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Multiple co-clustering method

This method is based on nonparametric Bayesian mixture models in which features are automatically partitioned into views for
each clustering solution of subtypes. This feature partition works as feature selection for a particular clustering solution, which
screens out irrelevant features. For each view, a co-clustering structure is introduced, which enables to fit to high-dimensional
data. This method uses a hierarchical Dirichlet process to generate feature memberships: first allocate a feature to a view;
second allocate to a feature cluster in that view. Moreover, mixing of several types of features is allowed, such as mixtures
of Gaussian, categorical, and Poisson distributions, which are pre-specified by the user. In the following sub-sections, we
formulate the model assumed in this method, using the notation in Supplementary Table S1. For more details of this method,
please refer to the original paper1.

Model
We assume that a data matrix X consists of M distribution families that are known in advance. We decompose X =
{X (1), . . . ,X (m), . . . ,X (M)} with data size n×d(m) for X (m), where m is an indicator for a distribution family (m = 1, . . . ,M).
Further, we denote the number of views as V (common to all distribution families), the number of feature clusters G(m)

v for view
v and distribution family m, and the number of object clusters Kv for view v (common to all distribution families). Moreover, for
simplicity of notation, we use G(m) = maxv G(m)

v and K = maxv Kv to denote the number of features and the number of clusters,
allowing for empty clusters.

With this notation, for i.i.d. d(m)-dimensional random vectors X (m)
1 , . . . ,X (m)

n for distribution family m, we consider a
d(m)×V ×G(m) feature-partition tensor (3rd-order) Y (m) in which Y (m)

j,v,g = 1 if feature j of distribution family m belongs to
feature cluster g in view v (0 otherwise). Combining this for different distribution families, we let Y = {Y (m)}m. Similarly,
we consider a n×V ×K object-partition (3rd-order) tensor Z in which Zi,v,k = 1 if object i belongs to object cluster k in view
v. Note that feature j belongs to one of the views (i.e., ∑v,g Y (m)

j,v,g = 1) while object i belongs to each view (i.e., ∑k Z(m)
i,v,k = 1).

Further, Z is common to all distribution families, which implies that our model estimates subject cluster solutions using
information on all distribution families.

For a prior generative model of Y , we consider a hierarchical structure of views and feature clusters: views are first
generated, followed by generation of feature clusters. Thus, features are partitioned in terms of pairs of view and feature cluster
memberships, which implies that the allocation of feature is jointly determined by its view and feature cluster. On the other
hand, objects are partitioned into object clusters in each view, hence, we consider just a single structure of object clusters for Z.
We assume that these generative models are all based on a stick-breaking process as follows.

Generative model for feature clusters Y

We let Y (m)
j·· denote a view/feature cluster membership vector for feature j of distribution family m, which is generated by a

hierarchical stick-breaking process:

wv ∼ Beta(·|1,α1), v = 1,2, . . .

πv = wv

v−1

∏
t=1

(1−wt),

w′(m)
g,v ∼ Beta(·|1,α2), g = 1,2, . . . ,m = 1, . . . ,M

π
′(m)
g,v = w′(m)

g,v

g−1

∏
t=1

(1−w′(m)
t,v ),

τ
(m)
g,v = πvπ

′(m)
g,v

Y (m)
j·· ∼ Mul(·|τ(m)),

where τ(m) denotes a 1×GV vector (τ(m)
1,1 , . . . ,τ

(m)
G,V )

T (the superscript T denotes matrix transposition); Mul(·|π) is a multinomial
distribution of one sample size with probability parameter π; Beta(·|a,b) is a Beta distribution with prior sample size (a,b);
Y (m)

j·· is a 1×GV vector (Y (m)
j,1,1, . . . ,Y

(m)
j,V,G)

T . Note that we truncate the number of views with sufficient large V and the number

of feature clusters with G. When Y (m)
j,v,g = 1, feature j belongs to feature cluster g at view v. By default, we set the concentration

parameters α1 and α2 to one.
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Generative model for object clusters Z
A subject cluster membership vector of object i in view v, denoted as Zi,v·, is generated by

uk,v ∼ Beta(·|1,β ), v = 1,2, . . . , k = 1,2, . . .

ηk,v = uk,v

k−1

∏
t=1

(1−ut,v),

Zi,v· ∼ Mul(·|ηv),

where Zi,v· is a 1×K (we take K sufficiently large) vector given by Zi,v· = (Zi,v,1, . . . ,Zi,v,K)
T . We set the concentration

parameter β to one.

Likelihood and prior distribution
We assume that each instance X (m)

i, j independently follows a certain distribution, conditional on Y and Z. We denote θ
(m)
v,g,k as

parameters of distribution family m in the cluster block of view v, feature cluster g and object cluster k. Further denoting
Θ = {θ (m)

v,g,k}v,g,k,m, the logarithm of likelihood of X is given by

log p(X |Y ,Z,Θ) = ∑
m,v,g,k, j,i

I(Y (m)
j,v,g = 1)I(Zi,v,k = 1) log p(X (m)

i, j |θ
(m)
v,g,k),

where I(x) is an indicator function, i.e, returning 1 if x is true, and 0 otherwise. Note that the likelihood is not directly associated
with w = {wv}v, w′ = {w′(m)

g,v }g,v and u = {uk,v}k,v. The joint prior distribution of unknown variables φ = {Y ,Z,w,w′,u,Θ}
(i.e., class membership variables and model parameters) is given by

p(w)p(w′)p(Y |w,w′)p(u)p(Z|u)p(Θ).

Observation models
For observation models, we consider Gaussian, categorical, and Poisson distributions. For each cluster block, we fit a univariate
distribution of these families with the assumption that features within the cluster block are independent. We assume conjugate
priors for the parameters of these distribution families as follows.

Gaussian distribution
We denote univariate Gaussian density function as Gauss(·|µ,σ2) where µ and σ2 are mean and variances. We assume
conjugate priors for µ and σ2 in each cluster block:

sv,g,k ∼ Ga(·|γ0/2,γ0σ
2
0 /2)

µv,g,k ∼ Gauss(·|µ0,(λ0sv,g,k)
−1),

where Ga(·|a,b) denotes Gamma distribution with shape and rate parameters (a,b). In the present paper, we set σ2
0 = 1/100,

γ0 = 1/100, and λ0 = 1/100 so that the prior distributions are nearly non-informative.

Categorical distribution
For a categorical feature x (x∈ {c1, . . . ,cH}), we denote categorical distribution as Cat(·|p) where H is the number of categories,
and p = (p1, . . . , pH) are probabilities for each category with ∑

H
h=1 ph = 1. We assume the conjugate prior for (p1, . . . , pH),

(p1, . . . , pH) ∼ Dirichlet(·|ρ0),

where Dirichlet(·|ρ0) denotes a Dirichlet distribution with prior sample size ρ0. We set ρ0 to (1, . . . ,1).

Poisson distribution
We denote Poisson distribution as Poisson(·|λ ) where λ is a rate parameter. The conjugate prior for λ is given by

λv,g,k ∼ Ga(·|α0,β0),

where we set α0 and β0 to one.
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Sensitivity Analysis
We examined sensitivity of the clustering results to the setting of hyperparameters. For stick-breaking process, we focussed
on all three hyperparameters α1, α2 and β while for hyperparameters in probabilistic probabilities, we focussed only on
γ0,σ

2
0 ,λ0,µ0 in Gaussian priors, because the numerical features outnumber the remainder of the features, hence, most influential

for the clustering results. In our context, however, sensitivity analysis would be computationally demanding: For a single
perturbation of hyperparameters, it would take 160 hrs to obtain optimal clustering results. To reduce computational costs, we
focussed only on the initial configuration that gave us the optimal clustering solution for the original setting of hyperparameters
(it takes only 0.16 hrs). Further, we separately analyzed hyperparameters in stick-breaking process and Gaussian distributions.
We carried out sensitive analysis by means of grid search2. We set the ranges of α1,α2,and β to [0.5, 1, 2] while the ranges
of γ0,σ

2
0 ,and λ0 to [1/1000, 1/100, 1/100], and µ to [-0.1, 0, 0.1], respectively. Note that in all cases, the hyperparameters

are perturbed both in negative and positive directions. This setting requires 33 +34 = 108 runs of application of the multiple
co-clustering method. To evaluate concordance between obtained results, we focussed on a subject cluster solution in view 10,
which plays the key role in the present paper. We have the following results. For hyperparameters of stick-breaking process, in
all cases there is a good accordance of subject cluster solutions: Adjuster Rand Index (ARI)3 takes more than 0.8 between
the original hyperprameters and the perturbed hyperparameters (ARI takes one for perfect accordance between two cluster
solutions while zero for random accordance); for Gaussian hyperparameters, in 85 % of cases, ARI takes more than 0.8. There
results suggest that the clustering results are not sensitive to a small perturbation of our setting of hyperparameters.
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Table S1. Notation for multiple clustering model

Domain Notation Description
Data n Sample size

m mth distribution family (m = 1, . . . ,M)
M Total number of distribution families

d(m) Number of features for distribution family m
X (m) Data matrix for distribution family m of size n×d(m)

X (m)
i ith sample for distribution family m of size 1×d(m)

X All data matrix of size n×∑
M
m=1 d(m)

Cluster V Number of views
Membership G(m)

v Number of feature clusters for distribution family m in view v
Kv Number of object clusters in view v

G(m) max
v

G(m)
v

K max
v

Kv

Y (m) Feature-partition indicators of size d(m)×V ×G(m)

Y (m)
j.. Feature-partition indicators for feature j of

distribution family m of size V ×G(m)

Y (m)
j,v,g Element of Y (m): 1 if feature j of distribution family m

belongs to cluster g in view v, or 0 otherwise
Z Object-partition indicators of size n×V ×K

Zi,v. Object-partition indicators for object i in view v
of size 1×K

Zi,v,k Element of Z: 1 if object i belongs to object cluster k
in view v, or 0 otherwise

Dirichlet wv Probability of stick-breaking for view v
Process α1 Hypeparameter of a beta prior Beta(1, α1) for wv

πv Length of unit-stick (∑∞
v=1 πv = 1) for view v

w′(m)
g,v Probability of stick-breaking for feature cluster g

for distribution family m in view v
α2 Hypeparameter of a beta prior Beta(1, α2) for w′(m)

g,v

π ′(m)
g,v Length of unit-stick (∑∞

g=1 π ′(m)
g,v = 1) for

feature cluster g of distribution family m in view v
τ
(m)
g,v πvπ ′(m)

g,v : Length of unit-stick (∑∞
g,v τ

(m)
g,v = 1) for

feature cluster g of distribution family m in view v
uk,v Probability of stick-breaking for object cluster k in view v
β Hypeparameter of a beta prior Beta(1, β ) for uk,v

ηk,v Length of unit-stick (∑∞
k=1 ηk,v = 1) for object cluster k

in view v
Probability θ

(m)
v,g,k Parameter(s) of distribution family m for feature cluster g

Model and object cluster k in view v
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Table S2. List of features for clinical data (non-FC features). The features with an asterisk * are considered as depression
related features in Fig.3b in the main manuscript.

Numerical features
age
age when first depressive symptoms show up,
The number of days elapsed for current episode,
BAS∗ (Behavioral Activation Scale),
BDNF (Quantity of brain-derived neurotrophic factor in blood),
BDI∗ (Beck Depression Inventory),
BIS∗ (Behavioral Inhibition Scale),
CATS (Child Abuse and Trauma Scale),

CATS:total for all items
CATS:N for items on neglect
CATS:S for items on sexual abuse
CATS:P for items on punishment
CATS:E for items on emotion

Cortisol (Quantity of cortisol in blood),
CpG , S , SU , SD (Methylation probability),
FC1-2701 (Functional connectivity),
GAF∗ (Global Assessment of Functioning),
PHQ9∗ (Patient Health Questionnaire),
HRSD17∗ (17-item Hamilton Rating Scale for Depression),
HRSD21∗ (21-item Hamilton Rating Scale for Depression),
HRSDchange (Increment rate of HRSD17 scores defied as (HRSD176w−HRSD17)/HRSD17).
JART∗ (Adult reading test),
LES (Life Experiences Survey),

LES:total for all events
LES:P for positive events
LES:N for negative events

PANASP∗ (Positive Affect Schedule),
PANASN∗ (Negative Affect Schedule),
SHAPS∗ (Snaith-Hamilton Pleasure Scale),
STAI∗ (State-Trait Anxiety Inventory),
N∗, E∗, O∗, A∗, C∗ (Five factors in revised NEO Personality Inventory)

Categorical features
BDI∗ t1 (Items of BDI initially),
BDI∗ t2 (Items of BDI after six weeks of treatment),
drug∗ (states of dosing of lexapro),
HRSD∗ t1 (items of HRSD initially)∗,
HRSD∗ t2 (items of HRSD after six weeks of treatment)∗,
Melancholic∗ (Melancholic depression or not),
MINI∗ (Mini-International Neuropsychiatric Interview): the numbering corresponds to the following
psychiatric symptoms.

Major depressive disorder (1),
Dysthymia (2), Suicide risk (3),
Mania (4), Panic disorder (5), Agoraphobia (6),
Social phobia (7),
Obsessive compulsive disorder (8),
PTSD (9), Alcohol dependence and abuse (10),
Drug dependence and abuse (11),
Psychotic disorder (12), Anorexia (13), Bulimia (14),
Generalized anxiety disorder (15),
Antisocial personality disorder (16),

Recurrent∗ (Recurrent depression or not),
Response∗ (whether there is response to the reatment based on HRSD17),
Remission∗ (whether a patient is remitted after the tremens),
Sex
SNPs∗ 1-8: Single Nucleotide Polymorphisms that are located in the following genome sites, respectively.
(in parenthesis are the relevant gene functions)
rs1187323 (NTRK2), rs34118353 (5HT1a receptor), rs3756318 (NTRK2), rs3813929 (5HT2c receptor),
rs45554739 (NTRK2), rs56384968 (SLC6A4), rs6265 (BDNF), rs6294 (5HT1a receptor)

Integer features
Episode (the number of past experiences of depression),
RecNum (the number of times of recurrent depression)
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Table S3. Results of multiple co-clustering. The number of clusters (denoted as # clusters) for subjects, numerical features,
categorical features, and integer features; the number of features (denoted as # features) for each type of features. Views are
sorted in descending order of the total number of features included.

Feature
View Subject Numerical Categorical Integer

ID # clusters # clusters # features # clusters # features # clusters # features
View 1 9 11 1283 1 4 0 0
View 2 9 11 396 1 20 0 0
View 3 7 6 316 1 17 0 0
View 4 7 6 221 3 46 0 0
View 5 7 6 144 0 0 0 0
View 6 6 5 117 1 1 0 0
View 7 5 3 66 0 0 0 0
View 8 4 3 62 1 2 0 0
View 9 6 2 62 0 0 0 0

View 10 5 5 39 1 19 0 0
View 11 5 2 43 0 0 0 0
View 12 4 2 32 2 5 1 2
View 13 4 1 35 0 0 0 0
View 14 4 1 15 0 0 0 0
View 15 3 1 1 0 0 0 0

Table S4. Characteristics of feature clusters in view 10. We use a serial number for identification of FC features, which is
clarified in Supplementary Table S5.

Feature-
cluster Member feature Characteristic

F1 BDI 6w, BDI 6m, PHQ-9 6w, PHQ-9 6m, After-treatment status &
HRSD17 6w, HRSD 21 6w, STAI 6w, Child abuse trauma
CATS:total, CATS:N, CATS:P, CATS:E,
LES:P, CpG 199

F2 FC558, FC560, FC572, FC590, FC605, FC609, Functional connectivity 1
FC613, CpG 185.186,

F3 BDI, PHQ-9, SHAPS, PANASN, STAI, BIS, N Initial status 1
F4 FC491, FC557, FC596, FC598, FC611 Functional connectivity 2
F5 GAF, PANASP, LES:total, LES:N, BAS, E Initial status 2
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Table S5. Relevant brain areas for view 10. All FC has connectivity with Dorsal.DMN.02 (Angular.R). In the third column,
the remainder of network nodes are displayed.

Feature- Number of Brodmann
cluster FC ID Network node connection Relevant brain areas (AAL) Area

F2 NA Dorsal.DMN.02 7 Angular.R 39
558 Dorsal.DMN.04 1 PCC (Posterior Cingulate Cortex).R.L 23
560 Dorsal.DMN.06 1 Angular.L 39
605 Ventral.DMN.01 1 Calcarine.R 30
609 Ventral.DMN.05 1 Calcarine.L, Precuneus.L 17, 23, 29, 30
613 Ventral.DMN.09 1 Angular.L, Occipital.Mid.L 39
572 LECN.01 1 Frontal.Mid.R 8
590 Precuneus.01 1 Ventral PCC.R.L 23

F4 NA Dorsal.DMN.02 5 Angular.R 39
491 Dorsal.DMN.01 1 Frontal.Sup.Medial.R.L,

ACC (Anterior Cingulate Cortex).R.L,
Frontal.Med.Orb.R.L, Frontal.Sup.R 10

557 Dorsal.DMN.03 1 Frontal.Sup.L 9
611 Ventral.DMN.07 1 Frontal.Mid.L NA
596 RECN.02 1 Frontal.Mid.Orb.L, Frontal.Mid.L 46
598 RECN.04 1 Frontal.Sup.Medial.L 8

Table S6. Characterization of subject-clusters with values of relevant features. ‘High’, ‘Moderate’, and ‘Low’ in the table
denotes the level of mean values of these features in each subject cluster.

Subject- Features

cluster CATS FC BDI BDI6w
D1 High High Low High
D2 Low Moderate Low Low
D3 High Low High Low

Table S7. Relevant non FC and FC features in views 4, 8, and 12. Discriminative features are those significantly discriminate
subject clusters, which are denoted in bold in Table 1 in the main manuscript.

Non-FC features FC-features
View ID Discriminative Feature Description Dominant Brain areas # connectivity
View 4 BDI t1 i(8, 11-15, 18-20) Depression La-2, Ve-4, La-5 25, 22, 21

MINI1 Depression
MINI3 Suicidal risk

View 8 BDI t1 17 Fatigue Do-2, Re-6 43, 2
HRDS t2 15 Hypochondriasis

View 12 SNPS2 DNA La-4, Do-1, Re-4 6, 5, 5
Episode # past depression
RecNum # recurrent depression
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Figure S1. Relevant functional connectivity for views. From Panel (a) to Panel (n), views 1-14, respectively (view 15 is
omitted because it does not include FC features). Selected functional connectivity between two brain networks in each view are
denoted in red if the average of depressive subjects is higher than the average of control subjects, and otherwise in blue.
Acronym for brain networks in nodes: An (Anterior Salience), Au (Auditory), Ba (Basal Ganglia), Do (Dorsal Default Mode),
La (Language), Le (Left Executive Control), Pr (Precuneus), Po (Posterior Salience), Re (Right Executive Control), Ve (Ventral
Default Mode), Vi (Visuospatial), V1 (Primary Visual), V2 (Higher Visual), and Se (Sensorimotor). For the numbering after
these acronyms in an anticlockwise way, see http://findlab.stanford.edu/functional ROIs.html.
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(a) Dorsal DMN.02

(b) Dorsal DMN.04 (c) Dorsal DMN.06 (d) Ventral DMN.01 (e) Ventral DMN.05

(f) Ventral DMN.09 (g) LECN.01 (h) Precuneus.01 (i) Dorsal DMN.01

(j) Dorsal DMN.03 (k) Ventral DMN.07 (l) RECN.02 (m) RECN.04

Figure S2. Images of relevant brain areas for view 10. For Panel (a), the right angular gyrus, which plays the role of the hub
in both functional connectivity clusters F2 and F4 (denoted in bold italic). For Panels (b)-(h), the remainder of relevant brain
areas in F2 (denoted in bold); for Panels (i)-(m), the remainder of relevant brain areas in F4 (denoted in italic). These images
were obtained by MRIcro (www.mricro.com) using nii files for relevant brain areas available at
http://findlab.stanford.edu/functional ROIs.html.
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Figure S3. Integration of 15 clustering solutions of subjects. Panel (a): Results of hierarchical clustering measuring
Hamming distance between two subjects, defined as the percentage of views in which the subject cluster memberships differ.
The average linkage method is used for merging two clusters. Subject clusters G1, G2, G3, and G4 as enclosed in red, were
identified with cutoff value 0.75 in Hamming distance. The star marked subjects denote depressive subjects. Panel (b): Results
of statistical test to examine discrimination of clusters G1-G4 by features. For numerical features, we considered clinical scores
and age, while sex for categorical one. We evaluated p-value of Kruskal-Wallis test (nonparametric version of ANOVA) for
each numerical feature and p-value of χ2-test for categorical one. In the panel, features are sorted in descending order of
p-values. The red line denotes the threshold 0.05 for p-value without Bonferroni correction.

11/11


	References

