SUPPLEMENTAL MATERIAL

Supplemental Tables

Supplemental Table 1. Genes analyzed for variants for cardiomyopathies and ion

channel disorders associated with T-wave inversion

Condition	Priority Genes Tested*	Other Candidate Genes Tested*
НСМ	ACTC1, DES, FLNC, GLA,	AARS2, ACAD9, ACADVL, ACTA1, ACTN2, AGK, AGL,
	LAMP2, MYBPC3,	AGPAT2, ANK2, ANKRD1, ATP5E, ATPAF2, BRAF,
	MYH7, MYL2, MYL3,	BSCL2, CALR3, CAV3, COA5, COA6, COQ2, COX15,
	PLN, PRKAG2, PTPN11,	COX6B1, CRYAB, CSRP3, DLD, DSP, ELAC2, FAH,
	TNNC1, TNNI3, TNNT2,	FHL1, FHL2, FHOD3, FOXRED1, FXN, GAA, GFM1,
	TPM1, TTR	GLB1, GNPTAB, GUSB, HRAS, JPH2, KRAS, LDB3,
		LIAS, LZTR1, MAP2K1, MAP2K2, MLYCD, MRPL3,
		MRPL44, MRPS22, MTO1, MYH6, MYOM1, MYOZ2,
		MYPN, NEXN, NF1, NRAS, OBSCN, PDHA1, PHKA1,
		PMM2, RAF1, SCO2, SHOC2, SLC22A5, SLC25A3,
		SLC25A4, SOS1, SURF1, TAZ, TCAP, TMEM70,
		TRIM63, TSFM, TTN, VCL, BAG3, CASQ2, IDH2,
		KCNJ8, KLF10, LMNA, MURC, MYLK2, OBSL1,
		PDLIM3
ARVC	DSC2, DSG2, DSP, FLNC,	CTNNA3, DES, LMNA, RYR2, TGFB3, TTN, CASQ2,
	JUP, PKP2, PLN,	CTNNB1, LDB3, PERP, PKP4, PPP1R13L, SCN5A
	TMEM43	
DCM	ACTC1, BAG3, DES,	ABCC9, ACTA1, ACTN2, ALMS1, ANKRD1, ANO5,

	DMD, DSP, FLNC,	CAV3, CHRM2, COL741, CRYAB, CSRP3, DNAJC19,
	LMNA, MYBPC3, MYH7,	DOLK, DSC2, DSG2, EMD, EYA4, FHL2, FHOD3,
	PKP2, PLN, RBM20,	FKRP, FKTN, FOXD4, GAA, GATA4, GATA6,
	TAZ, TNNC1, TNNI3,	GATAD1, GLB1, HFE, JUP, LAMA2, LAMA4, LAMP2,
	TNNT2, TPM1, TTN	LDB3, MURC, MYH6, MYL2, MYL3, MYOT, MYPN,
		NEBL, NEXN, PRDM16, PSEN1, PSEN2, RAF1, RYR2,
		SCN5A, SDHA, SGCD, SLC22A5, SPEG, SYNE1,
		SYNE2, TBX20, TCAP, TMEM43, TMPO, TOR1AIP1,
		TTR, TXNRD2, VCL, XK, BRAF, DNM1L, GATA5, GLA,
		IDH2, ILK, KCNJ2, KCNJ8, NKX2-5, OBSCN, OPA3,
		PDLIM3, PTPN11, SGCA, SGCB, TNNI3K
LVNC	ACTC1, MYBPC3,	ACTN2, DMD, DNAJC19, DTNA, FHL1, HCN4, LDB3,
	MYH7, TAZ	LMNA, MIB1, MYH6, MYL2, NKX2-5, NNT, PLN,
		PRDM16, RYR2, TNNT2, TPM1, ANKRD1, BAG3,
		CASQ2, CSRP3, DSP, FLNC, KCNH2, KCNQ1, MLYCD,
		MYL3, NOTCH1, PTPN11, TNNC1, TNNI3, TTN
LQTS	CACNA1C, KCNE1,	AKAP9, ANK2, CALM1, CALM2, CALM3, CAV3,
	KCNE2, KCNH2, KCNJ2,	KCND2, KCNJ5, RYR2, SCN4B, SNTA1, TRDN, FHL2,
	KCNQ1, SCN5A	HCN4, KCNA5, KCND3, KCNE5, KCNE3, NOS1AP,
		PTRF, SCN1B
	1	

BrS	SCN5A, CACNA1C,	SCN10A, ABCC9, ANK2, FGF12, GPD1L, HCN4,
	CACNA2D1, CACNB2,	KCND2, KCND3, KCNE5, KCNE3, PKP2, RANGRF,
	KCNJ8, SCN1B	SCN2B, SCN3B, SLMAP, TRPM4, ANK3, CACNA1D,
		KCNH2

ARVC indicates arrhythmogenic right ventricular cardiomyopathy; BrS, Brugada syndrome;

DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; LQTS, long QT

syndrome; LVNC, left ventricular non-compaction.

*For full, official gene names, the reader is referred to the US National Center for

Biotechnology Information (NCBI) online searchable database at

https://www.ncbi.nlm.nih.gov/gene/

Supplemental Table 2. Summary of criteria used to determine variant pathogenicity

CLASSIFICATION	MAJOR CRITERIA		SUPPORTING CRITERIA
	1. Widely reported variant with conclusive evidence of a	1.	Protein-truncating variant in a gene where loss of
	genotype-phenotype association and with consensus		function is a proven pathogenic mechanism
	about its pathogenicity	2.	Functional studies that support pathogenicity
1. PATHOGENIC	2. Demonstrated co-segregation with a phenotype (>10	3.	De novo presentation in the setting of a novel disease
CAUSING	meioses)	4.	in the family (maternity and paternity confirmed) Missense variant that generates the same amino-acid
	3. Co-segregation in at least 2 families (≤10 meioses), or		change as a previously reported pathogenic variant
	present in at least 5 probands with the same phenotype,	5.	Variant with very low frequency/absent in the control
	and meeting at least 2 supporting criteria		population (MAF <0.001%)
2. VERY LIKELY	1. Protein-truncating variant in a gene where loss of	1.	Functional studies that support pathogenicity
TO BE	function is a proven pathogenic mechanism that	2.	De novo presentation in the setting of a novel disease
PATHOGENIC	explains the patient's phenotype, and that meets at		in the family (maternity and paternity confirmed)
OR DISEASE	least 1 supporting criterion	3.	Affecting a residue in which other pathogenic variants

CAUSING	2.	Missense variant/in-frame insertion or deletion in a		were previously identified. (mutational hot spot); or
		non-repetitive region of a gene with demonstrated		variant located in a relevant functional domain or
		genotype-phenotype association that explains the		region of the protein
		patient's disease, and that meets at least 2 supporting	4.	Variant with very low allelic frequency/absent in the
		criteria		control population (MAF <0.001%)
			5.	Probable co-segregation in at least one family, or
				various index cases, but that does not meet criteria for
				being considered pathogenic
	1.	Protein-truncating variant with very low frequency or	1.	Variant with very low allelic frequency/absent in the
3. LIKELY TO BE		absent in the control population (MAF <0.001%) that		control population (MAF <0.001%)
		affects a gene where loss of function is not an	2.	De novo presentation in the setting of a novel disease
PATHOGENIC		established pathogenic mechanism or that does not		in the family (maternity and paternity unconfirmed)
OR DISEASE		meet criteria to be considered pathogenic	3.	Patient's phenotype or family history suggests that
CAUSING	2.	Intronic variant outside the consensus region of the		disease could be explained by mutations in the gene
		gene for which the bioinformatics predictors agree that		(gene with well-established phenotype-genotype

		it would affect the splicing		association)
	3.	Missense variant/in-frame insertion or deletion in a	4.	Bioinformatics predictors agree that it would be
		non-repetitive region of a gene which does not meet		deleterious
		criteria to be considered pathogenic/very likely to be	5.	Located in a mutational hot-spot, functional domain,
		pathogenic, but that meets at least 3 supporting		or relevant region of the codified protein
		criteria	6.	Reported in at least 2 unrelated individuals that
				presented the same phenotype
4. UNKNOWN	1.	Variants with contradictory information about their		
		pathogenicity		
CLINICAL	2.	Variants that do not meet criteria for being included in		
SIGNIFICANCE		another classification category		
5. UNLIKELY TO	1.	Variant allele frequency in control populations is higher	1.	Missense variant in a gene where only variants
BE		than the expected for disease or has a MAF >0.05%		causing protein truncation have shown association
PATHOGENIC	2.	Absence of variant co-segregation with the phenotype		with disease
OR DISEASE		in at least 1 family	2.	Functional study showing that the variant does not

CAUSING	3. Meeting at least 2 supporting criteria		affect the structure or function of the encoded protein
		3.	Bioinformatics predictors agree that the variant would
			not alter the function of the protein (including splicing
			variants outside the consensus region of the gene)
		4.	In-frame insertions/deletions in a repetitive gene
			region without a known function
		5.	Presence of the variant in homozygosis in control
			population
	1. MAF >5% in any of the control population databases	1.	Variant allele frequency in control populations is
NON	2. Previously reported in the literature with well-		higher than expected for disease or has a MAF >0.05%
NON- PATHOGENIC	established evidence of consensus about its non-	2.	Absence of co-segregation of the variant with the
	disease-causing classification, and with no		phenotype in at least 1 family
	contradictory data	3.	Functional study showing that the variant does not
CAUSING)	3. Absence of co-segregation with the disease in at		affect the structure or function of the encoded protein
	least 2 reported families	4.	Presence of the variant in healthy unaffected subjects

at an age at which the disease should be fully
penetrant (variant must be in homozygosis in
recessively inherited diseases, or in hemizygosis in X-
linked diseases)

MAF indicates minor allele frequency.

Supplemental Table 3. Relevant genetic variants found in black and white athletes

Athlete	Gene	Clinical Disease Associated with Identified Variant	Genotype and Population Frequency of Variant in Individuals in Control Populations	Pathogenicity	Sequence change*	Amino acid change*	Phenotype
White At	thletes						
15	MYBPC3	НСМ	Heterozygous;	Pathogenic	NM_000256.3:	NP_000247.2:p.Glu542Gln	Positive
			mutation (<0.0001, no		c.1624G>C		
			homozygotes)				
74	GLA	Fabry disease	Hemizygous;	Pathogenic	NM_000169.2:	NP_000160.1:p.Arg301Gln	Positive
			mutation (not found		c.902G>A		
			in controls)				
77	MYBPC3	НСМ	Heterozygous;	Pathogenic	NM_000256.3:	NP_000247.2:p.Arg1022Pro	Positive
			mutation (<0.0001, no		c.3065G>C		

			homozygotes)				
49	MYBPC3	НСМ	Heterozygous;	Likely	NM_000256.3:	NP_000247.2:p.Ala851Val	Positive
			mutation (<0.0001, no	pathogenic	c.2552C>T		
			homozygotes)				
55	МҮРВС3	HCM	Heterozygous;	Likely	NM_000256.3:	NP_000247.2: p.Arg733His	Positive
			mutation (<0.0001, no	pathogenic	c.2198G>A		
			homozygotes)				
60	MYH7	HCM	Heterozygous;	Likely	NM_000257.3:	NP_000248.2:p.Arg1045Leu	Positive
			mutation (<0.0001, no	pathogenic	c.3134G>T		
			homozygotes)				
75	SCN5A	LQTS	Heterozygous; rare	Likely	NM_198056.2:	NP_932173.1:p.Thr1304Met	Negative
			variant (<1%)	pathogenic	c.3911C>T		
Black A	thletes			I	<u> </u>	I	
39	TTR	Amyloid	Heterozygous;	Pathogenic	NM_000371.3:	NP_000362.1:p.Val142Ile	Negative
			polymorphism (≥1%)		c.424G>A		

3	MYH7	HCM	Heterozygous;	Likely	NM_000257.3:	NP_000248.2:p.Arg1420Gln	Positive
			mutation (not in	pathogenic	c.4259G>A		
			controls)				
92	ACTC1	HCM, DCM,	Heterozygous;	Likely	NM_005159.4:	NP_005150.1:p.Tyr296His	Positive
		LVNC	mutation (<0.0001, no	pathogenic	c.886T>C		
			homozygotes)				

ACTC1 indicates Actin alpha, cardiac muscle 1; DCM dilated cardiomyopathy; GLA, galactosidase alpha; HCM, hypertrophic cardiomyopathy;

LQTS, long QT syndrome; LVNC, left ventricular non-compaction; MYBPC3, myosin binding protein C; MYH7, myosin heavy chain 7; SCN5A,

sodium voltage-gated channel alpha subunit 5; and TTR, transthyretin.

*For additional information about genomic variants, see https://www.ncbi.nlm.nih.gov/clinvar