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Supplementary Figure 1 | Morphologies of oxidized-GNR@CNT and oxidized-GNR before 

annealing. TEM images of (a-b) partially unzipped oxidized-GNR@CNT, and (c-d) fully unzipped 

oxidized-GNR. Scale bar in a, c is 100 nm, and in b, d is 10 nm. 
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Supplementary Figure 2 | Morphologies of four samples after annealing. TEM images of (a) 

GNR@CNT, (b) N-GNR@CNT, (c) GNR and (d) N-GNR. Scale bar: 100 nm. 
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Supplementary Figure 3 | FT-IR spectra of Oxide-GNR@CNT, GNR@CNT and N-GNR@CNT. 

 



5 

 

 

 

Supplementary Figure 4 | XPS spectra of GNR@CNT. (a) survey, and fine spectra of (b) C1s and (c) 

O1s. 
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Supplementary Figure 5 | XPS spectra of N-GNR@CNT. (a) survey, and fine spectra of (b) C1s, (c) 

N1s and (d) O1s.  



7 

 

 

 

Supplementary Figure 6 | LSV curves of GNR@CNT annealed at different temperatures in Ar. 

The ORR were measured in O2-saturated 0.1 M KOH at 1600 rpm. Scan rate: 10 mV s-1. 
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Supplementary Figure 7 | LSV curves of N-GNR@CNT annealed at different temperatures in NH3. 

The ORR were measured in O2-saturated 0.1 M KOH at 1600 rpm. Scan rate: 10 mV s-1. 
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Supplementary Figure 8 | CV curves of four samples measured in N2-saturated 0.1 M KOH. Scan 

rate: 50 mV s-1. 
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Supplementary Figure 9 | Electron transfer number and HO2
- yield of GNR@CNT, GNR, N-

GNR@CNT, N-GNR and Pt/C in O2-saturated 0.1 M KOH at 1600 rpm. Scan rate: 10 mV s-1. 
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Supplementary Figure 10 | PRR polarization curves of Pt/C(20wt% Pt) measured in Ar-saturated 

0.1 M KOH at 1600rpm. Scan rate: 10 mV s-1. 
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Supplementary Figure 11 | ORR responses to the testing temperature in alkaline. LSV curves of a) 

GNR and b) N-GNR measured at different temperatures in O2-saturated 0.1 M KOH at 1600 rpm. Scan 

rate: 10 mV s-1. 
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Supplementary Figure 12 | CV curves of indicated samples measured in N2-saturated 0.5 M 

H2SO4. Scan rate: 50 mV s-1. 
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Supplementary Figure 13 | Electron transfer number and H2O2 yield of GNR@CNT, GNR, N-

GNR@CNT, N-GNR and Pt/C in O2-saturated 0.5 M H2SO4 at 1600 rpm. Scan rate: 10 mV s-1. 
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Supplementary Figure 14 | PRR polarization curves of Pt/C(20wt% Pt) measured in 0.5 M H2SO4 

at 1600 rpm. Scan rate: 10 mV s-1. 
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Supplementary Figure 15 | LSV curves of GNR measured at different temperatures in O2-

saturated 0.5 M H2SO4 at 1600 rpm. Scan rate: 10 mV s-1. 
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Supplementary Figure 16 | LSV curves of N-GNR measured at different temperatures in O2-

saturated 0.5 M H2SO4 at 1600 rpm. Scan rate: 10 mV s-1. 
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Supplementary Figure 17 | Polarization and power density curves of a) GNR@CNT+XC-72 

(0.4+1.6 mg cm−2) and b) N-GNR@CNT+XC-72 (0.9+2.2 mg cm−2), and polarization curves expressed 

by EiR-free vs Log mass activity of c) GNR@CNT+XC-72 (0.4+1.6 mg cm−2) and d) N-GNR@CNT+XC-

72 (0.9+2.2 mg cm−2) as cathode in PEMFC measured with 2 bar H2–O2, 100% RH, 80 °C.  

 

Simultaneous freeze-drying: oxidized-GNR@CNT was mixed with XC-72 (spacer) first and then 

the mixture was freeze-dried and pyrolized. Direct freeze-drying: oxidized-GNR@CNT was freeze-

dried and pyrolized to GNR@CNT or N-GNR@CNT first, and then they were mixed with XC-72 for 

catalyst ink. The PEMFC performance could be improved by enhancing the mass transfer of catalyst 

layer, through freeze-drying the catalyst precursor together with XC-72 before pyrolysis. 
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Supplementary Figure 18 | XPS spectra of GNR@CNT-5days. (a) survey, (b)C1s, (c) O1s and (d) a 

comparison of C1s spectra between GNR@CNT and GNR@CNT-5days. 
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Supplementary Figure 19 | Half-cell performance comparison after air oxidization. (a) LSV curves 

and (b) electron transfer number and H2O2 yield of GNR@CNT (fresh) and GNR@CNT-5days (after 

exposed in air for 5 days) in O2-saturated 0.5 M H2SO4 at 1600 rpm. Scan rate 10 mV s-1. 
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Supplementary Figure 20 | Schematic representation of ORR process on the zigzag-edge of 

graphene nanoribbon. (a) zigzag-edge graphene nanoribbons before ORR, (b) absorption of O2 on a 

carbon at zigzag-edge, (c) adsorption of OOH after reaction with a proton, (d) adsorption of O after the 

release of a water molecule, and (e) adsorption of OH after reaction with a proton. Black, white, and 

red balls represent carbon, hydrogen, and oxygen atoms, respectively. 
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Supplementary Table 1 | Relative elemental contents of GNR@CNT, N-GNR@CNT and 

GNR@CNT-5days extracted from the XPS results 

Samples C1s [at.%] sp2/sp3 N1s [at.%] 

O 1s [at.%] 

Total 
COO- 

O=C-O 
C-OH 
C-O-C 

O=C-O H-O-H 

GNR@CNT 97.73 8.77 0 2.27 0.73 1.05 0.41 0.07 

N-GNR@CNT 94.56 4.0[a] 3.09 2.35 -- -- -- -- 

GNR@CNT-
5days 

97.59 3.94 0 2.41 0.72 0.79 0.62 0.28 

[a] C-N were contained in sp3 for N-GNR@CNT. 
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Supplementary Table 2 | ORR activities of carbon-based metal-free electrocatalyst from 

literatures measured by half-cell in 0.1 M KOH. 

Catalyst 
Catalyst 
loading 

(mg cm-2) 

Onset 
Potential 

(V vs. 
RHE) 

Scan 
rate 

(mV s-1) 

Rotation 
Rate 
(rpm) 

Current 
Density 
at 0.4 V 

(mA cm-2) 

Electron 
transfer 
number 

(n) 

Reference 

VA-NCNT N.A. 0.976 5 1400 -3.90 3.9 1 

CNT 0.255 0.846 10 1600 -2.1 3.1 2 

N-porous 
carbon sheet 

0.2 0.956 5 1600 -6.2 3.98 2 

N-graphene 0.038 0.936 10 1600 -3.06 3.3 3 

N- 
graphene/CNT 

0.05 0.866 20 1600 -3 3.7 4 

N-graphitic 
arrays 

0.026 0.687 10 1600 -5.7 3.89 5 

graphite-BM 0.1 0.816 10 1600 -1.75 3.8 6 

CNC700 0.1 0.876 10 2500 -3.1 2.9 7 

GNR 0.398 0.919 10 1600 -3.8 3.88 This work 

N-GNR 0.398 0.946 10 1600 -5.2 3.95 This work 

GNR@CNT 0.398 0.960 10 1600 -4.8 3.94 This work 

N-GNR@CNT 0.398 0.990 10 1600 -5.1 3.96 This work 
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Supplementary Table 3 | ORR activities of carbon-based metal-free electrocatalysts from 

literatures (measured in acidic electrolytes). 

Catalyst Electrolyte 

Catalyst 
loading 
(mg cm-

2) 

Onset 
Potential 

(V vs. 
RHE) 

Scan 
rate 
(mV 
s-1) 

Rotation 
Rate 
(rpm) 

Current 
Density 
at 0.3 V 
(mA cm-

2) 

Electron 
transfer 
number 

(n) 

Reference 

N and P 
codoped 

mesoporous 
nanocarbon 

0.1 M 
HClO4 

0.450 0.83 5 1600 4.70 3.8 8 

N doped carbon 
nanotubes 

0.5 M 
H2SO4 

N.A. 0.70 10 1600 1.73 
3.52-
3.92 

9 

N doped carbon 
nanosheets 

0.5 M 
H2SO4 

0.600 0.72 10 1600 4.91 
3.67-
3.91 

10 

N doped carbon 
nanosheets 

0.5 M 
H2SO4 

0.051 0.725 20 1600 2.17 
3.90-
3.98 

11 

N doped 
mesoporous 

cabons 

0.5 M 
H2SO4 

0.312 0.720 10 1600 3.95 3.48 12 

B and N 
codoped 
carbons 

0.5 M 
H2SO4 

0.200 0.57 10 1500 0.68 N.A. 13 

GNR 
0.5 M 
H2SO4 

0.398 0.52 10 1600 1.02 
3.19-
3.59 

This work 

N-GNR 
0.5 M 
H2SO4 

0.398 0.68 10 1600 3.81 
3.90-
3.96 

This work 

GNR@CNT 
0.5 M 
H2SO4 

0.398 0.76 10 1600 4.06 
3.61-
3.90 

This work 

N-GNR@CNT 
0.5 M 
H2SO4 

0.398 0.75 10 1600 3.17 
3.72-
3.92 

This work 
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Supplementary Table 4 | Gravimetric activities of various metal-free electrocatalysts compared 

with the N-GNR@CNT and GNR@CNT in PEM fuel cells. All the data in the table have also been 

scaled by the electrode surface area. 

Materials 
Current at 

0.2 V 
(A g−1) 

Peak 
power 
density 
(W g−1) 

Catalyst 
loading 

(mg cm−2) 

O2-H2 
absolute 
pressure 

(bars) 

Cell 
temperature 

(℃) 
Reference 

Co-PPY-C 725 156 0.8[a] 2.5 80 14 

Fe/Phen/Z8 1500 233 3.9 1.5 N.A. 15 

(CM+PANI)-Fe-
C 

900 225 4.0 2.5 80 16 

20Co-NC-1100 N.A. 140 4.0 2.5 80 17 

Fe2-Z8-C N.A. 407 2.8 2.5 80 18 

(Fe,Co)/N-C N.A. 1272 0.77 2.5/1.5(O2/H2) 80 19 

bNGr N.A. 52 4 2.5 N.A. 20 

DMWNT–H2SO4-
Ar900 

297 60 1.85 3.5 90 21 

NG@MMT 750 160 2 N.A. N.A. 22 

VA-NCNT 1550 320 0.16 2.5 80 23 

N-G-CNT+KB 1500 300 0.5 2.5 80 23 

N-
GNR@CNT+XC-

72 
2070/1950 420 / 380 0.25 / 0.5 2.5 80 This work 

GNR@CNT+XC-
72 

2400/1153 520 / 235 0.25 / 0.5 2.5 80 This work 

[a] Here we regard Co-PPY as catalyst and substrate the quality of carbon black. 
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Supplementary Table 5 | Open circuit voltage (OCV) of metal-free catalysts in PEMFC. 

Materials Catalyst loading / mg cm-2 OCV / VRHE 

GNR 

0.25 

0.749 

GNR@CNT 0.762 

N-GNR 0.793 

N-GNR@CNT 0.772 

GNR 

0.5 

0.611 

GNR@CNT 0.776 

N-GNR 0.794 

N-GNR@CNT 0.722 
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