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Calculation of electrochemically active surface area

The electrochemical capacitance was calculated by measuring double layer capacitance
of Ni@y-Fe,Os/ES-MWNT on a glassy carbon RDE in 1 M NaOH as descried earlier.® To
measure the double layer capacitance, the cyclic voltammograms (CVs) were plottet at
different scan rates in a potential range where no Faradaic process occurred (Fig. S7a)
and charging currents (ic) at different scan rates were measured. From the slope of i; as
a function of scan rate (v), the double layer capacitance (Cp.) was obtained (Fig. S7b)

based on the following eq. 1:

ic = VCDL (1)

The Cp. of Ni@y-Fe;O3/ES-MWNT measured by the above-mentioned method is

~ 1.38 mF. The electrochemically active surface area (ECAS) can be obtained fromeq 2:

ECAS=Col/Cs  (2)

Where Cs is the specific capacitance. The average Cs of 0.040 mF cmin 0.1 M NaOH
was used for the calculation of the ECAS based on previous reports® in alkaline solution.

As a result, an ECAS of 35 cm? was obtained for the Ni@y-Fe,Os/ES-MWNT catalyst.
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Estimation of the Faradaic efficiency

The experiments were performed in a rotating ring-disk electrode (RRDE) configuration.
The Pt-ring electrode was set at 0.4 V vs. RHE to allow the O, produced on the disk during

the anodic scans to be reduced, via 4 electrons, to OH", according to equation (3):

O3+ 2H,0 + 4e™— 40H" (3)

The faradaic efficiency (¢%) was calculated using the expression for the collection

efficiency of the RRDE given in eq 4:

£% = 2194 100 (4)

*]disk

Where jorr and joer are current densities measured on the Pt ring and the GC disk,

respectively, and N is the collection efficiency (here ~0.2) of the RRDE.
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Figure S1. (a) TEM images obtained from the Ni@y-Fe203 nanoparticles, (b) Particle size distribution of
the Ni@y-Fe203 nanoparticles received from the TEM images. The average diameter obtained from the
LogNormal fit is 12.3 nm, (¢) HR-TEM image of an isolated Ni@y-Fe20s3 patrticle showing the interface of
the core (Ni) and shell (y-Fe203) in the particle, and (d) corresponding EDS spectra from the particle,

showing elemental compositions of the shell and the core.
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Figure S2. (a) STEM and corresponding (b) HAAD-STEM images obtained from MWNTSs (without ES
functionalization) mixed with the Ni@y-Fe20s particles, showing very sparse dispersion of the particles on

MWNTs in the absence of the ES polymer.
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Figure S3. (a) A high-resolution and (b) low resolution scanning electron microscopy images of the Ni@y-
Fe203 nanoparticles mixed with emeraldine salt polymer.
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Figure S4. Particle size distribution of the FeOxnanoparticles received from the TEM images. The
average diameter obtained from the LogNormal fit is 12.5 nm.
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Figure S5. (a) XRD and (b) Raman spectra of Ni@7y-Fe20s/ES-MWNT before (black line) and after (red

line) of the 5,000 OER cycles.

S-8



FeO,nanoparticles

Intensity (a.u.)

T \ \
200 400 600 800

— Ni@y-Fe, 04 nanoparticles
S
L
2
[
c
o
£
I ' I ! I !
200 400 600 800

Raman Shift (cm™)

Figure S6. Raman spectra of FeOx NPs (above) and Ni@7y-Fe203 NPs (below), showing hematite and

maghemite Raman features, respectively.
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Figure S7. X-ray photoelectron spectra of N 1s obtained from emeraldine salt and MWNT-ES.

Deconvoluted components shown: amine (green line), protonated amine (purple line), protonated imine

(yellow line) and N-oxide (light blue line).
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Figure S8. IR-corrected RDE polarization curves obtained with the FeOx NPs (green line), Ni@y-Fe20s
NPs (red line), FeOWES-MWNT (blue line) and Ni@y-Fe203s/ES-MWNT (black line) in 0.1 M NaOH

solution. The curves were measured at a scan rate of 5 mV s and a rotation speed of 1600 rpm.
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Figure S9. Double-layer capacitance measurements for the Ni@y-Fe20s/ES-MWNT catalyst from cyclic
voltammetry in 1 M NaOH. (a) Cyclic voltammograms of the N i@y-Fe203/ES-MWNT electrode recorded in
a non-faradaic region (0.7 - 1.05 V vs. RHE) at scan rates of 5, 10, 25, 50, 100, 200, 400, and 800 mV. The
working electrode was held at each potential for 20 s before beginning of the next sweep. Current in this
graph was assumed to be induced only by capacitive charging/discharging. (b) The cathodic (red circle)
and anodic (black square) capacitance currents measured at 0.95 V vs. RHE are plotted as a function of
the scan rate. The double-layer capacitance of this system is calculated as the average of the absolute

value of the slope of the linear fits to the data (see the equations above).
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Figure S10. OER polarization curves of the FeOx NPs before (red solid line) and after (black line) 100

stability cycles between 1 and 1.75 V vs RHE at a scan rate of 50 mV st in 0.1 NaOH,
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Figure S11. Structural and elemental analysis of Ni@y-Fe20s after electrochemical stability measurements.

(a) STEM and corresponding (b) HAAD-STEM images of the Ni@y-Fe20s core-shell NPs.
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Figure S12. (a) Fe 2p, (b) Ni2p, (c) N 1s and (d) survey XPS spectra of the Ni@y-Fe2Os/[ES-MWNT catalyst

before and after the 5,000 OER cycles.
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Figure S13. Different chemical structures of polyaniline emeraldine salt.
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Table S1 The atomic percentages of the different elements of Ni@y-Fe,Oi/ES-MWNT (before
and after the stability measurements), emeraldine salt (ES), and the ES-MWNT composite as
derived from XPS. The error bar associated with atomic percentage is of the order of £10% of the
value. Note that for the Ni@y-Fe,Os/ES-MWNT sample tested for the OER, Nafion was used as
binder. Therefore, the presence of Nafion on the Ni@y-Fe,Ois/ES-MWNT after the OER can

underestimate the real N/C ratio.

Catalyst Ni Fe N C S F O Na Cl
(at-%) (at-%) | (at-%) | (at-%) | (at-%) | (at-%) (at-%) @ (at-%) | (at-%)

Emeraldine - - 7.28 79.7 2.72 0.49 9.80

salt

ES-MWNT - - 1.42 94.7 0.46 0.14 3.20 0.03 0.05

Ni@vy-Fe20s/ | 0.40 0.54 154 84.2 0.36 0.05 12.8 0.04 0.04

ES-MWNT

Ni@y-Fe203/ | 0.48 0.42 0.48 75.6 0.25 3.54 14.4 4.72 0.14

ES-MWNT

after stability

measurments
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Table S2 The percentages of different nitrogen species of all nitrogen for Ni@y-Fe,Os/ES/IMWNT
(before and after the OER stability measurements), ES, and ES-MWNT composite as derived

from peak fitting of the N 1s XPS region (BE = binding energy).

- : protonated
catalyst '(Tg“)a ?m;ﬂ‘; amine proi:g ir:]aeted N-oxide
(-NH,") e BE~404-406
BE-3985 BE-399.5 o 00, (=NH") e
eV eV eV ’ BE~402.2 eV
Emeraldine sal
meraldine salt i 59 28 10 10
ES-MWNT
- 62 21 6 11
Ni@y-Fe204/ES-
MVNT - 54 17 17 12
Ni@y-Fe204/ES-
LN G 15 43 23 3 16
measurments
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Table S3 Comparison of OER performance of the Ni@y-Fe.Os/ES-MWNT catalyst to the

state-of the-art OER material, so far reported y-Fe,Os; containing electrocatalyst and core-

shell metal@FexO reported electrocatalyst.

Catalyst Electrolyte 1) onset n (mV) Tafel slope Mass Substrate Reference
(mV) @ (mV dec?) loading
10 mA cm-2 (mg cm??)

i 0.1 M NaOH 250 290 45 0.2 GC .
Ni@y-Fe203/ES- a This work
MWNT

1 M NaOH 200 260
y-Fe203/CNT 0.1 M NaOH | 340 410 50 0.2 GC 3
1M NaOH 320 560 2016
y-Fe20:@NCNT 0.1M KOH 370 450 53 N.A CP 4
2016
NiFe-LDH 0.1M KOH 280 300 35 0.25 GC 5
state-of-the-art 1M KOH 220 240 2013
Au@CoFeOx 1M KOH 260 350 N.A N.A GC 6
2017
Ni-bipy-MWCNT 0.1 M NaOH | 290 310 35 0.2 GC 7
1M NaOH 260 290 2017
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