Supplementary information

ORIGINAL ARTICLE

Bioactive thionic compounds and aromatic glycosides from Ligusticum chuanxiong

Xu Zhang⁺, Bing Han⁺, Ziming Feng, Jianshuang Jiang, Yanan Yang, Peicheng Zhang^{*}

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China

*Corresponding author. Tel.: +86 10 63165231. Fax: +86 10 63017757.

E-mail address: pczhang@imm.ac.cn (Peicheng Zhang).

⁺These authors made equal contributions to this work.

Table of Contents

No.	Contents	Compound	Page
1	The ¹ H NMR spectrum in DMSO- d_6 (500 MHz)	1	S 3
2	The ¹³ C NMR spectrum in DMSO- d_6 (125 MHz)	1	S 3
3	The HSQC spectrum in DMSO- d_6 (500 MHz)	1	S4
4	The HMBC spectrum in DMSO- d_6 (500 MHz)	1	S4
5	The UV spectrum in MeOH	1	S5
6	The IR spectrum	1	S5
7	The HR-ESI-MS data	1	S6
8	The [Mo ₂ (AcO) ₄] induced ECD spectrum in DMSO	1	S7
9	The ¹ H NMR spectrum in methanol- d_4 (500 MHz)	2	S7
10	The ¹³ C NMR spectrum in methanol- d_4 (125 MHz)	2	S 8

11	The HSQC spectrum in methanol- d_4 (500 MHz)	2	S 8
12	The HMBC spectrum in methanol- d_4 (500 MHz)	2	S9
13	The UV spectrum in MeOH	2	S9
14	The IR spectrum	2	S10
15	The HR-ESI-MS data	2	S11
16	The ¹ H NMR spectrum in DMSO- d_6 (600 MHz)	3	S12
17	The 13 C NMR spectrum in DMSO- d_6 (150 MHz)	3	S12
18	The HSQC spectrum in DMSO- d_6 (600 MHz)	3	S13
19	The HMBC spectrum in DMSO- d_6 (600 MHz)	3	S13
20	The UV spectrum in MeOH	3	S14
21	The IR spectrum	3	S14
22	The HR-ESI-MS data	3	S15
23	The [Mo ₂ (AcO) ₄] induced ECD spectrum in DMSO	3	S16
24	The ECD spectrum in MeOH	3	S16
25	The ¹ H NMR spectrum in DMSO- d_6 (500 MHz)	4	S17
26	The 13 C NMR spectrum in DMSO- d_6 (125 MHz)	4	S17
27	The HSQC spectrum in DMSO- d_6 (500 MHz)	4	S18
28	The HMBC spectrum in DMSO- <i>d</i> ₆ (500 MHz)	4	S18
29	The UV spectrum in MeOH	4	S19
30	The IR spectrum	4	S19
31	The HR-ESI-MS data	4	S20
32	The ¹ H NMR spectrum in DMSO- d_6 (500 MHz)	5	S21
33	The 13 C NMR spectrum in DMSO- d_6 (125 MHz)	5	S21
34	The HSQC spectrum in DMSO- d_6 (500 MHz)	5	S22
35	The HMBC spectrum in DMSO- d_6 (500 MHz)	5	S22
36	The UV spectrum in MeOH	5	S23
37	The IR spectrum	5	S23
38	The HR-ESI-MS data	5	S24
39	The Gas Chromatographic separation of D-Glc		S25
40	The Gas Chromatographic separation of D-Api		S25
41	The Gas Chromatographic analyses of sugar moeities	4 and 5	S25
42	Sixteen optimized conformations of 3Jb		S26
43	The experimental UV spectrum of 3 and the calculated UV spectrum of 3Jb		S29
44	Experimental ECD and calculated ECD spectrum of 3 in MeOH	3	S30

Fig. S1 The ¹H NMR spectrum of compound **1** in DMSO- d_6 .

Fig. S3 The HSQC spectrum of compound 1 in DMSO- d_6 .

Fig. S4 The HMBC spectrum of compound $\mathbf{1}$ in DMSO- d_6 .

١

Fig. S6 The IR spectrum of compound 1.

Fig. S7 The HR-ESI-MS data of compound 1.

Fig. S8 The [Mo₂(AcO)₄] induced ECD spectrum of compound 1 in DMSO.

Fig. S9 The ¹H NMR spectrum of compound **2** in methanol- d_4 .

). O

Fig. S12 The HMBC spectrum of compound 2 in methanol- d_4 .

Fig. S13 The UV spectrum of compound 2 in MeOH.

Fig. S14 The IR spectrum of compound 2.

Fig. S15 The HR-ESI-MS data of compound 2.

Fig. S16 The ¹H NMR spectrum of compound **3** in DMSO- d_6 .

Fig. S17 The 13 C NMR spectrum of compound **3** in DMSO- d_6 .

Fig. S19 The HMBC spectrum of compound $\mathbf{3}$ in DMSO- d_6 .

Fig. S21 The IR spectrum of compound **3**.

Fig. S22 The HR-ESI-MS data of compound 3.

Fig. S23 The $[Mo_2(AcO)_4]$ induced ECD spectrum of compound **3** in DMSO.

Fig. S24 The ECD spectrum of compound **3** in MeOH.

Fig. S26 The 13 C NMR spectrum of compound 4 in DMSO- d_6 .

Fig. S27 The HSQC spectrum of compound 4 in DMSO-d₆.

Fig. S28 The HMBC spectrum of compound 4 in DMSO- d_6 .

Fig. S30 The IR spectrum of compound 4.

Fig. S31 The HR-ESI-MS data of compound 4.

Fig. S33 The 13 C NMR spectrum of compound **5** in DMSO- d_6 .

Fig. S35 The HMBC spectrum of compound **5** in DMSO- d_6 .

Fig. S36 The UV spectrum of compound 5 in MeOH.

Fig. S37 The IR spectrum of compound **5**.

Fig. S38 The HR-ESI-MS data of compound 5.

Fig. S39 The Gas Chromatographic separation of D-Glc.

Fig. S40 The Gas Chromatographic separation of D-Api.

Fig. S41 The Gas Chromatographic analyses of sugar moeities of compounds 4 and 5.

no.	conformer	E (kJ/mol)	rel. E (kJ/mol)	Boltzmann Dist
1		55.98	0.00	0.107
2		56.00	0.02	0.107
3		56.06	0.08	0.104
4		56.09	0.12	0.102

Table S42 Sixteen optimized conformations of **3Jb**.

5	57.16	1.18	0.067
6	57.18	1.20	0.066
7	57.23	1.26	0.065
8	57.28	1.30	0.064
9	57.94	1.96	0.049

10	57.97	2.00	0.048
11	59.11	3.14	0.030
12	59.15	3.18	0.030
13	60.78	4.80	0.015
14	60.81	4.83	0.015

S28

15	60.88	4.90	0.015
16	60.92	4.94	0.015

Fig. S43 The experimental UV spectrum of **3** and the calculated UV spectrum of **3Jb**.

Fig. S44 Experimental ECD and calculated ECD spectrum of **3** in MeOH.