Supplemental informations for:

Genetic and epigenetic evolution as a contributor to WT1-mutant leukemogenesis

Elodie Pronier,¹⁻² Robert L. Bowman,¹⁻² Jihae Ahn,¹⁻² Jacob Glass,¹⁻² Cyriac Kandoth,¹⁻³ Tiffany R. Merlinsky,¹⁻² Justin T. Whitfield,¹⁻² Benjamin H. Durham,¹ Antoine Gruet,² Amritha Varshini Hanasoge Somasundara,¹⁻² Raajit Rampal,¹⁻² Ari Melnick,⁴ Richard P. Koche,² Barry S. Taylor,¹⁻³ and Ross L. Levine,¹⁻²⁻⁴⁻⁵⁻⁶.

¹Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

²Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

³Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

⁴Division of Hematology/Oncology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.

⁵Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

⁶Center for Hematologic Malignancies Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

Supplemental Methods:

qPCR and Western Blot analysis

Total RNA was isolated from splenocytes or bone marrow cells using RNeasy Mini Kit (Qiagen) and cDNA was synthesized by SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). PCRs were carried out in the ABI Prism GeneAmp 7500 Sequence Detection System (Applied Biosystem, Invitrogen), using the Power SYBR Green PCR Master Mix (Invitrogen) and specific primers to determine Wt1 expression. Gapdh and Actin, used as housekeeping genes. List of Primers used: *mActin*-F (5'-GGCTGTATTCCCCTCCATCG-3'); *mActin*-R (5'-CCAGTTGGTAACAATGCCATGT-3'); mGapdh-F (5'-AGGTCGGTGTGAACGGATTTG-3'); mGapdh-R (5'-TGTAGACCATGTAGTTGAGGTCA-3'); mWt1 (exon 2)-F (5'-AAGGAGACACACAGGTGTGAAA-3'); mWt1 (5'-(exon 2)-R GTGGGTCTTCAGATGGTCGG-3'). For protein expression analysis, total proteins were isolated using RIPA buffer and Western Blots were performed using anti-Wt1 (F6 from Abcam, Cambridge, UK). Normalizations were done using Gapdh of Histone H3 antibodies (Cell Stem Technology, Vancouver, Canada).

Histopathology

For histological analysis spleens, livers and sterna were fixed in 10% neutral-buffered formalin, embedded in paraffin, sectioned and stained with hematoxylin and eosin (H/E) or c-Kit by the Laboratory of Comparative Pathology of MSKCC and Weill Cornell Medical College using standard methods.

Bone marrow transplantation

Freshly dissected femurs and tibias were isolated. Bone marrow was spun at 8000 rpm by centrifugation at 4°C into PBS, and red blood cells were lysed in ammonium chloridepotassium bicarbonate lysis buffer for 10 min on ice. After centrifugation, cells were resuspended in PBS, passed through a cell strainer, and counted. For non-competitive transplantations 2×10^6 mononuclear cells from freshly harvested bone marrow were injected through tail veins into lethally irradiated (9.5 Gy) recipient mice (Figure 1D, Figure 2, supplemental Figure 4E-H and supplemental Figure 5B-F). For all competitive transplant, 1×10^6 total bone marrow cells from donor mice (CD45.2⁺) were mixed with 1×10^6 wild-type (CD45.1⁺) bone marrow cells from 6-8 weeks old females and transplanted into lethally irradiated recipient mice (Figure 3A, D and E and Figure 7E-F). Chimerism was measured by flow cytometry in peripheral blood starting 4 weeks posttransplant and subsequently every 4 weeks (week 4, 12 and 16 post transplantation). Chimerism in the bone marrow and spleens, was evaluated at 16-18 weeks posttransplantation via animal sacrifice and subsequent flow analysis.

Flow cytometry

Analysis of mature blood lineages was performed as described¹. Analysis of the hematopoietic stem and myeloid progenitor populations was performed on single-cell suspensions prepared from bone marrow, spleens and livers by flow cytometry after red blood cell lysis. Populations were defined as follows: long-term (LT)-HSC, Lineage⁻Sca1⁺c-Kit⁺ (LSK) CD150⁺CD48⁻; short-term (ST)-HSC, LSK CD150⁺CD48⁺; multipotent progenitors (MPP) LSK CD150⁻CD48⁺, myeloid progenitors (MP), Lineage⁻Sca1⁻c-Kit⁺ (LK); common myeloid progenitors (CMP), LK CD16/32⁻CD34⁺; granulocyte/macrophage progenitors (MEP), LK CD16/32⁻CD34⁻. All antibodies were purchased from eBioscience (San Diego, CA, USA). Flow cytometry data was collected

3

using BD LSRII Fortessa cytometer operated by BD FACSDiva software version 6.2. Flow cytometry data was analyzed using FlowJo version 9.7.6.

M-IMPACT sequencing and analysis

DNA from diseased mice and their littermates underwent targeted capture and deep sequencing using the mouse Integrated Mutation Profiling of Actionable Cancer Targets (M-IMPACT) v1 assay targeting the exons and select introns of 578 known cancer genes. M-IMPACT is a solution-phase hybridization-based exon capture and massively parallel DNA sequencing assay, a process described previously². The genes in this capture design included all those genes part of the solid tumor and hematological malignancy clinical sequencing tests performed at the point of care at MSKCC³ as well as those key cancer-associated genes of interest whose clinical significance is still investigational (supplemental Table 1). Each of the 578 human genes were mapped to their mouse orthologs using the Mouse/Human Orthology with Phenotype Annotations from the Laboratory Genome Informatics Jackson Mouse (ftp://ftp.informatics.jax.org/pub/reports/HOM Mouse HumanSequence.rpt) after which bait design was performed as previously described². A uniform distribution of 1,598 heterozygous SNPs was then added to the design. We first filtered mouse dbSNP v142 (mm10 build) to identify SNPs where the average heterozygosity from all observations (avHet) was between 47.5 and 52.5%, location type was 'exact', mapping weight corresponded to those that align to exactly one location in the genome, and the allele frequency was between 45 and 55%. From 32,412 candidate SNPs, we selected approximately one SNP per ~1.28Mb chromosome bin across the mouse genome to standardize their genomic representation. In total, 250ng of mouse genomic DNA were used for library construction and samples were molecularly barcoded prior to capture and sequencing. Pools of 12 samples were equimolarly mixed and sequenced in one

4

lane of a Hiseq 4000 using SBS chemistry for paired end 125/125 reads. Average coverage was greater than 400-fold, with a minimum of 99% of the targeted sequences covered 30-fold. The resulting paired end reads were aligned to the mouse reference genome mm10 (GRCm38) using BWA-MEM (Burrows-Wheeler Aligner v0.7.12, http://arxiv.org/abs/1303.3997), and PCR duplicates were identified by MarkDuplicates in Picard Tools v1.124 (https://github.com/broadinstitute/picard). Variant calling was performed in tumor-vs-normal paired mode using MuTect v1.1.7⁴ for single nucleotide variants and HaplotypeCaller from GATK 3.4⁵ for small insertions and deletions. Resulting variants annotated vcf2maf v1.6.14 were using (https://github.com/mskcc/vcf2maf), which uses Ensembl's Variant Effect Predictor v88. Known and potential oncogenic mutations in human tumors⁶ were re-mapped to mouse genome mm10 using UCSC's liftOver, in order to annotate likely oncogenic mutations in the mice. Copy-number variants including chromosomal instability (CIS) and wholegenome doubling (WGD) were called using FACETS⁷.

In vitro colony-forming assays

Sorted LSK or total BM cells were isolated from *Wt1^{+/+}*, *Wt1^{fl/+}* and *Wt1^{fl/+}* mice and seeded in duplicates at a density of 1.500 or 10.000 cells/replicate into cytokine-supplemented methylcellulose medium (Methocult, STEMCELL Technologies, Vancouver, Canada). Colonies propagated in culture were scored between days 10-14.

Vector construction and viral transduction

The human *WT1* cDNA (Isoform D) was clone into Migr1-IRES-GFP plasmid (Addgene, Cambridge, MA, USA), the murine *Npm1*, *Gata1* cDNA were cloned into MSCV-IRES-GFP plasmid (Origene, Rockville, MD, USA) and two shRNA-*Cebpa* were cloned in a pRFP-C-RS plasmid (Origene). Viruses were produced by transfecting 293T cells with

5

the corresponding vectors and EcoPack plasmids. c-Kit⁺ cells were isolated from bone marrow from *Tet2^{flt/fl}* or *Wt1^{fl/+}* mice using immunomagnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany) and transduced with corresponding viral supernatants. GFP and RFP-positive cells were FACS sorted using ARIA III (Biosciences).

5-hmC quantification

Genomic DNA was purified using Puregene DNA purification kit (Qiagen). DNA was denatured, and 2-fold serial dilutions were spotted on a nitrocellulose membrane in an assembled Bio-Dot apparatus (Bio-Rad, Hercules, CA, USA). The blotted membranes were washed, blocked with 5% TBS-T, and incubated with rabbit polyclonal anti-5hmC antibody (1:10000) and HRP-conjugated anti-rabbit IgG secondary antibodies (1:5000).

Statistics

For the *in vitro* experiments, normal distribution was assumed, whereas for the *in vivo* experiments, normal distribution was tested before the use of the appropriate statistical test. Two-tailed unpaired t-test was used for comparison of two groups, whereas the one-, two-way analysis of variance (ANOVA) and non-parametric one-way ANOVA (Kruskal–Wallis) was used for comparison of multiple groups. Mantel-Cox and log-rank p value were used for survival curve (Kaplan–Meier) analyses. Analyses were performed using Prism 6.0 software (GraphPad).

Supplemental Table 1: Gene content of mouse IMPACT

Abii	Cd274	Erbb3	Hist1h1c	Lmo1	Pak/	Rb1	Spry4
Actg1	Cd276	Erbb4	Hist1h1d	Ltb	Palb2	Rbm10	Src
Acvr1	Cd28	Ercc2	Hist1h1e	Lyn	Park2	Recql	Srsf2
Ago2	Cd48	Ercc3	Hist1h2ad	Malt1	Parp1	Recql4	Stag1
Akt1	Cd79a	Ercc4	Hist1h2ae	Map2k1	Pax5	Rel	Stag2
Akt2	Cd79b	Ercc5	Hist1h2an	Map2k2	Pbrm1	Ret	Stat3
Akt3	Cdc42	Erf	Hist1h2ao	Map2k4	Pcbp1	Rfwd2	Stat5a
Alk	Cdc73	Erg	Hist1h2bf	Map3k1	Pdcd1	Rheb	Stat5b
Alox12b	Cdh1	Errfi1	Hist1h2bg	Map3k13	Pdcd1lg2	Rhoa	Stat6
Amer1	Cdk12	Esco1	Hist1h2bk	Map3k14	Pdgfra	Rictor	Stk11
Ankrd11	Cdk4	Esco2	Hist1h2bp	Mapk1	Pdgfrb	Rit1	Stk19
Арс	Cdk6	Esr1	Hist1h3a	Mapk3	Pdpk1	Rnf43	Stk40
Ar	Cdk8	Etnk1	Hist1h3b	Mapkap1	Pds5a	Robo1	Sufu
Araf	Cdkn1a	Etv1	Hist1h3c	Max	Pds5b	Ros1	Suz12
Arhgef28	Cdkn1b	Etv6	Hist1h3d	Mcl1	Pgr	Rps6ka4	Syk
Arid1a	Cdkn2a	Ezh1	Hist1h3e	Mdc1	Phf6	Rps6kb2	Tap1
Arid1b	Cdkn2b	Ezh2	Hist1h3g	Mdm2	Phox2b	Rptor	Tap2
Arid2	Cdkn2c	Fam175a	Hist1h3h	Mdm4	Piga	Rragc	Tbl1xr1
Arid3a	Cebpa	Fam46c	Hist1h3i	Med12	Pik3c2g	Rras	Tbx3
Arid3b	Cenpa	Fam58b	Hist2h2be	Mef2b	Pik3c3	Rras2	Tceb1
Arid3c	Chek1	Fanca	Hist2h3b	Men1	Pik3ca	Rtel1	Tcf3
Arid4a	Chek2	Fancc	Hist2h3c1	Met	Pik3cb	Runx1	Tcf7l2
Arid4b	Cic	Fancd2	Hist2h3c2	Mga	Pik3cd	Runx1t1	Tek
Arid5a	Ciita	Fas	Hist3h2ba	Mgam	Pik3cg	Rxra	Tert
Arid5b	Crbn	Fat1	Hnf1a	Mitf	Pik3r1	Rybp	Tet1
Asxl1	Crebbp	Fbxo11	Hoxb13	Mlh1	Pik3r2	Samhd1	Tet2
Asxl2	Crkl	Fbxw7	Hras	Mob3b	Pik3r3	Sdha	Tet3
Atm	Crlf2	Fqf15	Icosl	Mpeq1	Pim1	Sdhaf2	Tqfbr1
Atp6ap1	Csde1	Fqf3	ld3	Mpl	Plcq1	Sdhb	Tafbr2
Atp6v1b2	Csf1r	Faf4	ldh1	Mre11a	Plca2	Sdhc	Tmem127
Atr	Csf3r	Fafr1	ldh2	Msh2	Pik1	Sdhd	Tmprss2
Atrx	Ctcf	Fafr2	lfnar1	Msh3	Plk2	Sesn1	Tnfaip3
Atxn2	Ctla4	Fafr3	laf1	Msh6	Pmaip1	Sesn2	Tnfrsf14
Aurka	Ctnnb1	Fafr4	laf1r	Msi1	Pms1	Sesn3	Τορ1
Aurkb	Cul3	Fh1	laf2	Msi2	Pms2	Setbp1	Traf2
Axin1	Cux1	Flcn	lkbke	Mst1	Pnrc1	Setd1a	Traf3
Axin2	Cxcr4	Flt1	lkzf1	Mst1r	Pold1	Setd1b	Traf5
AxI	Cvld	Flt3	lkzf3	Mtor	Pole	Setd2	Traf7
B2m	Cysltr2	Flt4	1110	Mutvh	Pot1a	Setd3	Trn53
Babam1	Daxx	Foxa1	ll7r	Mvc	Ppara	Setd4	Trp53bp1
Bach2	Dcun1d1	Foxl2	Inha	Mycl	Pnm1d	Setd5	Trp63
Bap1	Ddr2	Foxo1	Inhba	Mycn	Ppp2r1a	Setd6	Tsc1
Bard1	Ddx3x	Foxn1	Innn4a	Mvd88	Pnp4r2	Setd7	Tsc2
Bbc3	Dicer1	Fubn1	Inpp 10	Myod1	Ppp6c	Setd8	Tshr
Bcl10	Dis3	Furin	Inpp 12 Inppl1	Nhn	Prdm1	Setdb1	Tvk2
Bcl11b	Dnaib1	Fvn	Insr	Ncoa3	Prdm14	Setdb2	U2af1
Bcl2	Dnmt1	Gata1	Irf1	Ncor1	Prex2	Sf3b1	U2af2
Bcl2l1	Dnmt3a	Gata2	Irf4	Ncor2	Prkar1a	Sak1	Ubr5
Bcl2l11 Bcl2l11	Dnmt3b	Gata3	Irf8	Nestn	Prkci	Sh2h3	Unf1
Bcl6	Dot11	Gli1	Irs1	Near1	Prkd1	Sh2d1a	Vav1
Bcor	Drosha	Gm10400	Irs?	NEGI I	Ptch1	Shoc?	Vav2
Bcorl1	Diosna Dtv1	Gm12657	1132 lak1	NIF2	Pten	Sha1	Verifa
Bcr	Dusp1	Gna11	Jak?	Nfe2	Ptn421	Sly4	Vhl
Birc3	Dusp7	Gna1?	Jak3	Nfe212	Ptnn1	Smad?	Vtcn1
Blm	Dusp22	Gna12	Jarid?	Nfkhia	Ptnn11	Smad?	Wanl
Bmpr1a	E2f2	Gnars	lun	Ninhl	Ptnn?	Smads Smads	When1
Braf	Ead	Gnas	Kdm5a	Nkv2-1	Ptord	Smarco ⁴	Wheell
Jai	Leu	Unas	Rumba	111772-1	i ipiu	Jillaita4	**//36///

Brca1	Egfl7	Gnb1	Kdm5c	Nkx3-1	Ptprs	Smarcb1	Wt1
Brca2	Egfr	Gps2	Kdm6a	Notch1	Ptprt	Smarcd1	Wwtr1
Brd4	Egr1	Grem1	Kdr	Notch2	Rab35	Smc1a	Xbp1
Brip1	Eif1a	Grin2a	Keap1	Notch3	Rac1	Smc3	Xiap
Btg1	Eif4a2	Gsk3b	Kit	Notch4	Rac2	Smg1	Xpo1
Btk	Eif4e	Gtf2i	Klf4	Npm1	Rad21	Smo	Xrcc2
Calr	Elf3	H2-Q2	Kmt2a	Nras	Rad50	Smyd3	Yap1
Card11	Ep300	H3f3a	Kmt2b	Nsd1	Rad51	Socs1	Yes1
Carm1	Ep400	H3f3c	Kmt2c	Nt5c2	Rad51b	Sos1	Zfhx3
Casp8	Epas1	Hdac1	Kmt2d	Nthl1	Rad51c	Sox17	Zrsr2
Cbfb	Épcam	Hdac4	Knstrn	Ntrk1	Rad51d	Sox2	
Cbl	Epha3	Hdac7	Kras	Ntrk2	Rad52	Sox9	
Ccnd1	Epha5	Hdac8	Ksr2	Ntrk3	Rad54l	Sp140	
Ccnd2	Epha7	Hgf	Lats1	Nuf2	Raf1	Spen	
Ccnd3	Ephb1	Hif1a	Lats2	Nup93	Rara	Spop	
Ccne1	Erbb2	Hist1h1b	Lck	Pak1	Rasa1	Spred1	

Supplemental figures:

Figure S1. *Wt1*-haploinsufficient but not *Wt1*-deficient hematopoietic cells progress to leukemic transformation over time. (A) Representative results of PCR analysis of floxed *Wt1* genotyping in peripheral blood of *Wt1*^{fl/fl}, *Wt1*^{fl/+} and control animals (CTRL) (floxed allele: 241 bp; wild-type allele: 149 bp), (n=18 to 20). (B) Representative results of PCR analysis of *Wt1* excision in bone marrow (BM) and spleen

compartments of control, $Wt1^{f/+}$ and $Wt1^{f/+}$ animals (excised allele: 342 bp), (n=18 to 20). Confirmation of Wt1 mRNA silencing by qPCR in different hematopoietic lineages (LSK, MEP, GMP and CMP) isolated from $Wt1^{fl/t}$ and $Wt1^{fl/t}$ mice compared to control littermates (n=6 to 7). Gapdh was used as a housekeeping gene. (D) Western Blot analysis of Wt1 protein levels in splenocytes isolated from $Wt1^{fl/t}$ and $Wt1^{fl/fl}$ mice compared to control littermates. Histone H3 was used loading control. Blot is representative of 4 independent experiments. (E) Complete blood counts from control, $Wt1^{fl/+}$ and $Wt1^{fl/fl}$ animals were measured overtime (0-10 weeks post Wt1-depletion) (n=10 to 15). RBC: Red blood cell, HGB: Hemoglobin, HCT: Hematocrit, PLT: Platelet, WBC: White blood cells. (F) Spleen weights of Wt1^{fl/+} (T-ALL) mice compared to controls (n=3 to 5). (G) Proportions of CD4⁺, CD8⁺ and CD4⁺CD8⁺ cells in CD3⁺ cells of the lymph node (LN) of control and T-ALL mice at disease onset (n=6). Representative H&Estained (H) and c-Kit immunohistochemical stains (I) of bone marrow and spleen sections of T-ALL mice at time of sacrifice. (J) Stem cell percentages in spleen of diseased Wt1-heterozygous aged mice compared to controls (n=4). (K) Quantification of progenitors in the spleen and bone marrow compartments of diseased Wt1heterozygous aged mice compared to controls (n=4). In C, F-G, J-K data are shown as mean \pm s.e.m., *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by one way ANOVA.

'na.neg' (nepative) y compliate d) 2,500 5,000 7,500 10,000 12,593 15,000 17,500 20,00 Rank in Ordered Dataset

D

144_eeg" (segatively correlated) 2.500 5.000 7.530 10.000 12.530 15.000 17.500 2 Rank in Diderard Presson

Figure S2. Gene signatures deregulated by Wt1 depletion in elderly mice. (A) Confirmation of *Wt1* mRNA silencing by qPCR in different hematopoietic lineages (LSK,

MEP, GMP and CMP) isolated from $Wt1^{fl/t}$ and $Wt1^{fl/t]}$ mice compared to control littermates of the Young Chronic cohort (n=6 to 7). *Gapdh* was used as a housekeeping gene. (B) Quantification of donor-derived (CD45.2) cells in the peripheral blood (PB) of recipient animals at indicated time points after transplantation (n=5). GSEA plots from comparison of RNAseq data performed on MP-sorted cells from Young Chronic and Young Acute Wt1 heterozygous mice compared to age-matched controls (C) or younger controls (D). In A, B data are shown as mean \pm s.e.m., *p < 0.05, **p < 0.01, ***p < 0.001 by one way ANOVA.

S3. Wt1 directly targets a subset of genes involved in hematopoietic differentiation. (A) Relative mRNA expression of *Gata1*, *Npm1* and *Cebpa* in WT BM cells (CTRL) and EV or *Gata1*, *Npm1* or sh*Cebpa* transduced *Wt1*^{fi/+}</sup> c-Kit⁺ cells from the Young Chronic cohort (n=3 for each group in triplicate). (B) CHIP-Seq signals for WT1 at*Parp3*and*Notch4*loci. In A data are shown as mean ± s.e.m., ***p < 0.001, ****p <0.0001 by one way ANOVA.</sup>

Figure S4. Wt1 loss cooperates with *Flt3-ITD* **mutations to induce leukemogenesis** *in vivo*. (A) Representative results of PCR analysis of *Wt1* excision in the peripheral blood of control, $Wt1^{fl/+}$ (one-month post Poly(I:C) treatment) and $Wt1^{fl/+}$ *Flt3^{m/m}* mice, showing *Wt1* excision in these animals before Poly(I:C) treatment. (B) RBC, HGB, HCT

and PLT counts of primary $Wt1^{fl/*} Flt3^{m/m}$ mice compared to littermates (n=7). (C) Representative H&E-stained bone marrow and spleen sections of diseased mice at time of sacrifice. (D) Proportion of splenic Lin⁻ and myeloid progenitors (MP) cells of $Wt1^{+/+}$ $Flt3^{m/+}$, $Wt1^{fl/+} Flt3^{m/+}$, $Wt1^{fl/+} Flt3^{m/m}$ and $Wt1^{fl/+} Flt3^{m/m}$ mice (n=7). (E) Kaplan-Meyer survival curve of primary transplanted mice with total bone marrow cells from diseased $Wt1^{fl/+} Flt3^{m/m}$ mice (n=6). (F) RBC, HCT, WBC, HGB and PLT counts of secondary recipients transplanted with $Wt1^{fl/+} Flt3^{m/m}$ or $Wt^{+/+} Flt3^{m/m}$ total bone marrow cells (n=3 to 6). (G) Spleen weights of transplanted recipients with $Wt1^{fl/+} Flt3^{m/m}$ cells compared to controls (n=3 to 6). (H) Quantification of mature, stem/progenitor cells in the bone marrow of primary recipient transplanted with total bone marrow cells from each group (n=3 to 6). In (B, D-H) data are shown as mean \pm s.e.m., *p < 0.05, **p < 0.01, ***p < 0.001 by two-way ANOVA (B, D, F-H) or Mantel-Cox (E).

Figure S5. Role of genetic background on malignant phenotypes in *Wt1*deficient/haploinsufficent mice. (A) Normalized Enrichment Scores (NES) of gene signatures defined by RNAseq performed in myeloid progenitors from diseased $Wt1^{fl/+}$ $Flt3^{m/m}$ mice compared to age-matched $Wt1^{+/+}$ $Flt3^{m/m}$ controls. (B) RBC, HCT, HGB and PLT counts of $Wt1^{fl/+}$ $Flt3^{m/+}$ (129S1/SvImJ) mice compared to control (n=10). (C) Spleen weights of transplanted recipients with $Wt1^{fl/+}$ $Flt3^{m/m}$ cells compared to controls (n=3 to 6). (D) Quantification of myeloid progenitor cells in the bone marrow and the spleen of

secondary recipient transplanted with cells from $Wt1^{fl/+} Flt3^{m/+}$ compared to $Wt1^{+/+} Flt3^{m/+}$ controls (n=3 to 6). (E) Kaplan-Meyer survival curves of secondary recipient transplanted with total bone marrow from $Wt1^{fl/+} Flt3^{m/+}$ compared to $Wt1^{+/+} Flt3^{m/+}$ controls (n=3 to 6). (F) Thymus weights of transplanted mice with $Wt1^{fl/+} Flt3^{m/+}$ (129S1/SvImJ) or control cells (n=10). (G) Quantification of donor-derived (CD45.2) cells in the peripheral blood of recipient animals at indicated time points after transplantation (n=5). Graphs of mean \pm s.e.m., *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by two-way ANOVA (B-D, F) or Mantel-Cox (E).

Supplemental References:

- 1. Mayle A, Luo M, Jeong M, Goodell MA. Flow cytometry analysis of murine hematopoietic stem cells. *Cytometry A.* 2013;83(1):27-37.
- 2. MacGregor GA, Markandu ND, Smith SJ, Sagnella GA. Captopril: contrasting effects of adding hydrochlorothiazide, propranolol, or nifedipine. *J Cardiovasc Pharmacol.* 1985;7 Suppl 1:S82-87.
- 3. Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. *Nat Med.* 2017;23(6):703-713.
- 4. Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. *Nat Biotechnol.* 2013;31(3):213-219.
- 5. DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat Genet.* 2011;43(5):491-498.
- 6. Chang MT, Asthana S, Gao SP, et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. *Nat Biotechnol.* 2016;34(2):155-163.
- 7. Shen R, Seshan VE. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. *Nucleic Acids Res.* 2016;44(16):e131.