

Figure S1. FTO Demethylates Both Internal m⁶A and Cap m⁶A_m *in vitro*, Related to Figure 1.

(A) Coomassie blue analysis of purified mammalian FTO.

(B) Left: LC-MS/MS channel, peak area and standard curve for the m^6A modification; Right: LC-MS/MS channel, peak area and standard curve for the m^6A_m modification.

(C) Quantification of the m^6A/m^6A_m ratio in HeLa, HEK293T and 3T3-L1 cells by LC-MS/MS, showing that the m^6A to m^6A_m ratios are consistently around 10-fold in HeLa, HEK293T, and 3T3-L1 cells.

(D) and (E) Quantification of methylation percentage of the m⁶A/A ratio and the m⁶A_m/A ratio by LC-MS/MS *in vitro*. (D) Incubated with 200 ng purified polyadenylated RNA from HEK293T cells for 1 h under the reported demethylation conditions: 2 μ M recombinant FTO in the 20 μ l solution was able to demethylate ~81% internal m⁶A and ~95% cap m⁶A_m; (E) Incubated with 200 ng purified polyadenylated RNA from HEK293T cells for 1 h under the reported demethylation conditions: 0.2 μ M recombinant FTO in the 20 μ l solution was able to demethylate ~20% internal m⁶A and ~82% cap m⁶A_m.

(F) Western blot of the knockdown of FTO in HeLa, HEK293T and 3T3-L1 cells. *P* values were determined using Student's t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. *n.s.* means not significant. Error bars, mean \pm s.d. for *n* = 6 experiments in (C) to (E).

0.0

shr10

shNS shNS

SHFTO

- M

Figure S2. FTO Differentially Mediates Internal m⁶A or Cap m⁶A_m Demethylation in the Polyadenylated RNA in the Nucleus and the Cytoplasm, Related to Figure 2.

(A) Five representative immunofluorescent pictures of the endogenous FTO in HeLa, HEK293T and 3T3-L1 cells.

(B) to (D) Quantification of the m⁶A/A ratio (blue bars) and the cap m⁶A_m/A ratio (green bars) in the polyadenylated RNA from HEK293T cells by LC-MS/MS. In comparison to the control: (B) the overexpression of the wild-type FTO but not the Δ NLS-FTO (FTO without nuclear localization signal) led to significant decreases of the m⁶A/A ratio in the total polyadenylated RNA; while the overexpression of both the Δ NLS-FTO and the wild-type FTO led to noticeable decreases of the m⁶A_m/A ratio in the total polyadenylated RNA; (C) overexpression of wild-type FTO led to a significant decrease of the m⁶A/A ratio but not the m⁶A_m/A ratio in the nuclear polyadenylated RNA, while the overexpression of Δ NLS-FTO did not result in significant decreases in the m⁶A/A or the m⁶A_m/A ratios in the nuclear polyadenylated RNA; (D) the overexpression of both the Δ NLS-FTO led to a significant decrease of the m⁶A/A ratio significant decreases in the m⁶A/A or the m⁶A_m/A ratio in the nuclear polyadenylated RNA; (D) the overexpression of both the Δ NLS-FTO led to a significant decrease of both the nuclear polyadenylated RNA; (D) the overexpression of both the Δ NLS-FTO led to a significant decrease of both the m⁶A/A ratio in the nuclear polyadenylated RNA; (D) the overexpression of both the Δ NLS-FTO led to a significant decrease of both the m⁶A/A ratio in the nuclear polyadenylated RNA; (D) the overexpression of both the Δ NLS-FTO and the wild-type FTO led to a significant decrease of the m⁶A_m/A ratio but not the m⁶A/A ratio in the cytoplasmic polyadenylated RNA.

(E) Western blot validation of cytoplasm and nucleus separation in HEK293T cells.

(F) qRT-PCR validation of cytoplasm and nucleus separation in HEK293T cells.

(G) and (H) Quantification of the m⁶A/A ratio (blue bars) and the cap m⁶A_m/A ratio (green bars) in the polyadenylated RNA from NB4 cells by LC-MS/MS. Stable knockdown of FTO led to (G) the increased m⁶A/A ratio but not the cap m⁶A_m/A ratio in the nuclear polyadenylated RNA and (H) both increased m⁶A/A ratio and the cap m⁶A_m/A ratio in the cytoplasmic polyadenylated RNA. (I) and (J) Quantification of the m⁶A/A ratio (blue bars) and the cap m⁶A_m/A ratio (green bars) in polyadenylated RNA from MONOMAC-6 cells by LC-MS/MS. Stable knockdown of FTO led to (I) the increased m⁶A/A ratio but not the cap m⁶A_m/A ratio in the nuclear polyadenylated RNA and (J) both increased m⁶A/A and the cap m⁶A_m/A ratio in the nuclear polyadenylated RNA. (K) Western blot of the FTO in total, cytoplasm and nucleus in NB4 and MONOMAC-6 cells. *P* values were determined using Student's t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. *n.s.* means not significant. Error bars, mean ± s.d. for *n* = 6 experiments in (B) to (D); for *n* = 4 experiments in (G) to (J).

Figure S3. Dynamic Regulation of m⁶A but not Cap m⁶A_m Influences mRNA Transcript Levels, Related to Figure 3.

(A) Cumulative fraction of the m^6A_m sites along mRNA beginning with the transcription start site (top). Scheme for the transcripts grouping method (bottom).

(B) mRNAs were classified into the transcripts containing only internal m⁶A and the rest as control. In HEK293T cells, FTO knockdown led to a significant increased global transcript level changes of the transcripts containing only m⁶A (n = 3987, m⁶A only; n = 8921, the rest).

(C) mRNAs are classified into the transcripts containing cap m^6A_m only and the rest as control. In HEK293T cells, compared to the transcripts that do not contain m^6A_m , FTO knockdown led to a significantly less global transcript level changes of the transcripts containing only m^6A compared to the rest (n = 1885, m^6A only; n = 11023, the rest). *P* values were determined using Mann-Whitney test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. *n.s.* means not significant. Error bars, mean \pm s.d. in (B) and (C). Data represent the average from two independent mRNA expression datasets; each box shows the first quartile, median, and third quartile.

(D) qRT-PCR validation of transcript level changes of three genes containing only m⁶A and three genes containing only m⁶A_m. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. *n.s.* means not significant. Error bars, mean \pm s.d. for *n* = 6 experiments in (D).

n.s.

n.s.

Figure S4. Quantification of the m⁶A Level Changes inside Cell in the FTO-Associated RNA Species, Related to Figure 4.

(A) Left: Western blot validation of anti-FLAG pulldown purity; right: SDS-PAGE protein gel of ³²P labeled FTO-nucleic acids complex.

(B) Separation of 28S rRNA and 18S rRNA from total RNA shown on a 2% agarose gel.

(C) and (D) Quantification of the m^6A/A ratio in rRNA by LC-MS/MS. In comparison to the control, no obvious changes of m^6A/A ratio (C) in 28S rRNA or (D) in 18S rRNA were observed in HeLa, HEK293T, and 3T3-L1 cell lines upon the alterations of FTO expression.

(E) Separation of individual snRNAs from the purified nuclear RNA below 200 nucleotides shown on the 6% TEB-Urea gel.

(F) Quantification of the m⁶A/A ratio in U1/5.8s RNA and U2 RNA by LC-MS/MS. No obvious change was observed in the Fto knockout MEF cells compared to the wild-type control. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001. *n.s.* means not significant. Error bars, mean \pm s.d. for n = 3 experiments in (C) and (D); and for n = 6 experiments in (F).

Figure S5. Quantification of m¹A Level Changes in AML cells, Control Experiments for tRNA m¹A Demethylation, and Structure Correlation of FTO with tRNA, Related to Figure 5.

(A) Relative gene expression of ALKBH1 and ALKBH3 from RNA-seq in the HEK293T cells upon the knockdown of FTO. NO changes were observed for both ALKBH1 and ALKBH3.

(B) Western blot validation of cytoplasm and nucleus separation in MEF cells.

(C) qRT-PCR validation of cytoplasm and nucleus separation in MEF cells.

(D) PCR validation for *Fto*^{-/-} and wild-type mouse.

(E) Quantification of the m^1A/G ratio in tRNA, showing the increased m^1A/G in NB4 and MONOMAC-6 cells upon stable FTO knockdown.

(F) Demethylation of total tRNA isolated from HEK293T cells by mammalian FTO *in vitro*. Slightly decrease of $m^{3}C/G$ ratio can be observed but no obvious changes of $m^{1}G/G$, $m^{7}G/G$, $m^{5}C/G$, $m^{2}G/G$, $m^{2}G/G$, or A_{m}/G ratios can be observed.

(G) Demethylation of total tRNA and polyadenylated RNA isolated from HEK293T cells by mammalian FTO *in vitro*. With the similar numbers of m^1A and m^6A molecule, the demethylation activity towards m^1A is slightly lower than m^6A .

(H) Sequence of the linear ssRNA probe containing m¹A (top); sequence of the loop-structured ssRNA probe containing m¹A and predicted structure by RNA fold server (<u>http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi</u>).

(I) FTO exhibits m^1A demethylation activity preferentially in the loop structure revealed by *in vitro* demethylation assays with m^1A in a linear ssRNA probe and m^1A in a stem-loop structured probe.

(J) Left: overlapped structures of FTO (raspberry) with the complex of NSUN6 (purple) and tRNA (orange). The iron center of FTO is depicted in yellow ball; right: overlapped structures of ALKBH5 (green) with the complex of NSUN6 (purple) and tRNA (orange). *P* values were determined using Student's t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. *n.s.* means not significant. Error bars, mean \pm s.d. for n = 3 experiments in (F), (G), and (I); for n = 4 experiments in (E).

Figure S6. Quantifications of m¹A Level Changes in Non-Bound Individual tRNAs and Control Experiments for Translation Regulation, Related to Figure 6.

(A) Quantification of the m¹A/G ratio in several non-CLIP tRNAs by LC-MS/MS. In comparison to the control, no obvious changes of m¹A/G ratios in tRNA^{Ala(AGC)}, tRNA^{Asn(GUU)}, tRNA^{Gly(UCC)}, and tRNA^{Phe(GAA)} can be observed. *P* value was determined using Student's t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.001. *n.s.* means not significant. Error bars, mean ± s.d. for *n* = 3 experiments.

(B) The flow-cytometry (FACS) gating strategy applied to wild-type (left) and *Fto^{-/-}* (right) MEF cells.

(C) The effects of non-targets tRNA^{Gly(UCC)} was revealed by the reporter assay, showing no noticeable increase of protein synthesis in *Fto*^{-/-} MEF cell compared to the wild-type MEF cell. *P* value was determined using Student's unpaired t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. *n.s.* means not significant. Error bars, mean \pm s.d. for *n* = 8 experiments in (C).

Table S4. Biotinylated single-stranded DNA probes designed to isolate specific tRNAs, related to Figure 6

tRNA ^{Glu(CUC)}	5'biotin-TTCCCTGACCGGGGAATCGAACCCGGGCCG
tRNA ^{His(GUG)}	5'-biotin-TGCCGTCACTCGGATTCGAACCGAGGTTGCTG
tRNA ^{Gly(GCC)}	5'biotin-TGCATTGGCCGGGGAATCGAACCCGGGGCCTC
tRNA ^{Asp(GUC)}	5'biotin-CTCCCCGTCGGGGGAATCGAACCCCGGTCTC
tRNA ^{Lys(CUU)}	5'biotin-CCAACGTGGGGGCTCGAACCCACGACCCT
tRNA ^{Gln(CUG)}	5'biotin-AGGTCCCACCGAGATTTGAACTCGGATCGCTGG
tRNA ^{Leu(CAA)}	5'biotin-TGTCAGAAGTGGGATTCGAACCCACGCCT
tRNA ^{Ala(AGC)}	5'biotin-TGGAGGATGCGGGCATCGATCCCGCTACC
tRNA ^{Asn(GUU)}	5'biotin-CGTCCCTGGGTGGGCTCGATCCACCAACC
tRNA ^{Gly(UCC)}	5'biotin-TGCGTTGGCCGGGAATCGAACCCGGGTCAAC
tRNA ^{Phe(GAA)}	5'biotin-TGCCGAAACCCGGGATCGAACCAGGGAC