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Permutation Test for Statistical Significance
of the Anticorrelation Between State A and State B

Methods

We sought to confirm the statistical significance of the ob-
served anticorrelation by performing a permutation test with
10,000 iterations. For every iteration cycle, each subject’s
Infomap clustering solution was remapped into a two-state
label solution based on the group-level clustering solution.
The two-state labeling solution was then permuted for each
time point before averaging all timepoints with the same
label to create a ‘‘permuted’’ State A and State B. The per-
muted State A and State B activation patterns were then cor-
related. The 10,000 r-values across all iterations formed the
null distribution for comparing the observed anticorrelation
between State A and State B.

Results

The null distribution derived from the permutation test
followed a relatively normal distribution. Pseudo-randomly
dividing the resting-state data into two states tended to favor
anticorrelated states, as seen in the negative mean of the
null distribution. However, the observed anti-correlation
State A and State B is statistically significant relative to
this null distribution ( p < 0.0001), supporting the distinct-
ness of State A and State B.

Permutation Test for Statistical Significance
of Neurosynth Decoding for All States

Methods

We validated the Neurosynth results by running permuta-
tion tests (1000 iterations) for each brain state (State A, State
B, and the 12 states at 20% density tier of the hierarchy).
Specifically, within each subject, we permuted the order of
the brain state temporal windows (consecutive time points
of the same state) as returned by the Infomap community de-
tection algorithm. This approach allowed us to preserve
many of the temporal properties of brain states (e.g., dura-
tion) within each subject, while still permuting the data
being averaged for each unique brain state prototype. The
newly ‘‘permuted’’ brain state prototypes were averaged
across subjects according to the group-level clustering solu-
tion to produce a ‘‘permuted’’ State A and State B. The ‘‘per-
muted’’ State A and State B were run through the Neurosynth
decoder to obtain correlation scores for each of the 3406
terms. A total of 1000 permutations cycles were performed
for each brain state, returning a total of 340,600 correlation
scores per State A and State B. This allowed us to create a
null distribution of maximum r-values across all 1000 per-
mutations to test the statistical significance of the observed
r-value for each cognitive term. Note that these permutation
tests controlled for multiple comparisons, since all 3406
comparisons were computed during each permutation (this

SUPPLEMENTARY FIG. S1. Permutation test for State A versus State B anticorrelation. A total of 10,000 permutations
were performed to create the plotted null distribution. The red vertical line represents the observed anticorrelation r-value
between State A and State B (r =�0.97). The negative null distribution suggests that pseudo-randomly splitting the data
into two ‘‘states’’ tends to create anticorrelated activation patterns. However, the permutation test indicates that State A
and State B were more distinct from one another than they would be by chance ( p < 0.0001).



is similar in concept to maxT statistic, see Nichols and
Holmes, 2002). The same analysis was also performed for
each of the 12 states at the 20% density tier of the hierarchy.

Results

The null distribution for each state was formed by taking
the highest correlation score across 3400 comparisons for
every permutation cycle (n = 1000). Each cognitive term of
interest included in the respective word cloud (Fig. 6) was
tested against this null distribution for significance. Across
all panels in Supplementary Figure S2, the blue histograms
represent the null distribution (n = 1000) derived from the
1000 permutations and the red histograms illustrates all ob-

served correlation scores for each cognitive term. All terms
for State A and State B were significant ( p < 0.001). In addi-
tion, all terms for State A1, A2, B1, and B2 were significant
( p < 0.05), but no terms from State B3 to B10 passed the per-
mutation test.

Comparisons of Clustering Methods for Brain
State Identification

Methods

To find the most suitable class of approach for clustering
the temporal similarity matrix, we tested several possible ap-
proaches, with the goal of assessing several highly distinct

SUPPLEMENTARY FIG. S2. Permutation test for Neurosynth decoding of State A and State B. The order of the state
time windows was permuted per subject before averaging to obtain ‘‘permuted’’ prototypical states. A total of 1000 permu-
tations per state were performed before Neurosynth decoding. The maximum (absolute value) r-value across the 3400 terms
was selected for each permutation. The observed r-value for each cognitive term of interest was then compared to the null
distribution formed from the 1000 permutations. (A) Results for State A and State B are shown. Note that the blue histogram
represents the null distribution and the red histogram represents correlation values for all terms included in the word cloud.
All cognitive terms were significant ( p < 0.001) for both states. (B) Results for the 12 states are displayed in the same manner
as (A). All terms for A1, A2, B1, and B2 were significant ( p < 0.05), while no terms from B3 to B10 passed the permutation
test. Note that multiple comparisons were corrected as part of the permutation test procedure (see Methods section).



SUPPLEMENTARY FIG. S3. Comparison of clustering approaches. We tested three main clustering approaches: Info-
map community detection, k-means clustering, and agglomerative clustering (with three different linkage criterions: com-
plete, ward, average). The clustering solutions for Infomap, k-means, and ward clustering were highly similar in terms of
visual inspection (A, B) and adjusted Rand index scores (C). However, Infomap performed better based on modularity
score (D). The first rest run data of HCP subject 100307 (time points 1:200 for 5B) were used for this analysis.



clustering methods for clustering brain states with multiband
fMRI. The clustering approaches included Infomap com-
munity detection, k-means clustering, and agglomerative/
hierarchical clustering. Note that this analysis is not a com-
prehensive test across clustering choices (although similarity
across several clustering approaches increased our confi-
dence in the generalizability of approaches). We hypothe-
sized community detection algorithms to provide the best
clustering solutions given theoretical evidence, suggesting
that community detection algorithms are better at handling
boundary cases than other commonly used clustering ap-
proaches (Newman, 2006). In this analysis, we applied the
clustering approaches on a single subject’s resting state
data. Infomap was applied as described in the main method.
k-Means and agglomerative clustering were performed using
Python’s scikit-learn module. For k-means clustering, we
chose k = 5 to parallel the results from Infomap. Similarly,
for agglomerative clustering, we chose the same number of
clusters to detect using three different linkage criterions
(ward, complete, average) computed using Euclidean dis-
tance. To compare between the five clustering solutions,
we calculated adjusted Rand index (scikit-learn Python mod-
ule) and modularity score (Blondel et al., 2008; Rubinov and
Sporns, 2011) for each clustering solution (Supplementary
Fig. S3C, D). Adjusted Rand index determines how similar
a particular clustering solution aligns with the ‘‘ground
truth.’’ In this analysis, our ‘‘ground truths’’ were alternative
clustering solutions (e.g., ground truth—Infomap, prediction
labels—k-means). Modularity measures how well separated
the clusters are, which is consistent with our hypothesis for
predicting community detection algorithms providing the
best clustering solution.

Results

The results of the clustering approaches are juxtaposed
next to the first subject’s temporal similarity matrix. For vi-
sual clarity, we included both the full rest run time series
(Supplementary Fig. S3A) and a 200 time point snapshot

(Supplementary Fig. S3B). Supplementary Figure S3A pro-
vides a clearer perspective of brain state repetition over
time (represented by the off-diagonal correlation blocks).
Supplementary Figure S3B highlights the temporal bound-
aries, or transitions, between each unique state cluster. By vi-
sual inspection, it seems that the clustering solutions for
Infomap, k-means, and ward clustering are quite similar. Fur-
thermore, the adjusted Rand index scores (range �1 to 1,
1 = perfect match) for the pairwise combination of compari-
sons of these three specific clustering approaches are also
quite similar (Supplementary Fig. S3C), suggesting that all
different clustering approaches provide fairly similar cluster-
ing solutions. However, consistent with our hypothesis, the
modularity score for the Infomap clustering solution was
much higher than alternative clustering solutions (Supple-
mentary Fig. S3D). Higher modularity score indicates denser
connections within clusters and sparser connections across
clusters. Note that this result may be slightly biased in
favor of Infomap’s solution, as the modularity metric is op-
timized for testing community detection algorithms. While
the similarity across clustering approaches are quite high
(as indicated by similar adjusted Rand index scores), Info-
map performed better on the modularity score. This led us
to our choice of applying Infomap over the alternative
choices for our main analyses.
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