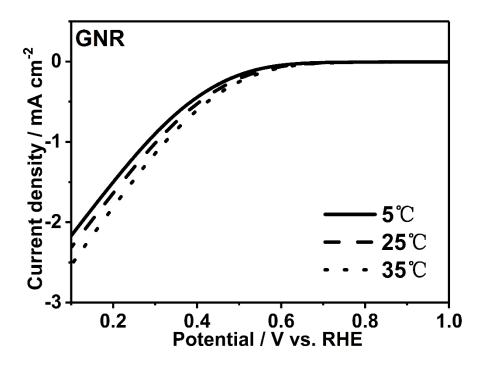



Supplementary Figure 10 | PRR polarization curves of Pt/C(20wt% Pt) measured in Ar-saturated 0.1 M KOH at 1600rpm. Scan rate: 10 mV s<sup>-1</sup>.

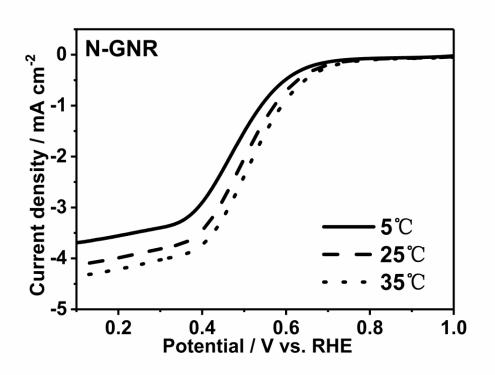



**Supplementary Figure 11 | ORR responses to the testing temperature in alkaline.** LSV curves of a) GNR and b) N-GNR measured at different temperatures in O<sub>2</sub>-saturated 0.1 M KOH at 1600 rpm. Scan rate: 10 mV s<sup>-1</sup>.

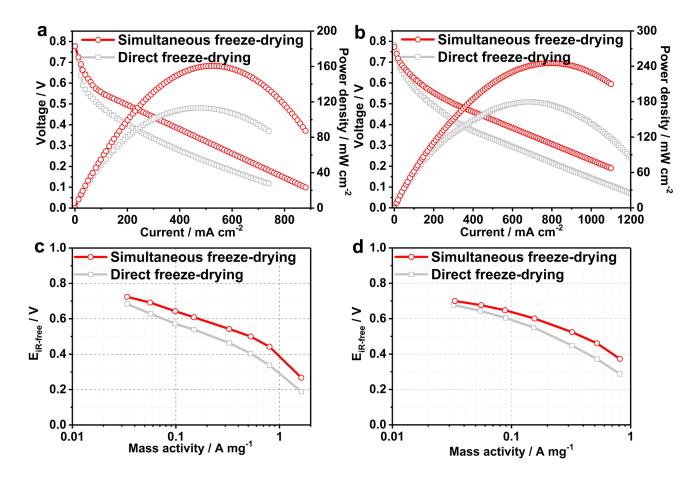



Supplementary Figure 12 | CV curves of indicated samples measured in N<sub>2</sub>-saturated 0.5 M  $H_2SO_4$ . Scan rate: 50 mV s<sup>-1</sup>.



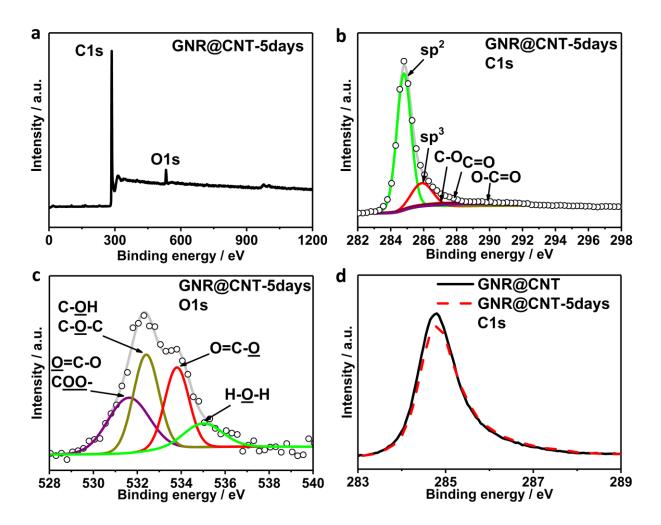

Supplementary Figure 13 | Electron transfer number and  $H_2O_2$  yield of GNR@CNT, GNR, N-GNR@CNT, N-GNR and Pt/C in O<sub>2</sub>-saturated 0.5 M  $H_2SO_4$  at 1600 rpm. Scan rate: 10 mV s<sup>-1</sup>.



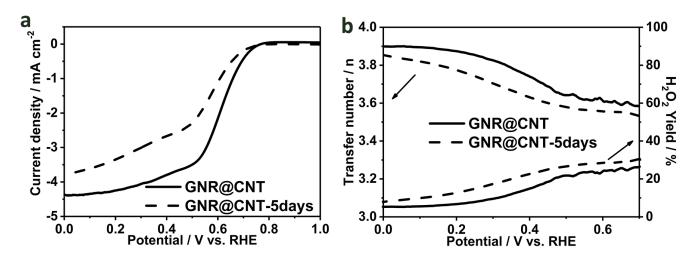

Supplementary Figure 14 | PRR polarization curves of Pt/C(20wt% Pt) measured in 0.5 M  $H_2SO_4$ at 1600 rpm. Scan rate: 10 mV s<sup>-1</sup>.



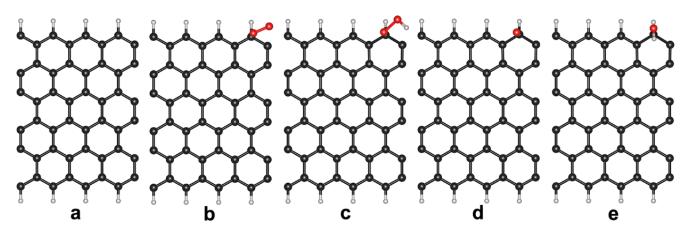
Supplementary Figure 15 | LSV curves of GNR measured at different temperatures in  $O_2$ -saturated 0.5 M H<sub>2</sub>SO<sub>4</sub> at 1600 rpm. Scan rate: 10 mV s<sup>-1</sup>.




Supplementary Figure 16 | LSV curves of N-GNR measured at different temperatures in  $O_2$ -saturated 0.5 M H<sub>2</sub>SO<sub>4</sub> at 1600 rpm. Scan rate: 10 mV s<sup>-1</sup>.




Supplementary Figure 17 | Polarization and power density curves of a) GNR@CNT+XC-72 ( $0.4+1.6 \text{ mg cm}^{-2}$ ) and b) N-GNR@CNT+XC-72 ( $0.9+2.2 \text{ mg cm}^{-2}$ ), and polarization curves expressed by E<sub>iR-free</sub> vs Log mass activity of c) GNR@CNT+XC-72 ( $0.4+1.6 \text{ mg cm}^{-2}$ ) and d) N-GNR@CNT+XC-72 ( $0.9+2.2 \text{ mg cm}^{-2}$ ) as cathode in PEMFC measured with 2 bar H<sub>2</sub>–O<sub>2</sub>, 100% RH, 80 °C.


Simultaneous freeze-drying: oxidized-GNR@CNT was mixed with XC-72 (spacer) first and then the mixture was freeze-dried and pyrolized. Direct freeze-drying: oxidized-GNR@CNT was freezedried and pyrolized to GNR@CNT or N-GNR@CNT first, and then they were mixed with XC-72 for catalyst ink. The PEMFC performance could be improved by enhancing the mass transfer of catalyst layer, through freeze-drying the catalyst precursor together with XC-72 before pyrolysis.



Supplementary Figure 18 | XPS spectra of GNR@CNT-5days. (a) survey, (b)C1s, (c) O1s and (d) a comparison of C1s spectra between GNR@CNT and GNR@CNT-5days.



Supplementary Figure 19 | Half-cell performance comparison after air oxidization. (a) LSV curves and (b) electron transfer number and  $H_2O_2$  yield of GNR@CNT (fresh) and GNR@CNT-5days (after exposed in air for 5 days) in  $O_2$ -saturated 0.5 M  $H_2SO_4$  at 1600 rpm. Scan rate 10 mV s<sup>-1</sup>.



Supplementary Figure 20 | Schematic representation of ORR process on the zigzag-edge of graphene nanoribbon. (a) zigzag-edge graphene nanoribbons before ORR, (b) absorption of  $O_2$  on a carbon at zigzag-edge, (c) adsorption of OOH after reaction with a proton, (d) adsorption of O after the release of a water molecule, and (e) adsorption of OH after reaction with a proton. Black, white, and red balls represent carbon, hydrogen, and oxygen atoms, respectively.

Supplementary Table 1 | Relative elemental contents of GNR@CNT, N-GNR@CNT and GNR@CNT-5days extracted from the XPS results

|                   |            | 24 2               |            | O 1s [at.%] |                                |                                 |               |                |
|-------------------|------------|--------------------|------------|-------------|--------------------------------|---------------------------------|---------------|----------------|
| Samples           | C1s [at.%] | sp²/sp³            | N1s [at.%] | Total       | C <u>OO</u> -<br><u>O</u> =C-O | C- <u>O</u> H<br>C- <u>O</u> -C | 0=C- <u>O</u> | Н- <u>О</u> -Н |
| GNR@CNT           | 97.73      | 8.77               | 0          | 2.27        | 0.73                           | 1.05                            | 0.41          | 0.07           |
| N-GNR@CNT         | 94.56      | 4.0 <sup>[a]</sup> | 3.09       | 2.35        |                                |                                 |               |                |
| GNR@CNT-<br>5days | 97.59      | 3.94               | 0          | 2.41        | 0.72                           | 0.79                            | 0.62          | 0.28           |

[a] C-N were contained in sp<sup>3</sup> for N-GNR@CNT.

Supplementary Table 2 | ORR activities of carbon-based metal-free electrocatalyst from literatures measured by half-cell in 0.1 M KOH.

| Catalyst              | Catalyst<br>loading<br>(mg cm <sup>-2</sup> ) | Onset<br>Potential<br>(V vs.<br>RHE) | Scan<br>rate<br>(mV s <sup>-1</sup> ) | Rotation<br>Rate<br>(rpm) | Current<br>Density<br>at 0.4 V<br>(mA cm <sup>-2</sup> ) | Electron<br>transfer<br>number<br>(n) | Reference |
|-----------------------|-----------------------------------------------|--------------------------------------|---------------------------------------|---------------------------|----------------------------------------------------------|---------------------------------------|-----------|
| VA-NCNT               | N.A.                                          | 0.976                                | 5                                     | 1400                      | -3.90                                                    | 3.9                                   | 1         |
| CNT                   | 0.255                                         | 0.846                                | 10                                    | 1600                      | -2.1                                                     | 3.1                                   | 2         |
| N-porous carbon sheet | 0.2                                           | 0.956                                | 5                                     | 1600                      | -6.2                                                     | 3.98                                  | 2         |
| N-graphene            | 0.038                                         | 0.936                                | 10                                    | 1600                      | -3.06                                                    | 3.3                                   | 3         |
| N-<br>graphene/CNT    | 0.05                                          | 0.866                                | 20                                    | 1600                      | -3                                                       | 3.7                                   | 4         |
| N-graphitic<br>arrays | 0.026                                         | 0.687                                | 10                                    | 1600                      | -5.7                                                     | 3.89                                  | 5         |
| graphite-BM           | 0.1                                           | 0.816                                | 10                                    | 1600                      | -1.75                                                    | 3.8                                   | 6         |
| CNC700                | 0.1                                           | 0.876                                | 10                                    | 2500                      | -3.1                                                     | 2.9                                   | 7         |
| GNR                   | 0.398                                         | 0.919                                | 10                                    | 1600                      | -3.8                                                     | 3.88                                  | This work |
| N-GNR                 | 0.398                                         | 0.946                                | 10                                    | 1600                      | -5.2                                                     | 3.95                                  | This work |
| GNR@CNT               | 0.398                                         | 0.960                                | 10                                    | 1600                      | -4.8                                                     | 3.94                                  | This work |
| N-GNR@CNT             | 0.398                                         | 0.990                                | 10                                    | 1600                      | -5.1                                                     | 3.96                                  | This work |

| Catalyst                                       | Electrolyte                             | Catalyst<br>loading<br>(mg cm <sup>-</sup><br><sup>2</sup> ) | Onset<br>Potential<br>(V vs.<br>RHE) | Scan<br>rate<br>(mV<br>s <sup>-1</sup> ) | Rotation<br>Rate<br>(rpm) | Current<br>Density<br>at 0.3 V<br>(mA cm <sup>-</sup><br><sup>2</sup> ) | Electron<br>transfer<br>number<br>(n) | Reference |
|------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|--------------------------------------|------------------------------------------|---------------------------|-------------------------------------------------------------------------|---------------------------------------|-----------|
| N and P<br>codoped<br>mesoporous<br>nanocarbon | 0.1 M<br>HClO₄                          | 0.450                                                        | 0.83                                 | 5                                        | 1600                      | 4.70                                                                    | 3.8                                   | 8         |
| N doped carbon<br>nanotubes                    | 0.5 M<br>H <sub>2</sub> SO <sub>4</sub> | N.A.                                                         | 0.70                                 | 10                                       | 1600                      | 1.73                                                                    | 3.52-<br>3.92                         | 9         |
| N doped carbon<br>nanosheets                   | 0.5 M<br>H₂SO₄                          | 0.600                                                        | 0.72                                 | 10                                       | 1600                      | 4.91                                                                    | 3.67-<br>3.91                         | 10        |
| N doped carbon<br>nanosheets                   | 0.5 M<br>H₂SO₄                          | 0.051                                                        | 0.725                                | 20                                       | 1600                      | 2.17                                                                    | 3.90-<br>3.98                         | 11        |
| N doped<br>mesoporous<br>cabons                | 0.5 M<br>H₂SO₄                          | 0.312                                                        | 0.720                                | 10                                       | 1600                      | 3.95                                                                    | 3.48                                  | 12        |
| B and N<br>codoped<br>carbons                  | 0.5 M<br>H₂SO₄                          | 0.200                                                        | 0.57                                 | 10                                       | 1500                      | 0.68                                                                    | N.A.                                  | 13        |
| GNR                                            | 0.5 M<br>H₂SO₄                          | 0.398                                                        | 0.52                                 | 10                                       | 1600                      | 1.02                                                                    | 3.19-<br>3.59                         | This work |
| N-GNR                                          | 0.5 M<br>H₂SO₄                          | 0.398                                                        | 0.68                                 | 10                                       | 1600                      | 3.81                                                                    | 3.90-<br>3.96                         | This work |
| GNR@CNT                                        | 0.5 M<br>H₂SO₄                          | 0.398                                                        | 0.76                                 | 10                                       | 1600                      | 4.06                                                                    | 3.61-<br>3.90                         | This work |
| N-GNR@CNT                                      | 0.5 M<br>H₂SO₄                          | 0.398                                                        | 0.75                                 | 10                                       | 1600                      | 3.17                                                                    | 3.72-<br>3.92                         | This work |

Supplementary Table 3 | ORR activities of carbon-based metal-free electrocatalysts from literatures (measured in acidic electrolytes).

Supplementary Table 4 | Gravimetric activities of various metal-free electrocatalysts compared with the N-GNR@CNT and GNR@CNT in PEM fuel cells. All the data in the table have also been scaled by the electrode surface area.

| Materials               | Current at<br>0.2 V<br>(A g <sup>-1</sup> ) | Peak<br>power<br>density<br>(W g <sup>-1</sup> ) | Catalyst<br>loading<br>(mg cm <sup>-2</sup> ) | O <sub>2</sub> -H <sub>2</sub><br>absolute<br>pressure<br>(bars) | Cell<br>temperature<br>(°C) | Reference |
|-------------------------|---------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|-----------------------------|-----------|
| Co-PPY-C                | 725                                         | 156                                              | 0.8 <sup>[a]</sup>                            | 2.5                                                              | 80                          | 14        |
| Fe/Phen/Z8              | 1500                                        | 233                                              | 3.9                                           | 1.5                                                              | N.A.                        | 15        |
| (CM+PANI)-Fe-<br>C      | 900                                         | 225                                              | 4.0                                           | 2.5                                                              | 80                          | 16        |
| 20Co-NC-1100            | N.A.                                        | 140                                              | 4.0                                           | 2.5                                                              | 80                          | 17        |
| Fe2-Z8-C                | N.A.                                        | 407                                              | 2.8                                           | 2.5                                                              | 80                          | 18        |
| (Fe,Co)/N-C             | N.A.                                        | 1272                                             | 0.77                                          | 2.5/1.5(O <sub>2</sub> /H <sub>2</sub> )                         | 80                          | 19        |
| bNGr                    | N.A.                                        | 52                                               | 4                                             | 2.5                                                              | N.A.                        | 20        |
| DMWNT-H2SO4-<br>Ar900   | 297                                         | 60                                               | 1.85                                          | 3.5                                                              | 90                          | 21        |
| NG@MMT                  | 750                                         | 160                                              | 2                                             | N.A.                                                             | N.A.                        | 22        |
| VA-NCNT                 | 1550                                        | 320                                              | 0.16                                          | 2.5                                                              | 80                          | 23        |
| N-G-CNT+KB              | 1500                                        | 300                                              | 0.5                                           | 2.5                                                              | 80                          | 23        |
| N-<br>GNR@CNT+XC-<br>72 | 2070/1950                                   | 420 / 380                                        | 0.25 / 0.5                                    | 2.5                                                              | 80                          | This work |
| GNR@CNT+XC-<br>72       | 2400/1153                                   | <mark>520</mark> / 235                           | 0.25 / 0.5                                    | 2.5                                                              | 80                          | This work |

[a] Here we regard Co-PPY as catalyst and substrate the quality of carbon black.

| Materials | Catalyst loading / mg cm <sup>-2</sup> | OCV / V <sub>RHE</sub> |  |
|-----------|----------------------------------------|------------------------|--|
| GNR       |                                        | 0.749                  |  |
| GNR@CNT   | 0.05                                   | 0.762                  |  |
| N-GNR     | 0.25                                   | 0.793                  |  |
| N-GNR@CNT |                                        | 0.772                  |  |
| GNR       |                                        | 0.611                  |  |
| GNR@CNT   |                                        | 0.776                  |  |
| N-GNR     | 0.5                                    | 0.794                  |  |
| N-GNR@CNT |                                        | 0.722                  |  |

## Supplementary Table 5 | Open circuit voltage (OCV) of metal-free catalysts in PEMFC.

## **Supplementary references**

- 1 Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. *Science* **323**, 760-764 (2009).
- Zhong, H. X. *et al.* ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. *Angew. Chem. Int. Ed.* 53, 14235-14239 (2014).
- 3 Yang, S. *et al.* Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. *Adv. Funct. Mater.* **22**, 3634-3640 (2012).
- Chen, P., Xiao, T. Y., Qian, Y. H., Li, S. S. & Yu, S. H. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. *Adv. Mater.* 25, 3192-3196 (2013).
- 5 Liu, R., Wu, D., Feng, X. & Mullen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. *Angew. Chem. Int. Ed.* **49**, 2565-2569 (2010).
- 6 Shen, A. *et al.* Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. *Angew. Chem. Int. Ed.* **53**, 10804-10808 (2014).
- Jiang, Y. *et al.* Significant contribution of intrinsic carbon defects to oxygen reduction activity.
  ACS Catal. 5, 6707-6712 (2015).
- 8 Zhang, J., Zhao, Z., Xia, Z. & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. *Nat. Nanotechnol.* **10**, 444-452 (2015).
- 9 Yu, D., Zhang, Q. & Dai, L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 132, 15127-15129 (2010).

- 10 Wei, W. *et al.* Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. *Angew. Chem. Int. Ed.* **53**, 1570-1574 (2014).
- 11 Chen, P. *et al.* Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. *Energy Environ. Sci.* **7**, 4095-4103 (2014).
- 12 Wang, X. *et al.* Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. *Chem. Mater.* **22**, 2178-2180 (2010).
- Ozaki, J.-I., Kimura, N., Anahara, T. & Oya, A. Preparation and oxygen reduction activity of BN-doped carbons. *Carbon* 45, 1847-1853 (2007).
- Bashyam, R. & Zelenay, P. A class of non-precious metal composite catalysts for fuel cells.
  *Nature* 443, 63-66 (2006).
- 15 Proietti, E. *et al.* Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. *Nat. Commun.* **2**, 416 (2011).
- 16 Chung, H. T. *et al.* Direct atomic-level insight into the active sites of a high-performance PGMfree ORR catalyst. *Science* **357**, 479-484 (2017).
- 17 Wang, X. X. *et al.* Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. *Adv. Mater.* **30**, 1706758 (2018).
- 18 Liu, Q., Liu, X., Zheng, L. & Shui, J. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. *Angew. Chem. Int. Ed.* **57**, 1204-1208 (2018).
- 19 Wang, J. *et al.* Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. *J. Am. Chem. Soc.* **139**, 17281-17284 (2017).
- 20 Choi, C. H. *et al.* Long-range electron transfer over graphene-based catalyst for high-performing oxygen reduction reactions: importance of size, N-doping, and metallic impurities. *J. Am. Chem. Soc.* **136**, 9070-9077 (2014).

- 21 Waki, K. *et al.* Non-nitrogen doped and non-metal oxygen reduction electrocatalysts based on carbon nanotubes: mechanism and origin of ORR activity. *Energy Environ. Sci.* **7**, 1950-1958 (2014).
- 22 Ding, W. *et al.* Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. *Angew. Chem. Int. Ed.* **52**, 11755-11759 (2013).
- 23 Shui, J., Wang, M., Du, F. & Dai, L. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. *Sci. Adv.* **1**, e1400129 (2015).