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Supplementary Figure 1
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Figure S1: Yield stress in aqueous foams. Theoretical dependence of the yield stress σy on
the volume fraction φ of fluid between bubbles in aqueous foams1. The yield stress is maximal for
dry foams (φ = 0) and vanishes at a critical value φc (wet foam).



Supplementary Figure 2
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Figure S2: Quantification of tissue viscoelastic properties and relaxation timescales
below and above the yield stress in both PSM and MPZ. a, 1D rheological diagrams
capturing the mechanical response of the analyzed tissues. Below yield, the tissue is characterized
by two relaxation timescales (τ1 and τ2), associated to two Maxwell-like components acting in
parallel (with elastic elements E1 and E2 and viscous elements η1 and η2), and an elastic component
(E3) that characterizes the tissue elasticity at small applied strains. At long timescales, the tissue
behaves like an elastic solid below yield. Above yield, the tissue behaves like a fluid at long
timescales and is characterized by an additional viscous element (η3) and relaxation timescale
(τ3). The elastic element kd effectively accounts for the droplet restoring force associated to
its interfacial tension (capillary stress), as previously described20. b, Measured stress relaxation
timescales in PSM and MPZ. c, All elastic components, including the tissue-scale elasticity (E3),
are larger in the PSM than in the MPZ. The total elastic modulus of the tissue at short timescales
is plotted in red. d, The viscous components also display larger values in the PSM than in the
MPZ. The total viscosity of the tissue at long timescales above yield is plotted in red. For PSM,
n=26 for measurements of τ1, τ2, E1, E2, η1, η2 and n=15 for measurements of τ3, E3 and η3. For
MPZ, n=49 for measurements of τ1, τ2, E1, E2, η1, η2 and n=11 for measurements of τ3, E3 and
η3. n indicates number of embryos.



Supplementary Note 1

Theoretical description of posterior body axis elongation. At supracellular length scales
and developmental time scales, tissues can be physically described as continuum materials23. We
simulate the physical expansion of a 2D dorsal-ventral projection of the presomitic mesoderm
(PSM) and mesodermal progenitor zone (MPZ) tissues, with x and y defining the anteroposterior
(AP) and mediolateral (ML) axes, respectively (Fig. S3 below). All our measurements indicate
that the tissue transits from a fluid-like state in the MPZ to a solid-like state in the PSM. To
simulate the observed fluid-to-solid jamming transition along the AP axis, we describe the tissue
as a viscous fluid with inhomogenous viscosity along the AP axis, diverging as the tissue transits
to a solid-like state (Fig. S3 below). The dynamics of the tissue is governed by two fundamental
physical laws, namely momentum conservation (which reduces here to local force balance because
inertial terms are negligible for embryonic tissues) and mass balance, which read

−∇p+∇ ·
(
µ(x)

(
∇u +∇uT

)
− 2

3
µ(x) (∇ · u) I

)
= 0 , (1)

∇ · u =
Q(x)

ρ
, (2)

where I is the identity tensor and p, u and ρ are the tissue pressure, velocity and density, respec-
tively. Since our measurements indicate that the cell density in the tissue is uniform (see Extended
Figure 9), we restricted the equations above to the case of uniform tissue density. The functions
µ(x) and Q(x) are the only inputs of the simulation and represent the spatial profile of the tissue
viscosity along the AP axis and the spatial distribution of cell ingression rate from dorsal-medial
(DM) tissues along the AP axis, respectively (Fig. S3 below). Ingression of cells to the MPZ from
DM tissues occurs only within a region of size λQ from the extending posterior leading edge of
the tissue15. This process can be accounted by the following functional form of Q:

Q(x) =
Q0

1 + exp

(
(xtip − λQ)− x

a

) , (3)

where Q0 is the maximal cell ingression rate, xtip is the position of the extending posterior leading
edge of the tissue (and changes as the tissue expands over time) and a is a length scale that defines
how sharply the profile Q(x) vanishes anteriorly. The inhomogenous viscosity along the AP axis
is represented by the following functional form of the viscosity profile along the AP axis:

µ(x) = µp +
µa − µp

1 + exp

(
x− (xtip − λµ)

a

) , (4)

where µp and µa are the viscosities of the MPZ and PSM tissues, respectively. As explained above,
the observed fluid-to-solid jamming transition is accounted for by a sharply diverging viscosity
(µa � µp) as the tissue becomes solid-like at a distance λµ from the extending posterior leading
edge of the tissue. In this case, the length scale a defines how sharply the viscosity diverges at
the jamming transition. To simulate the expansion of the tissue in the absence of a fluid-to-solid
transition, we simply consider the case of uniform viscosity, with the PSM viscosity being the
same as that of the MPZ (µa = µp).



Finally, in order to completely determine the problem, it is necessary to specify the boundary
conditions. In these simulations the tissue boundary is not imposed or fixed (free boundary
problem), but rather the tissue shape is an outcome of the simulations, with the exception of
the anterior-most boundary, which we anchor to a fixed wall (Fig. S3 below). At the boundary,
local normal forces must balance and velocities must be continuous. Local normal force balance
(equivalent to Laplace’s Law) reads

∆p = γκ , (5)

where ∆p is the pressure jump at the tissue boundary, γ is the tissue surface tension and κ is the
curvature of the tissue surface (there is contribution from one principal curvature only because
of the 2D nature of this simulation). For simplicity, we assume the tissue surface tension to be
uniform along the AP axis. Finally, the viscosity of the fluid exterior to the tissue is negligible
compared to the viscosity of the tissue anywhere along the AP axis.

The system is characterized by three dimensionless parameters that control the different pos-
sible behaviors. First, the ratio of the characteristic length scales λµ/λQ. Previous observations
indicate that cell ingression in the MPZ from DM tissues occurs mostly at the posterior half of the
MPZ tissue15, indicating that λµ & λQ. For this reason, we simulated the system for λµ ' 2λQ.
Second, the ratio of surface stresses associated with tissue surface tension and shear stresses asso-
ciated to tissue flows. In order to obtain any tissue shape different than a growing spherical blob,
the shear stresses need to be similar or larger than the stresses associated to the tissue surface
tension. For this reason, we simulated the system when the scale of shear stresses is similar than
the scale of stresses associated to tissue surface tension. Third, the ratio of the PSM and MPZ
viscosities, namely µa/µp. As explained above, this ratio is very large (µa � µp) in the presence
of a fluid-to-solid jamming transition, since the PSM tissue becomes solid-like. For this reason,
when simulating the system in the presence of a jamming transition, we choose µa ' 103 µp, which
effectively accounts for the divergence of the viscosity in the solid-like PSM from a numerical per-
spective. When studying the effects on morphogenesis of the absence of the jamming transition,
we impose a uniform tissue viscosity (µa = µp), while keeping all other parameters the same.

We use COMSOL Multiphysics 5.3 to perform a Finite Element simulations of the system
described above. We initialize the simulation with a tissue shaped as a semi-circle (initial condition
for the tissue shape) in a box of fluid with negligible viscosity compared to the tissue (such as
water). The simulation box is made much larger than the tissue size (by at least a factor of 10) to
avoid any undesired boundary effects. The two ends of the semi-circle in contact with the fixed wall
(x = 0) are anchored, and no tissue flow is allowed through the fixed wall. For a given simulation,
the viscosity profile along the AP axis (Eq. 4) and the spatial profile of cells ingressing to the
MPZ from DM tissues (Eq. 3) are provided as inputs to the simulation (Fig. S3 below). Once
the initial system is set, we define an adaptive finite element mesh in COMSOL that is thereafter
dynamically refined as the shape evolves to properly resolve fine features in the tissue shape and
morphogenetic flows (Fig. S3c below). The simulations predict the shape of the extending tissue
(boundary; Fig. 1b below) and morphogenetic flows (velocity field; inset in Fig. 4d, main text)
that result from the given inputs according to fundamental physical laws (force and mass balance).

To understand the shape and dynamics of the tissue in the presence of the observed fluid-
to-solid jamming transition, we performed simulations for µa � µp which numerically encodes
a transition from fluid-like to solid-like tissue states at a length λµ from the extending posterior
leading edge of the tissue (Fig. 4c,d in the main text). In these conditions, the tissue extends
unidirectionally and posteriorly (Fig. 4c,d in the main text), as observed experimentally. The



predicted tissue morphogenetic flows in the presence of the reported jamming transition display
high posterior-directed velocities at the posterior end, no tissue flow in the A-PSM, and the
existence of two counter-rotating vortices as the tissue transits from fluid-like to solid-like states
(inset in Fig. 4d, main text).

To understand the shape and dynamics of the tissue in the absence of the observed fluid-to-
solid jamming transition, we simulate the system with exactly the same Q(x) profile, but with
uniform tissue viscosity along the AP axis. In this case, the tissue expands isotropically, like a
growing spherical blob, but does not display unidirectional elongation (Fig. 4e in the main text).
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Figure S3: Main elements of the simulation. a, Sketch of posterior body elongation depicting
the input to the simulations: jamming transition (light blue fluid-like tissue; violet solid-like
tissue) and cell ingression into the MPZ from DM tissues (shades of green). b, Snapshot of a
simulated elongating tissue showing the spatial profiles of tissue viscosity, µ(x), and cell ingression
rate, Q(x), along the AP axis, respectively. The fluid-to-solid jamming transition is simulated by a
sharp increase in the tissue viscosity (magenta dashed line), with a very large viscosity simulating
the solid tissue state. The color code in the top half of the shape corresponds to the spatial profile
of the tissue viscosity, whereas the bottom half shows the AP profile of cell ingression rate into the
MPZ from DM tissues. The gray rectangle at the anterior end (x=0) represents a fixed wall. The
location xtip corresponding to the position of the extending posterior leading edge of the tissue,
and both λµ and λQ, are also shown. c, Snapshots of the finite element mesh for the initial tissue
shape (semi-circle; left) and of the refined mesh after the simulations have evolved the tissue shape
over time (right).


