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In this supplementary material, we provide a theorem regarding the direction of Neyman’s bias under certain
modeling assumptions and examples of when Neyman’s bias does or does not occur.

Theorem 1 If G is associated with D such that OR(t∗) 6= 1, the distribution of D | (G = 0) and D | (G = 1) belong
to the same location family, pr(X > 0) = 1, pr(X < t∗∗) > 0 (where t∗∗ is defined as the time between t∗ and the
first possible presence of disease among the exposed or unexposed), and X ⊥⊥ (D G)T , then ORob(t

∗) 6= ORtr(t
∗).

Specifically, if D | (G = 0) is stochastically greater than D | (G = 1) (alternatively, stochastically less than)
so that exposure is a risk factor for disease (alternatively, protective against disease), then ORob(t

∗) < ORtr(t
∗)

(alternatively, ORob(t
∗) > ORtr(t

∗)).

Proof Define ∂FD|G=0(x)/∂x = f0(x) and ∂FD|G=1(x)/∂x = f1(x), and suppose that f1(x) = f0(x − k) for
some k positive, without loss of generality. Such a scenario corresponds to exposure being protective against disease,
though below we will also consider it a risk factor. f1(x) and f0(x) are in the same location family. Define F (x) as
the cumulative distribution function of X evaluated at x and remember F (0) = 0 and F (t∗) > 0. Consider the two
quantities: ∫ t∗

0
{1− F (t∗ − x)}f0(x)∂x∫ t∗

0
f0(x)∂x

and

∫ t∗

0
{1− F (t∗ − x)}f1(x)∂x∫ t∗

0
f1(x)∂x

,

which we call the “percent erosion” of
∫ t∗

0
f0(x)∂x and

∫ t∗

0
f1(x)∂x, respectively. Then

∫ t∗

0
{1− F (t∗ − x)}f1(x)∂x∫ t∗

0
f1(x)∂x

=

∫ t∗

0
{1− F (t∗ − x)}f0(x− k)∂x∫ t∗

0
f0(x− k)∂x

=

∫ (t∗−k)
−k

[
1− F{t∗ − (x+ k)}

]
f0(x)∂x∫ (t∗−k)

−k f0(x)∂x
.

Since F (·) a cumulative distribution function and therefore increasing, we have

∫ t∗

0
{1− F (t∗ − x)}f1(x)∂x∫ t∗

0
f1(x)∂x

=

∫ (t∗−k)
−k

[
1− F{t∗ − (x+ k)}

]
f0(x)∂x∫ (t∗−k)

−k f0(x)∂x

>

∫ t∗

0
{1− F (t∗ − x)}f0(x)∂x∫ t∗

0
f0(x)∂x

, (1)

because at every “successive” ∂x in each integral, 1−F{t∗− (x+k)} ≥ 1−F (t∗−x) and there is some 0 < x < t∗

for which 1 − F{t∗ − (x + k)} > 1 − F (t∗ − x). Thus, the “percent erosion” of f0(x) will always be greater than
that of f1(x) = f0(x− k), which is intuitive since f1(·) is located to the right of f0(·) and thus subject to the corrosive
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effects of F (·) for less “time.” Then using the inequality in (1),

1 >

[∫ t∗

0
(1− F (t∗ − x))f0(x)∂x∫ t∗

0
f0(x)∂x

]
/

[∫ t∗

0
(1− F (t∗ − x))f1(x)∂x∫ t∗

0
f1(x)∂x

]

=

∫ t∗

0
f1(x) ∂x p∫ t∗

0
f0(x) ∂x (1− p)

×
∫ t∗

0
{1− F (t∗ − x)}f0(x) ∂x (1− p)∫ t∗

0
{1− F (t∗ − x)}f1(x) ∂x p

=
pr(Case, Exposed)

pr(Case, Unexposed)
× pr(Case, Unexposed, Observed)

pr(Case, Exposed, Observed)
,

which implies that

pr(Case, Exposed, Observed)
pr(Case, Unexposed, Observed)

>
pr(Case, Exposed)

pr(Case, Unexposed)
and ORob(t

∗) > ORtr(t
∗)

since pr(X > 0) implies pr(Control, Exposed, Observed) = pr(Control, Exposed) and
pr(Control, Unexposed, Observed) = pr(Control, Unexposed). Again, these inequalities only hold when exposure is
protective against disease. When exposure is a risk factor for disease and therefore shifts the mean age of disease onset
to the left under the above assumptions,

pr(Case, Exposed, Observed)
pr(Case, Unexposed, Observed)

<
pr(Case, Exposed)

pr(Case, Unexposed)
and ORob(t

∗) < ORtr(t
∗)

using analogous results. So we see that the bias is not toward the null, but in a definite direction depending on model
assumptions.

Example 1 Consider D | (G = 1) uniform on (0, 2), D | (G = 0) uniform on (0, 1), and X uniform on (0, 3), inde-
pendent of G. Clearly the distributions of disease for exposed and unexposed are not in the same location family in this
case, and the model for X corresponds to disease-induced mortality necessarily occurring within 3 times units after
disease, D. We need only consider cases when investigating the odds ratio since we assume pr(X > 0) = 1, implying
pr(D < Md) = 1. Taking t∗ = 1,

pr(Case, Exposed, Observed)
pr(Case, Unexposed, Observed)

=

∫ 1

0
(2/3 + x/3) (1/2) p ∂x∫ 1

0
(2/3 + x/3) 1 (1− p) ∂x

=
1/2

∫ 1

0
(2/3 + x/3) p ∂x

1
∫ 1

0
(2/3 + x/3) (1− p) ∂x

=
1 p

2 (1− p)
=

pr(Case, Exposed)
pr(Case, Unexposed)

.

So we have X independent of exposure status and time of disease-onset, as was the case above, but here ORob = ORtr.

Example 2 Consider again D | (G = 1) uniform on (0, 2), and D | (G = 0) uniform on (0, 1). However, consider
X | (G = 1) uniform on (0, 3) and X | (G = 0) with density fX|G=0(x) = 2/3 (1− x)2 on [0, 1 + (9/2)1/3]. Again,
we need only consider cases when investigating potential bias of the odds ratio since we assume pr(D < Md) = 1 so
that controls are not subject to the bias-inducing mortality event. Taking t∗ = 1,

pr(Case, Exposed, Observed)
pr(Case, Unexposed, Observed)

=

∫ 1

0
(2/3 + x/3) (1/2) p ∂x∫ 1

0
(7/9 + 2x3/9) 1 (1− p) ∂x

=
1/2 ·

∫ 1

0
(2/3 + x/3) p ∂x

1
∫ 1

0
(7/9 + 2x3/9) (1− p) ∂x

=
1/2 (5/6) p

1 (5/6) (1− p)
=

1 p

2 (1− p)
=

pr(Case, Exposed)
pr(Case, Unexposed)

,

and so here we have no bias again.

Example 3 Assume the same models of D conditional on G, and suppose X | (G = 1) is uniform on (0, 3) and
X | (G = 0) has density fX|G=0(x) = 5/2 (1 − x)4 on [0, 1 + 21/5]. For the reasons given above, we again only
consider cases for investigating the bias of the odds ratio. Taking t∗ = 1,

pr(Case, Exposed, Observed)
pr(Case, Unexposed, Observed)

=

∫ 1

0
(2/3 + x/3) (1/2) p ∂x∫ 1

0
(1/2 + x5/2) 1 (1− p) ∂x

=
1/2

∫ 1

0
(2/3 + x/3) p ∂x

1
∫ 1

0
(1/2 + x5/2) (1− p) ∂x

=
1/2 (5/6) p

1 (7/12) (1− p)
6= 1 p

2 (1− p)
=

pr(Case, Exposed)
pr(Case, Unexposed)

,
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and so here we have bias.

Example 4 Take D | (G = 1) with density fD|G=1(x) = x2/4 on [0, 121/3], D | (G = 0) with density fD|G=0(x) =

x/3 [0, 61/2]. Then let X | (G = 1) have density fX|G=1(x) = (2−x)2/4 on [0, 2+41/3] and X | (G = 0) be uniform
on [0, 2]. As before, we need only consider cases when investigating the odds ratio since we assume pr(D < Md) = 1
so that controls are not subject to the bias-inducing mortality event. Taking t∗ = 2,

pr(Case, Exposed, Observed)
pr(Case, Unexposed, Observed)

=

∫ 2

0
(1/3 + 1/12x3) (x2/4) p ∂x∫ 2

0
(x/2)x/3 (1− p) ∂x

=
(4/9) p

4/9 (1− p)
=

p
∫ 2

0
(x2/4) ∂x

(1− p)
∫ 2

0
x/3 ∂x

=
p

1− p
=

pr(Case, Exposed)
pr(Case, Unexposed)

.

Remember that pr(Case, Exposed)/pr(Case, Unexposed) = p/(1−p) implies ORtr(t
∗) = 1 when pr(D < Md) = 1,

which is assumed from condition 3.

Example 5 On the other hand, we can obtain a biased odds ratio using the same conditional disease models as in the
previous example and having X | (G = 1) with density fX|G=1(x) = (2 − x)2/4 on [0, 2 + 41/3] and X | (G = 0)
uniform on [0, 2]. We again assume pr(D < Md) = 1 from condition 3. Taking t∗ = 2,

pr(Case, Exposed, Observed)
pr(Case, Unexposed, Observed)

=

∫ 2

0
(1/2 + 1/16x3) (x2/4) p ∂x∫ 2

0
(x/2)x/3 (1− p) ∂x

=
p (1/2)

(1− p) 4/9

6= (4/9) p

4/9 (1− p)
=

p
∫ 2

0
(x2/4) ∂x

(1− p)
∫ 2

0
x/3 ∂x

=
p

1− p
=

pr(Case, Exposed)
pr(Case, Unexposed)

.
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