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TABLE S1 The specific activity and catalytic efficiency of the published GUSs on GL  

       Enzyme 
specific activity 

(μmol-1 min-1 mg-1) 
kcat/Km (mM−1s−1) Reference 

TpGUS79A 11.97 11.14 This study 

β-glucuronidase I 0.32 NA* (1) 

β-glucuronidase II 0.19 NA (1) 

PGUS-P 9.79E-3 6.40E-4 (2) 

PGUS-E 8.62E-3 3.86E-3 (2) 

AtGUS-E NA 2.24 (3) 

* Not available 
 
 
TABLE S2 The specific activity and catalytic efficiency of the published GUSs on baicalin 

Enzyme 
Specific activity  
(μmol-1min-1mg-1) 

kcat/Km (mM−1s−1) Reference 

TpGUS79A 0.56 0.29 This study 

LcGUS30 7.57 14.0 (4) 

SvGUS 9.37 NA* (5) 

* Not available 
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FIG S1 The phylogenetic analysis of TpG79A with other GUSs from GH1, GH2 and 

GH79 based on their amino acid sequences. The phylogenetic tree was constructed 

using MEGA 7 with a neighbor-joining method. On the phylogenic tree, the GH79 

GUSs include enzymes from S. baicalensis (10/29(34%) identity, AB040072), A. 

Thaliana (26/111(23%) identity, NP_196400), A, capsulatum (114/459 (25%) identity, 

PDB: 3VNY_A), N. crassa (144/432(33%) identity, XP_964763), B. spectabilis 

(160/462 (35%) GAD97470), and A. niger (128/377(34%) identity, GAQ47476); The 

GH2 GUSs include enzymes from A. oryzae (ABU68712), A. terreus (AEP39213), E. 

coli (PDB: 3K46_A), Homo sapiens (PDB: 3HN3_A), L. brevis (ACU21612) and N. 

koreensis (AEW00660); The GH1 GUSs include enzymes from M. musculus 

(BAA23381), B. aurus (NP_001178124), Homo sapiens (BAA23382). 
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FIG S2 Effect of metal ions (a) and inhibitors (b) on TpGUS79A activity. The 

experiment was performed in triplicate measurements, and the errors stand for one 

standard deviation. 
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FIG S3 Michaelis-Menten plots of TpGUS79A hydrolyzing the different substrates. a: 

glycyrrhizin (GL), b: quercetin 3-glucuronide, c: baicalin, d: pNP-β-GlcA.   
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FIG S4 Activity rescue test of TpGUS79A mutants E192A and E325A. 
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FIG S5 The SDS-PAGE of the purified TpGUS79A–P mutants. Lane M: marker, 

Lane 1: S330A, Lane 2: H365D, Lane 3: E192A, Lane 4: N191A, Lane 5: C331A, 

Lane 6: Y372K, Lane 7: C331D, Lane 8: E325A, Lane 9: Y372D, Lane 10: C331K, 

Lane 11: Y276A, Lane 12: S330R, Lane 13: S95A, Lane 14: Y372A.  
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FIG S6 The electrostatic potential distribution of the active pocket of GH2 

β-glucuronidase from Aspergillus oryzae Li-3. The green stick stands for the substrate 

glycyrrhetinic acid 3-O-mono-β-D-glucuronide. The image was reproduced from PDB 

5C71.  
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FIG S7 The effect of N-glycosylation on TpGUS79A activity (a) SDS-PAGE analysis 

of TpGUS79A treated with PNGase F in the non-denaturing reaction condition at 

different incubation time. Lane 1: 0 h, Lane 2: 1 h, Lane 3: 2 h, Lane 4: 3h. (b) The 

activity of TpGUS79A natively deglycosylated by PNGase F on GL. The activity for 

GL was assayed at 50 °C for 5 min in 50 mM NaAc-HAc buffer (pH 4.5). Data 

represent the mean ± one standard deviation of results from the experiments in 

triplicate. 
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