Supplemental Table 1: Single centre/region studies assessing for clonal Pseudomonas aeruginosa strains | Country | Region | Focus | Time
Period | Testing modality | Cohor
t | Main Findings | Ref | |-----------|----------------------------------|---------------------|----------------|--------------------------------|------------|--|-----------| | Australia | Sydney | Adult
s | 2001 | PFGE | 18 | Pilot project where 56% of patients were infected with a single <i>PA</i> clone (AES-1, now called AUST-01) | (1) | | | Melbourne | Peds | 1999 | PFGE | 152 | 55% of <i>PA</i> infected children (18% of entire clinic) were infected with a single clone (AUST-01) | (2, 3) | | | Melbourne | Peds | 1999-
2002 | PFGE | 149 | After the introduction of segregated clinics, AUST-01 prevalence had fallen to 14%, although infrequent incident cases continued to be observed. This further fell to 6% by 2007(4). | (5) | | | Brisbane | All | 2001-
2002 | ERIC-
PCR,
PFGE | 100 | AUST-01 was identified in 8% of individuals. However, a more common strain called pulsotype-2 (eventually AUST-02) was found in 39% of individuals (50% of children and 28% of adults) | (6,
7) | | | Tasmania | Adult
s
(+15) | 2003-
2005 | RAPD-
PCR,
PFGE | 41 | 26% were identified to have a clonal strain; AES-III, the Tasmanian-strain (now called AUST-03) and 12% were identified to have a minor strain; AES-4 or the Tasmanian minor strain, now called AUST-04). One patient with AUST-01 was identified who had previously resided in a hyper-endemic local. | (8) | | Belgium | Hopital Erasme & Zeepreventorium | All | 1998-
1990 | PFGE | 31 | They identified four pairs of patients with isolates of the same pulsotype and a history which would support potential for patient to patient spread, but did not observe a wide spread clone in either location. | (9) | | | Zeepreventorium De
Haan | All | 2001-2002 | RAPD -
PCR
then
fAFLP | 76 | Assessing serial <i>PA</i> isolates obtained during inpatient rehabilitation treatments of patients referred from one of seven Belgian CF centres for inpatient care these investigators observed 5 potential transmission events. At baseline, more than half of the patients had a clonal strain | (10) | | | | | | | | with the most prevalent strains accounting for 13%, 9% and 8% of all infections | | |-------------------|---------------------|------------|---------------|-----------------------|-----|---|-------------| | Brazil | Porto
Alegre | NS | 1996-
1997 | PFGE | 43 | A highly heterogeneous population of <i>PA</i> with only one pair of unrelated patients sharing an isolate. | (11) | | | San Paulo | Peds | 1996 | RAPD | 96 | Of 38 PA infected children, only two occasions in which patients were infected with a similar clone were observed | (12) | | | Rio de
Janeiro | All | 2009 | RAPD | 20 | While few shared strains were observed, no wide spread clones, nor known ePA were observed. | (13) | | Canada | British
Columbia | Adult
s | 1981-
1999 | RAPD & PFGE | 174 | A multi-decade retrospective analysis of prospectively collected isolates revealed a highly heterogeneous <i>PA</i> population. Two clones A002 and A097 (PES) were identified infecting (often transiently) 6% and 5% of the population. | (14,
15) | | | Montreal | Adult | 2005 | RAPD | 60 | Only limited clonality was observed with similar strain types observed in one pair and one group of three individuals. | (16) | | | Southern
Alberta | Adult
s | 1979-
2015 | PFGE & MLST | 230 | A multi-decade retrospective analysis of prospectively collected isolates revealed a common clone (PES, A097) in 32% of chronically <i>PA</i> infected adults. Strain B and LES at levels of 1 and 3%, respectively were also identified. | (17,
18) | | Czech
Republic | Prague | All | 2004 | AFLP & PFGE | 69 | In a clinic that uses strict segregation owing to prevalent <i>Bcc</i> , only rare clusters of clones involving 3-5 individuals were found. Those with shared strains did have prior contact – generally through distantly attended summer camps. | (19) | | | Prague | All | 2005- | RAPD
PCR &
MLST | 131 | This group prospectively identified 4 clones infecting ≥3 individuals including: ST253; 10 patients, ST175; 7 patients, ST395; 6 patients and ST179; 6 patients. ST253 was identified in various years through the study with no apparent epidemiological link. No previously established ePA strains were documented in this cohort. | (20) | | Denmark | Copenhage | All | 1973- | 0- | 119 | The very first study assessing for clonal PA made use of | (21- | | | n | | 1983 | antigen | | phenotypic methods, admittedly less discriminatory then the | 24) | |---------|-----------|------|--------|----------|----|--|------| | | | | | sero- | | later genotypic methods. While small clusters of similar | ' | | | | | | typing & | | isolates were identified, a larger cluster involving a MDR | | | | | | | Phage | | strain (03/9 complex, phage pattern 21/+) was observed in | | | | | | | typing | | 22-67% of patients over time. | | | | Copenhage | All | 1976- | AT- | 22 | In a selective sampling of patients from a large biobank, | (25) | | | n | | 2005 | biochips | | these investigators observed two predominate strains; "r" | | | | | | | | | (DK-1) infecting 5 patients (identified in 1987) and "b" | | | | | | | | | (DK-2) infecting 8 patients (identified in 1984). Both strains | | | | | | | | | were demonstrated to super-infect patients to the eventual | | | | | | | | | exclusion of previously colonizing strains. | | | | Utrecht | Peds | 2004- | PFGE | 56 | An individual clone predominated infecting 52% of | (26) | | | | | 2006 | | | individuals with chronic infection. However, in patients | | | | | | | | | experiencing incident infection, a much greater diversity was | | | | | | | | | observed, and this clone accounted for only 7%. This clone | | | | | | | | | was not observed in non-CF samples. | | | France | Paris | Peds | 2004-5 | VNTR | 46 | The vast majority of individuals here had unique strains not | (27) | | | | | | | | shared amongst other clinic goers, although four small | | | | | | | | | clusters involving 3-4 patients each were identified including | | | | | | | | | the prevalent Clone C and PA14, environmentally ubiquitous | | | | | | | | | isolates. | | | Germany | Hanover | Peds | 1983- | PFGE, | NS | Serial isolates were retrospectively assessed for clonal | (28) | | | | | 1988 | phage | | relatedness, where 12 of 40 patients with incident infection | | | | | | | typing & | | were infected with a single clone, TB. Incident cases were | | | | | | | sero- | | no longer observed after strict hygiene control measures. | | | | | | | typing | | | | | | Hanover | Peds | 1985- | PFGE & | 46 | One particularly common clone - dubbed Clone C, was | (29, | | | | | 1992 | Phage | | present in 31% of patients but this clone was similarly found | 30) | | | | | | typing | | widely distributed in multiple environments suggesting | | | | | | | | | broad endemicity. | | | | Hanover | Peds | 1998- | A | NS | Prospectively collected and stored isolates from chronically | (31) | | | | | 2007 | custom
multi- | | infected and 54 incidentally infected patients. Strains commonly recovered from the environment including Clone | | |---------|--------------------|-------|---------------|-----------------------|-----|---|------| | | | | | locus | | C, OC2E and PA14 found in 15, 14 and 8 patients | | | | | | | micro- | | respectively. Analysis of the accessory genome suggested | | | | | | | array | | the vast majority of isolates were unrelated, and independently acquired. One presumptive transmission event was observed. | | | Iran | Tehran | Peds | 2010 | ERIC-
PRC | 23 | Ninety-one percent of patients admitted to hospital were infected with a single strain type, type A. This strain was observed commonly within the local hospital where CF patients sought care. | (32) | | Ireland | Cork | Peds | 1992-
1995 | RAPD
PCR &
PFGE | 50 | They identified only limited genotypic diversity with 10 different strain types identified, in particular Strains A, F, G, H were identified in 12, 14, 15 and 13 individuals respectively. There was correlation in these groups with respect to presumed exposures. | (33) | | | Dublin | Peds | 2005-
2007 | PFGE | 68 | A clone infecting 19% of patients, evenly distributed amongst age ranges was identified. Uniquely it was never observed as a mucoid phenotype. | (34) | | | Dublin | Adult | 2005-
2007 | PFGE | NS | An antibiotic resistant <i>PA</i> clone, initially incorrectly identified as <i>Moraxella spp</i> via API 20NE, was found in 23 patients (11% of total clinic), with no evidence of other significant clones. | (35) | | Italy | Catania,
Sicily | Peds | 1998 | RAPD-
PCR | 12 | Two pairs of patients sharing clones were identified, including one sibling set | (36) | | | Florence | Peds | 1998-
2000 | PFGE | 64 | Five pairs of patients sharing a similar pulsotype were identified but no clonal strains | (37) | | | Verona | All | 2008-
2009 | PFGE | 338 | A very heterogeneous <i>PA</i> population structure was observed although 4 clusters including; 12 (ID P14), 8 (ID P1), 8 (ID CP2) and 6 individuals (ID P6) were found | (38) | | Netherla
nds | Roterdam | All | 1991-
1995 | PFGE,
AP-PCR | 29 | In this longitudinal study, great heterogeneity was observed, however, 17% shared a single <i>PA</i> pulsotype | (39) | |---------------------|------------------------|------------|---------------|---------------------------------|-----|---|--------------| | Northern
Ireland | Belfast | Adult
s | 2006 | RAPD
PCR | 29 | In a pilot study, no patients shared isolates with the same pulsotype suggesting significant diversity in <i>PA</i> . Notbaly, however, LES has been identified in this population(40). | (41) | | Poland | Warsaw | All | 2011-
2012 | PFGE | 75 | One <i>PA</i> clone (cluster 19; group A) was identified in 21 patients who had significant social contact. Smaller clusters with up to 7 patients were also identified. | (42) | | Qatar | Doha | Peds | 2011 | AFLP | 32 | Shared strains amongst members of a large extended family were observed, but no evidence of a wide spread clone. | (43)
(44) | | Sweden | Gothenburg | All | 1999-
2012 | PFGE
MLVA | | A prospective study identified three prevalent <i>PA</i> clones; Clone J (7%), Clone B 13 (12%) and Clone A (5%). Clone J, a MDR strain, had previously been identified in CF summer camp associated outbreaks(45). | (46) | | Turkey | Istanbul
and Ankara | NS | 2003 | AP-PCR | 46 | They identified one clone present in 15% of patients, found in both clinics. As patient details were omitted, familial relationships could not be determined. | (47) | | United
Kingdom | Liverpool | Peds | 1995 | PFGE
flagellin
typing | 65 | A marked increase in CAZ resistant <i>PA</i> was observed in attendees of this clinic. 85% of patients with CAZ-R <i>PA</i> belonged to a single pulsotype, dubbed LES | (48) | | | Manchester | Adult
s | 2000 | PFGE
and
pyocin
typing | 154 | A prospective study identified 14% of individuals with a novel clonal <i>PA</i> strain, dubbed Manchester (MA). Notably, this clone was absent in patients segregated owing to <i>Bcc</i> coinfection. | (49) | | | Liverpool | Adult
s | 2001-
2002 | PFGE
and
PS21-
PCR | 92 | 68% of patients, and 79% of <i>PA</i> infected patients were infected with LES. PCR detection of e <i>PA</i> by whole sputum was demonstrated to be highly sensitive and specific. | (50) | | | Manchester | Adult | 2000-
2003 | PFGE | 243 | In this prospective study, the prevalence of both MA and LES increased slowly to 19% over four years. Furthermore, | (51) | | | | | | | | three small novel <i>PA</i> clusters involving 3-8 patients were observed. After cohort segregation, no new cases of e <i>PA</i> were observed. | | |------------------|-------------------|-------|---------------|---------|-----|---|------| | | Midlands | Adult | 2001-
2003 | PFGE | 157 | LES was identified in 11% of attendees, MA in 1% and several small clusters involving 2-7 individuals. However, a novel ePA, the Midlands-1 (Md1) strain was found to infect 30% of the cohort. | (52) | | United
States | Houston,
Texas | Peds | 2004-
2011 | rep-PCR | 71 | In a prospective study, those patients with chronic P . $aeruginosa$ resistant to ≥ 2 classes of antibiotics were screened for clonality. A single isolate, Houston-1 infected 45% of patients. | | Definitions; PA=Pseudomonas aeruginosa, ePA = *epidemic P. aeruginosa*, Peds=Pediatric, All= Adult and Pediatric patients, LES=Liverpool Epidemic Strain, PES= Prairie Epidemic Strain, Bcc=*Burkholderia cepacia* complex, CAZ=ceftazidime, R=resistant, NS=not stated, MA= Manchester epidemic strain ## **Supplemental References** - 1. **Anthony M, Rose B, Pegler MB, Elkins M, Service H, Thamotharampillai K, Watson J, Robinson M, Bye P, Merlino J, Harbour C.** 2002. Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol **40:**2772-2778. - 2. **Armstrong DS, Nixon GM, Carzino R, Bigham A, Carlin JB, Robins-Browne RM, Grimwood K.** 2002. Detection of a widespread clone of Pseudomonas aeruginosa in a pediatric cystic fibrosis clinic. Am J Respir Crit Care Med **166:**983-987. - 3. **Armstrong DS, Grimwood K, Carlin JB, Carzino R, Gutierrez JP, Hull J, Olinsky A, Phelan EM, Robertson CF, Phelan PD.** 1997. Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med **156**:1197-1204. - 4. **Griffiths AL, Wurzel DF, Robinson PJ, Carzino R, Massie J.** 2012. Australian epidemic strain pseudomonas (AES-1) declines further in a cohort segregated cystic fibrosis clinic. J Cyst Fibros **11:**49-52. - 5. **Griffiths AL, Jamsen K, Carlin JB, Grimwood K, Carzino R, Robinson PJ, Massie J, Armstrong DS.** 2005. Effects of segregation on an epidemic Pseudomonas aeruginosa strain in a cystic fibrosis clinic. Am J Respir Crit Care Med **171:**1020-1025. - 6. **O'Carroll MR, Syrmis MW, Wainwright CE, Greer RM, Mitchell P, Coulter C, Sloots TP, Nissen MD, Bell SC.** 2004. Clonal strains of Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units. Eur Respir J **24:**101-106. - 7. **Syrmis MW, O'Carroll MR, Sloots TP, Coulter C, Wainwright CE, Bell SC, Nissen MD.** 2004. Rapid genotyping of Pseudomonas aeruginosa isolates harboured by adult and paediatric patients with cystic fibrosis using repetitive-element-based PCR assays. J Med Microbiol **53:**1089-1096. - 8. **Bradbury R, Champion A, Reid DW.** 2008. Poor clinical outcomes associated with a multi-drug resistant clonal strain of Pseudomonas aeruginosa in the Tasmanian cystic fibrosis population. Respirology **13:**886-892. - 9. **Struelens MJ, Schwam V, Deplano A, Baran D.** 1993. Genome macrorestriction analysis of diversity and variability of Pseudomonas aeruginosa strains infecting cystic fibrosis patients. J Clin Microbiol **31:**2320-2326. - 10. Van Daele SG, Franckx H, Verhelst R, Schelstraete P, Haerynck F, Van Simaey L, Claeys G, Vaneechoutte M, de Baets F. 2005. Epidemiology of Pseudomonas aeruginosa in a cystic fibrosis rehabilitation centre. Eur Respir J 25:474-481. - 11. **Silbert S, Barth AL, Sader HS.** 2001. Heterogeneity of Pseudomonas aeruginosa in Brazilian cystic fibrosis patients. J Clin Microbiol **39:**3976-3981. - 12. **da Silva Filho LV, Levi JE, Bento CN, Rodrigues JC, da Silvo Ramos SR.** 2001. Molecular epidemiology of Pseudomonas aeruginosa infections in a cystic fibrosis outpatient clinic. J Med Microbiol **50:**261-267. - 13. **Leao R, Carvalho-Assef, APD, Ferreira, AG, Folescu, TW, Barth, AL, Pitt, TL and EA Marques.** 2010. Comparison of the worldwide transmissible Pseudomonas aeruginosa with isolates from Brazilian cystic fibrosis patients. Brazilian Journal of Microbiology **41:**1079-1081. - 14. **Speert DP, Campbell ME, Henry DA, Milner R, Taha F, Gravelle A, Davidson AG, Wong LT, Mahenthiralingam E.** 2002. Epidemiology of Pseudomonas aeruginosa in cystic fibrosis in British Columbia, Canada. Am J Respir Crit Care Med **166**:988-993. - 15. **Campbell M, Mahenthiralingam E, Speert DP.** 2000. Evaluation of random amplified polymorphic DNA typing of Pseudomonas aeruginosa. J Clin Microbiol **38:**4614-4615. - 16. **Hafiane A, Ravaoarinoro M.** 2011. Characterization of Pseudomonas aeruginosa strains isolated from cystic fibrosis patients by different typing methods. Pathol Biol (Paris) **59:**e109-114. - 17. **Parkins MD, Glezerson BA, Sibley CD, Sibley KA, Duong J, Purighalla S, Mody CH, Workentine ML, Storey DG, Surette MG, Rabin HR.** 2014. Twenty-five-year outbreak of Pseudomonas aeruginosa infecting individuals with cystic fibrosis: identification of the prairie epidemic strain. J Clin Microbiol **52:**1127-1135. - 18. **Somayaji R, Lam JC, Surette MG, Waddell B, Rabin HR, Sibley CD, Purighalla S, Parkins MD.** 2017. Long-term clinical outcomes of 'Prairie Epidemic Strain' Pseudomonas aeruginosa infection in adults with cystic fibrosis. Thorax **72:**333-339. - 19. **Vosahlikova S, Drevinek P, Cinek O, Pohunek P, Maixnerova M, Urbaskova P, van den Reijden TJ, Dijkshoorn L, Nemec A.** 2007. High genotypic diversity of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis in the Czech Republic. Res Microbiol **158**:324-329. - 20. **Kalferstova L, Vilimovska Dedeckova K, Antuskova M, Melter O, Drevinek P.** 2016. How and why to monitor Pseudomonas aeruginosa infections in the long term at a cystic fibrosis centre. J Hosp Infect **92:**54-60. - 21. **Hoiby N, Rosendal K.** 1980. Epidemiology of Pseudomonas aeruginosa infection in patients treated at a cystic fibrosis centre. Acta Pathol Microbiol Scand B **88:**125-131. - **Bergan T, Hoiby N.** 1975. Epidemiological markers for Pseudomonas aeruginosa. 6. Relationship between concomitant non-mucoid and mucoid strains from the respiratory tract in cystic fibrosis. Acta Pathol Microbiol Scand Suppl **83:**553-560. - 23. **Pedersen SS, Koch C, Hoiby N, Rosendal K.** 1986. An epidemic spread of multiresistant Pseudomonas aeruginosa in a cystic fibrosis centre. J Antimicrob Chemother **17:**505-516. - **Zimakoff J, Hoiby N, Rosendal K, Guilbert JP.** 1983. Epidemiology of Pseudomonas aeruginosa infection and the role of contamination of the environment in a cystic fibrosis clinic. J Hosp Infect **4:**31-40. - 25. **Jelsbak L, Johansen HK, Frost AL, Thogersen R, Thomsen LE, Ciofu O, Yang L, Haagensen JA, Hoiby N, Molin S.** 2007. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun **75:**2214-2224. - 26. **Tramper-Stranders GA, van der Ent CK, Wolfs TF, Kimpen JL, Fleer A, Johansen U, Johansen HK, Hoiby N.** 2008. Pseudomonas aeruginosa diversity in distinct paediatric patient groups. Clin Microbiol Infect **14:**935-941. - 27. **Vu-Thien H, Corbineau G, Hormigos K, Fauroux B, Corvol H, Clement A, Vergnaud G, Pourcel C.** 2007. Multiple-locus variable-number tandem-repeat analysis for longitudinal survey of sources of Pseudomonas aeruginosa infection in cystic fibrosis patients. J Clin Microbiol **45:**3175-3183. - 28. **Tummler B, Koopmann U, Grothues D, Weissbrodt H, Steinkamp G, von der Hardt H.** 1991. Nosocomial acquisition of Pseudomonas aeruginosa by cystic fibrosis patients. J Clin Microbiol **29:**1265-1267. - 29. **Romling U, Wingender J, Muller H, Tummler B.** 1994. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol **60:**1734-1738. - 30. **Romling U, Fiedler B, Bosshammer J, Grothues D, Greipel J, von der Hardt H, Tummler B.** 1994. Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J Infect Dis **170**:1616-1621. - 31. **Wiehlmann L, Cramer N, Ulrich J, Hedtfeld S, Weissbrodt H, Tummler B.** 2012. Effective prevention of Pseudomonas aeruginosa cross-infection at a cystic fibrosis centre results of a 10-year prospective study. Int J Med Microbiol **302:**69-77. - 32. **Ghazi M, Khanbabaee G, Fallah F, Kazemi B, Mahmoudi S, Navidnia M, Pourakbari B, Bakhshi B, Goudarzi H.** 2012. Emergence of Pseudomonas aeruginosa cross-infection in children with cystic fibrosis attending an Iranian referral pediatric center. Iran J Microbiol **4:**124-129. - 33. **Adams C, Morris-Quinn M, McConnell F, West J, Lucey B, Shortt C, Cryan B, Watson JB, O'Gara F.** 1998. Epidemiology and clinical impact of Pseudomonas aeruginosa infection in cystic fibrosis using AP-PCR fingerprinting. J Infect **37:**151-158. - 34. **Logan C, Habington A, Lennon G, Grogan J, Byrne M, O'Leary J, O'Sullivan N.** 2012. Genetic relatedness of Pseudomonas aeruginosa isolates among a paediatric cystic fibrosis patient cohort in Ireland. J Med Microbiol **61:**64-70. - 35. **Keating D, Crowe MJ, Kennedy B, Salmon A, Britton D, Gallagher CG, McKone EF, Schaffer K.** 2013. Molecular detection of an atypical, highly resistant, clonal Pseudomonas aeruginosa isolate in cystic fibrosis patients. J Cyst Fibros **12:**141-146. - 36. **Agodi A, Sciacca A, Campanile F, Messina C, Barchitta M, Sciacca S, Stefani S.** 2000. Molecular epidemiology of Pseudomonas aeruginosa from cystic fibrosis in Sicily: genome macrorestriction analysis and rapid PCR-ribotyping. New Microbiol **23:**319-327. - 37. **Campana S, Taccetti G, Ravenni N, Masi I, Audino S, Sisi B, Repetto T, Doring G, de Martino M.** 2004. Molecular epidemiology of Pseudomonas aeruginosa, Burkholderia cepacia complex and methicillin-resistant Staphylococcus aureus in a cystic fibrosis center. J Cyst Fibros **3:**159-163. - 38. **Cigana C, Melotti P, Baldan R, Pedretti E, Pintani E, Iansa P, De Fino I, Favari F, Bergamini G, Tridello G, Cirillo DM, Assael BM, Bragonzi A.** 2016. Genotypic and phenotypic relatedness of Pseudomonas aeruginosa isolates among the major cystic fibrosis patient cohort in Italy. BMC Microbiol **16**:142. - 39. **Renders N, van Belkum A, Barth A, Goessens W, Mouton J, Verbrugh H.** 1996. Typing of Pseudomonas aeruginosa strains from patients with cystic fibrosis: phenotyping versus genotyping. Clin Microbiol Infect **1**:261-265. - 40. **Kakinuma Y, Goldsmith CE, Watt A, Elborn JS, Maeda Y, Rendall JC, Hall V, McCaughan J, Reid A, Millar BC, Matsuda M, Moore JE.** 2010. Molecular conservation within LES9F and PS21 liverpool epidemic strain (LES) markers in wild-type clinical pseudomonas aeruginosa isolated from the sputum of adult patients with cystic fibrosis. Br J Biomed Sci **67:**87-88. - 41. **Clarke L, Moore JE, Millar BC, Crowe M, Xu J, Goldsmith CE, Murphy RG, Dooley JS, Rendall J, Elborn JS.** 2008. Molecular epidemiology of Pseudomonas aeruginosa in adult patients with cystic fibrosis in Northern Ireland. Br J Biomed Sci **65:**18-21. - 42. **Milczewska J, Wolkowicz T, Zacharczuk K, Kwiatkowska M**. 2015. Cross-infections with Pseudomonas aeruginosa in patients with cystic fibrosis attending the Warsaw Centre. Dev Period Med **19:**60-65. - 43. **AbdulWahab A, Taj-Aldeen SJ, Ibrahim E, Abdulla SH, Muhammed R, Ahmed I, Abdeen Y, Sadek O, Abu-Madi M.** 2014. Genetic relatedness and host specificity of Pseudomonas aeruginosa isolates from cystic fibrosis and non-cystic fibrosis patients. Infect Drug Resist **7:**309-316. - 44. **Abdul Wahab A, Taj-Aldeen SJ, Hagen F, Diophode S, Saadoon A, Meis JF, Klaassen CH.** 2014. Genotypic diversity of Pseudomonas aeruginosa in cystic fibrosis siblings in Qatar using AFLP fingerprinting. Eur J Clin Microbiol Infect Dis **33:**265-271. - 45. **Meyer P, Johansson, E., Welinder-Olsson, C., Lindblad, A., Hjelte, l. and F. Karpati.** 2007. Pseudomonas aeruginosa transmission at a winter camp in spite of rigorous precautions. Journal of Cystic Fibrosis **6:**114. - 46. **Johansson E, Welinder-Olsson C, Gilljam M, Pourcel C, Lindblad A.** 2015. Genotyping of Pseudomonas aeruginosa reveals high diversity, stability over time and good outcome of eradication. J Cyst Fibros **14:**353-360. - 47. **Yagci A, Ciragil P, Over U, Sener B, Erturan Z, Soyletir G.** 2003. Typing of Pseudomonas aeruginosa strains in Turkish cystic fibrosis patients. New Microbiol **26:**109-114. - 48. **Cheng K, Smyth RL, Govan JR, Doherty C, Winstanley C, Denning N, Heaf DP, van Saene H, Hart CA.** 1996. Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet **348**:639-642. - 49. **Jones AM, Govan JR, Doherty CJ, Dodd ME, Isalska BJ, Stanbridge TN, Webb AK.** 2001. Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Lancet **358:**557-558. - 50. **Panagea S, Winstanley C, Parsons YN, Walshaw MJ, Ledson MJ, Hart CA.** 2003. PCR-based detection of a cystic fibrosis epidemic strain of Pseudomonas Aeruginosa. Mol Diagn **7:**195-200. - 51. **Jones AM, Dodd ME, Govan JR, Doherty CJ, Smith CM, Isalska BJ, Webb AK.** 2005. Prospective surveillance for Pseudomonas aeruginosa cross-infection at a cystic fibrosis center. Am J Respir Crit Care Med **171:**257-260. | 52. | Chambers D, Scott F, Bangur R, Davies R, Lim A, Walters S, Smith G, Pitt T, Stableforth D, Honeybourne D. 2005. Factors associated with infection by Pseudomonas aeruginosa in adult cystic fibrosis. Eur Respir J 26: 651-656. | |-----|---| |