Supplementary Infromation

Synthesis of novel Perillyl-Dihydropyrimidinone Hybrids designed for antiproliferative activity.

Vinicius Vendrusculo,^a Vanessa P. de Souza,^a Luiz Antônio M. Fontoura,^{b,c} Marcelo G. M. D'Oca,^d Thais P. Banzato,^{e,f} Paula A. Monteiro,^{e,f} Ronaldo A. Pilli,^g João Ernesto de Carvalho,^{e,f*} and Dennis Russowsky^{a*}

^a Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

^b Fundação da Ciência e Tecnologia do Estado do Rio Grande do Sul, Porto Alegre, RS, Brazil.

^c PPGEMPS, Universidade Luterana do Brasil, Canoas, RS, Brazil

^d Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.

^e Instituto de Biologia, Universidade Estadual Campinas, Campinas, SP, Brazil.

^f Centro de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, SP, Brazil.

^g Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil.

1. Selected NMR spectra of Perillyl-Dihydropyrimidinone hybrids

1.1 ¹H NMR of Compounds **8a-8o**

1.2 ¹³C NMR of Compounds 8a-8o

Corresponding authors

E-Mail address: dennis@iq.ufrgs.br

E-Mail address: carvalho@fcf.unicamp.br

Figure S1. ¹H NMR (300 MHz, CDCl₃) of compound 8a.

Figure S2. ¹³C NMR (75 MHz, CDCl₃) of compound 8a.

Figure S4. ¹³C NMR (100 MHz, CDCl₃) of compound 8b.

Figure S8. ¹³C NMR (100 MHz, DMSO-*d6*) of compound 8d.

Figure S9. ¹H NMR (400 MHz, DMSO-*d6*) of compound 8e.

Figure S10. ¹³C NMR (100 MHz, DMSO-*d6*) of compound 8e.

Figure S11. ¹H NMR (400 MHz, DMSO-*d6*) of compound 8f.

Figure S12. ¹³C NMR (100 MHz, DMSO-*d6*) of compound 8f.

Figure S14. ¹³C NMR (100 MHz, DMSO-*d6*) of compound 8g.

Figure S15. ¹H NMR (400 MHz, DMSO-*d6*) of compound 8h.

Figure S16. ¹³C NMR (100 MHz, DMSO-*d6*) of compound 8h.

Figure S18. ¹³C NMR (100 MHz, DMSO-*d6*) of compound 8i.

Figure S20. ¹³C NMR (100 MHz, DMSO-d6) of compound 8j.

Figure S22. ¹³C NMR (100 MHz, DMSO-*d6*) of compound 8k.

Figure S24. ¹³C NMR (100 MHz, DMSO-*d6*) of compound 8I.

Figure S26. ¹³C NMR (100 MHz, DMSO-*d6*) of compound 8m.

Figure S28. ¹³C NMR (100 MHz, DMSO-*d6*) of compound 8n.

Figure S30. ¹³C NMR (100 MHz, DMSO-*d6*) of compound 80.