
Bayesian model for heritability estimation

Consider the linear mixed model used in GCTA (Equation (2) in Yang et al.
(2011)):

y = Xβ + g + ε, with var(y) = Aσ2
g + Iσ2

ε , (1)

where y is an n× 1 vector of phenotypes, and n is the sample size; β is a vector
of fixed effects; g is an n×1 vector of total genetic effects, with g ∼ N

(
0, Aσ2

g

)
,

and A is the n×n genetic relationship matrix (GRM) between individuals; and
ε is an n× 1 vector of residual effects, with ε ∼ N (0, Iσε).

For simplicity, in the following derivations we consider a phenotype adjusted
for covariates by taking the residuals of a fixed effects linear model of the phe-
notype on the covariates. Equation 1 can then be written as:

ỹ = β0 + g + ε̃, with var(ỹ) = Aσ2
g + Iσ2

ε̃ , (2)

where ỹ are the residuals from the regression on the covariates scaled to have
unit variance, β0 is an intercept term, and ε̃ are the residual effects with ε̃ ∼
N (0, Iσε̃).

Let τ = 1
σ2
g+σ

2
ε̃

denote the total precision of phenotype ỹ, and h2 =
σ2
g

σ2
g+σ

2
ε̃

denote the heritability, i.e. the proportion of total variance explained by geno-
types. We rewrite the variance of ỹ as:

var(ỹ) =
1

τ

[
h2A+ (1− h2)I

]
, (3)

and define the following hierarchical model:

β0 ∼ N (0, 0.01)

h2 ∼ U (0, 1)

τ ∼ Γ (10, 10)

ỹ ∼ N
(
β0,

1

τ

[
h2A+ (1− h2)I

])
We can then use Markov Chain Monte Carlo sampling to infer the posterior

distribution of the parameters h2, β0 and τ .

MCMC efficiency

At each iteration, following an update in the parameters, the inverse of ma-
trix (3) needs to be recomputed. This makes this approach computationally
intractable for moderate to large sample sizes.

Instead, we proceed as follows. We compute the eigenvalue decomposition
A = PΛP−1, where Λ is a diagonal matrix containing the eigenvalues of A, and
columns of P correspond to the eigenvectors of A. Given that A is real and
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symmetric, its eigenvalue decomposition can always be computed. Moreover, P
is an orthogonal matrix, hence P−1 = P>, and the decomposition simplifies to

A = PΛP>. (4)

Using (4) and noting that I = PP>, we rewrite (3) as

1

τ
P
[
h2Λ + (1− h2)I

]
P>,

and its inverse can be explicitly written as

τP
[
h2Λ + (1− h2)I

]−1
P>. (5)

Note that the computation of the inverse reduces to the inversion of the
diagonal matrix h2Λ + (1 − h2)I, which is trivially achieved by inverting each
element on the diagonal, operation that has complexity linear in N .

This alternative formulation requires the computation of the eigenvalue de-
composition of the genetic relationship matrix, operation commonly available
in most software packages (for example, it is implemented in function eigen()

in R). This is usually implemented as a two-step procedure, consisting of an
initial reduction to tridiagonal form, followed by computation of eigenvalues
and eigenvectors by the QR algorithm. The computational complexity of the
eigenvalue decomposition scales proportionally to N3. This needs to be per-
formed only once before the beginning of the iterative process, while at each
new iteration the complexity of computing the inverse according to (5) has a
more computationally amenable cost proportional to N2.

MCMC settings

For the heritability results presented in the manuscript we used the JAGS soft-
ware (Plummer, 2003) and its R interface package, rjags, to run the MCMC
sampling. We used 2 chains, with an initial adaptation phase, a burn-in phase
with 50 iterations and a monitoring phase with 300 iterations. We collected
samples from the 300 final iterations. Convergence was determined based on
Gelman and Rubin’s convergence diagnostic and by visually inspecting that the
chains have crossed and that the autocorrelation of subsequent samples is close
to 0.
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