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Supplementary Figure 1 | Morphologies of oxidized-GNR@CNT and oxidized-GNR before
annealing. TEM images of (a-b) partially unzipped oxidized-GNR@CNT, and (c-d) fully unzipped

oxidized-GNR. Scale bar in a, cis 100 nm, and in b, d is 10 nm.



Supplementary Figure 2 | Morphologies of four samples after annealing. TEM images of (a)

GNR@CNT, (b) N-GNR@CNT, (c) GNR and (d) N-GNR. Scale bar: 100 nm.
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Supplementary Figure 3 | FT-IR spectra of Oxide-GNR@CNT, GNR@CNT and N-GNR@CNT.
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Supplementary Figure 4 | XPS spectra of GNR@CNT. (a) survey, and fine spectra of (b) Cls and (c)

Ols.
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Supplementary Figure 5 | XPS spectra of N-GNR@CNT. (a) survey, and fine spectra of (b) C1s, (c)

N1s and (d) O1ls.
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Supplementary Figure 6 | LSV curves of GNR@CNT annealed at different temperatures in Ar.

The ORR were measured in O,-saturated 0.1 M KOH at 1600 rpm. Scan rate: 10 mV s,



_ 0N-GNR@CNT

.

G .14

<

'--..‘2'

> |

2.3

]

§_4 "' ,—TOOOC

€ {ecceemecneenrs ;) — 800°C

S —=====-=-<=" ...900C
02 04 06 08 1.0

Potential / V vs. RHE

Supplementary Figure 7 | LSV curves of N-GNR@CNT annealed at different temperatures in NHs.

The ORR were measured in Oz-saturated 0.1 M KOH at 1600 rpm. Scan rate: 10 mV s™.
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Supplementary Figure 8 | CV curves of four samples measured in Nz-saturated 0.1 M KOH. Scan

rate: 50 mV s?.
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Supplementary Figure 9 | Electron transfer number and HO; yield of GNR@CNT, GNR, N-

GNR@CNT, N-GNR and Pt/C in Oz-saturated 0.1 M KOH at 1600 rpm. Scan rate: 10 mV s™.
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Supplementary Figure 10 | PRR polarization curves of Pt/C(20wt% Pt) measured in Ar-saturated

0.1 M KOH at 1600rpm. Scan rate: 10 mV s,
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Supplementary Figure 11 | ORR responses to the testing temperature in alkaline. LSV curves of a)

GNR and b) N-GNR measured at different temperatures in Oz-saturated 0.1 M KOH at 1600 rpm. Scan

rate: 10 mV s™.
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Supplementary Figure 12 | CV curves of indicated samples measured in N.-saturated 0.5 M

H,SO.. Scan rate: 50 mV s™.
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Supplementary Figure 13 | Electron transfer number and H.O. yield of GNR@CNT, GNR, N-

GNR@CNT, N-GNR and Pt/C in Oz-saturated 0.5 M H.SO, at 1600 rpm. Scan rate: 10 mV s™.
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Supplementary Figure 14 | PRR polarization curves of Pt/C(20wt% Pt) measured in 0.5 M H,SOa4

at 1600 rpm. Scan rate: 10 mV s,
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Supplementary Figure 15 | LSV curves of GNR measured at different temperatures in O»-

saturated 0.5 M H,SO, at 1600 rpm. Scan rate: 10 mV s,
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Supplementary Figure 16 | LSV curves of N-GNR measured at different temperatures in O-

saturated 0.5 M H.SO, at 1600 rpm. Scan rate: 10 mV s,
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Supplementary Figure 17 | Polarization and power density curves of a) GNR@CNT+XC-72
(0.4+1.6 mg cm™2) and b) N-GNR@CNT+XC-72 (0.9+2.2 mg cm™2), and polarization curves expressed
by Eir-ree VS LOg mass activity of c) GNR@CNT+XC-72 (0.4+1.6 mg cm2) and d) N-GNR@CNT+XC-

72 (0.9+2.2 mg cm™2) as cathode in PEMFC measured with 2 bar H—O, 100% RH, 80 °C.

Simultaneous freeze-drying: oxidized-GNR@CNT was mixed with XC-72 (spacer) first and then
the mixture was freeze-dried and pyrolized. Direct freeze-drying: oxidized-GNR@CNT was freeze-
dried and pyrolized to GNR@CNT or N-GNR@CNT first, and then they were mixed with XC-72 for
catalyst ink. The PEMFC performance could be improved by enhancing the mass transfer of catalyst

layer, through freeze-drying the catalyst precursor together with XC-72 before pyrolysis.
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Supplementary Figure 18 | XPS spectra of GNR@CNT-5days. (a) survey, (b)C1s, (c) Ols and (d) a

comparison of C1s spectra between GNR@CNT and GNR@CNT-5days.
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Supplementary Figure 19 | Half-cell performance comparison after air oxidization. (a) LSV curves
and (b) electron transfer number and H20O; yield of GNR@CNT (fresh) and GNR@CNT-5days (after

exposed in air for 5 days) in O-saturated 0.5 M H,SO,4 at 1600 rpm. Scan rate 10 mV s,
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Supplementary Figure 20 | Schematic representation of ORR process on the zigzag-edge of
graphene nanoribbon. (a) zigzag-edge graphene nanoribbons before ORR, (b) absorption of O, on a
carbon at zigzag-edge, (c) adsorption of OOH after reaction with a proton, (d) adsorption of O after the
release of a water molecule, and (e) adsorption of OH after reaction with a proton. Black, white, and

red balls represent carbon, hydrogen, and oxygen atoms, respectively.
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Supplementary Table 1 | Relative elemental

contents of GNR@CNT, N-GNR@CNT and
GNR@CNT-5days extracted from the XPS results
O 1s [at.%)]
Samples Cls[at.%] sp?sp® Nis [at.%]
COO- C-OH _
Total 0-C.0 C-O-C O=C-0 H-O-H
GNR@CNT 97.73 8.77 0 2.27 0.73 1.05 0.41 0.07
N-GNR@CNT 94.56 4.0 3.09 2.35 -- -- -- --
GNR@CNT- 97.59 3.94 0 2.41 0.72 0.79 0.62 0.28
5days

[a] C-N were contained in sp®for N-GNR@CNT.
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Supplementary Table 2 | ORR activities of carbon-based metal-free electrocatalyst from

literatures measured by half-cell in 0.1 M KOH.

Catalvst Onset Scan Rotation Current Electron
Y Potential Density transfer
Catalyst loading rate Rate Reference
(mg cm?) (V vs. Mmvsd)  (rpm) at04Vv number
9 RHE) P (MA cm?) (n)
VA-NCNT N.A. 0.976 5 1400 -3.90 3.9 1
CNT 0.255 0.846 10 1600 2.1 3.1 2
N-porous 0.2 0.956 5 1600 6.2 3.98 2
carbon sheet
N-graphene 0.038 0.936 10 1600 -3.06 3.3 3
N- 0.05 0.866 20 1600 -3 3.7 4
graphene/CNT ' ' '
N-graphitic 0.026 0.687 10 1600 57 3.89 5
arrays
graphite-BM 0.1 0.816 10 1600 -1.75 3.8 6
CNC700 0.1 0.876 10 2500 -3.1 2.9 7
GNR 0.398 0.919 10 1600 -3.8 3.88 This work
N-GNR 0.398 0.946 10 1600 -5.2 3.95 This work
GNR@CNT 0.398 0.960 10 1600 -4.8 3.94 This work
N-GNR@CNT 0.398 0.990 10 1600 51 3.96 This work
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Supplementary Table 3 | ORR activities of carbon-based metal-free electrocatalysts from

literatures (measured in acidic electrolytes).

Current

Catalyst Onset Scan . . Electron
X : Rotation  Density
loading  Potential rate transfer
Catalyst Electrolyte ] Rate at0.3Vv Reference
(mg cm (V vs. (mV (rom) (MA cm number
?) RHE) s P 2 (n)
N and P
codoped 0.1M 8
mesoporous HCIO. 0.450 0.83 5 1600 4.70 3.8
nanocarbon
N doped carbon 05M 3.52- 9
nanotubes HySO4 N.A. 0.70 10 1600 1.73 3.92
N doped carbon 05M 3.67- 10
nanosheets HySO4 0.600 0.72 10 1600 491 391
N doped carbon 05M 3.90- 1
nanosheets HySO4 0.051 0.725 20 1600 2.17 308
N doped 05 M
mesoporous ' 0.312 0.720 10 1600 3.95 3.48 12
H2S04
cabons
Band N 05 M
codoped ' 0.200 0.57 10 1500 0.68 N.A. 13
H2S04
carbons
05M 3.19- ,
GNR HySO4 0.398 0.52 10 1600 1.02 3.59 This work
05M 3.90- ,
N-GNR HySO4 0.398 0.68 10 1600 3.81 3.96 This work
05M 3.61- ,
GNR@CNT HySO4 0.398 0.76 10 1600 4.06 3.90 This work
0.5 M 3.72- .
N-GNR@CNT HySO4 0.398 0.75 10 1600 3.17 3.92 This work
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Supplementary Table 4 | Gravimetric activities of various metal-free electrocatalysts compared
with the N-GNR@CNT and GNR@CNT in PEM fuel cells. All the data in the table have also been

scaled by the electrode surface area.

Peak Oz-Hz

Current at ower Catalyst absolute Cell
Materials 0.2V POWE loading temperature  Reference
(Ag) density (mg cm™?) pressure °C)
g (W g ) (bars)
Co-PPY-C 725 156 0.8@ 2.5 80 14
Fe/Phen/Z8 1500 233 3.9 1.5 N.A. 15
(CM+PéN')'Fe' 900 225 4.0 25 80 16
20Co-NC-1100 N.A. 140 4.0 2.5 80 17
Fe2-78-C N.A. 407 2.8 2.5 80 18
(Fe,Co)/IN-C N.A. 1272 0.77 2.5/1.5(02/H>) 80 19
bNGr N.A. 52 4 2.5 N.A. 20
DMWNT=H,SO4- 21
Ar900 297 60 1.85 35 90
NG@MMT 750 160 2 N.A. N.A. 22
VA-NCNT 1550 320 0.16 2.5 80 23
N-G-CNT+KB 1500 300 0.5 2.5 80 23
N_
GNR@CNT+XC- 2070/1950 420/380 0.25/0.5 2.5 80 This work
72
GNR@%NT“LXC' 2400/1153 520/235 0.25/0.5 25 80 This work

[a] Here we regard Co-PPY as catalyst and substrate the quality of carbon black.
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Supplementary Table 5 | Open circuit voltage (OCV) of metal-free catalysts in PEMFC.

Materials Catalyst loading / mg cm OCV / Vrue
GNR 0.749
GNR@CNT 0.762

0.25

N-GNR 0.793
N-GNR@CNT 0.772
GNR 0.611
GNR@CNT 0.776
N-GNR 0.5 0.794
N-GNR@CNT 0.722
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