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Appendix

Graded weights

In this paper, we assumed unitary (or binary) synaptic weights: all connected afferents had the same
synaptic weight1. This constraint strongly simplified the analytical calculations. But could the SNR
be even higher if we removed this constraint, and by how much? Intuitively, when one wants to detect
a spike pattern that has just occurred, one should put strong weights on the synapses corresponding to
the most recent pattern spikes, since these weights will increase Vmax more than Vnoise. Conversely, very
old pattern spikes that fall outside the integration window (if any) should be associated to nil weights:
any positive value would only increase Vnoise, not Vmax. But between those two extremes, it might be a
good idea to use intermediate weight values.

To check this intuition, we used numerical optimizations using a simplified setup. We used a single
pattern (P = 1), that was repeated in the absence of jitter (T = 0). We divided the pattern into
n different periods ∆t1, ...∆tn (in reverse chronological order), each one corresponding to a different
synaptic weight w1, ...wn (see Figure 1 left for an example with n = 2). More specifically: the M1

afferents that fire in the ∆t1 window are connected with weight w1. The M2 afferents that fire in the
∆t2 window, but not in the ∆t1 one, are connected with weight w2. More generally, the Mi afferents
that fire in the ∆ti window, but not in the ∆t1...∆ti−1 ones, are connected with weight wi.

With this simple set up, the SNR can be computed analytically. For example, if n = 2 (Fig. 1 left),
we have:

〈M1〉 = N(1− e−f∆t1), (1)

〈M2〉 = N(1− e−f∆t2)e−f∆t1 . (2)

The asymptotic steady regimes for the two time windows are:

〈V∞1 〉 = τfw1N, (3)

〈V∞2 〉 = τf
(
w2N + (w1 − w2) 〈M1〉

)
. (4)

Let’s call Vi the potential at the end of window ∆ti, and Vn+1 = Vnoise. Then Vmax = V1 can be computed
iteratively:

V2 = (1− e−∆t2/τ )(V∞2 − V3), (5)

V1 = (1− e−∆t1/τ )(V∞1 − V2). (6)

Furthermore [Burkitt, 2006],
Vnoise = τf(w1M1 + w2M2), (7)

and:

σnoise =
√
τf(w2

1M1 + w2
2M2)/2. (8)

So we have everything we need to compute the SNR.
Equations 1 – 8 can be generalized to n > 2:

〈Mi〉 = N(1− e−f∆ti)e
−f

i−1∑
j=1

∆tj
, (9)

〈V∞i 〉 = τf

wiN +

i−1∑
j=1

(wj − wi)
〈
Mj

〉 (10)

and Vmax = V1 can be computed iteratively from Vn+1 = Vnoise using:

Vi−1 = (1− e−∆ti−1/τ )(V∞i−1 − Vi). (11)

Furthermore [Burkitt, 2006],

Vnoise = τf
∑

wiMi, (12)

1 Numerical simulations with STDP used graded weights during learning, but not after convergence.
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and:

σnoise =
√
τf
∑

w2
iMi/2. (13)

So the SNR can be computed for any n, and, importantly, it is differentiable with respect to the wi.
We can thus use efficient numerical methods to optimize these weights. Since scaling the weights does
not change the SNR, we imposed w1 = 1. Figure 1 right gives an example with n = 70. Here the ∆ti
were all equal to 5τ/n, and we optimized the corresponding wi. We chose τ = 10ms, and f = 1, 5, and
10Hz. The gain w.r.t. binary weights for the SNR were modest: 10.5%, 9.6% and 8.9% respectively. As
f tends towards 0, the optimal weights appears to converge towards et/τ (even if we could not prove it):
the f = 1Hz curve (solid blue) is almost identical to et/τ (dashed red).
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Fig. 1: Optimization with graded weights. (Left) Didactic example with n = 2 weight values: w1 for all
the afferents that fire in the ∆t1 window, and w2 < w1 for all the afferents that fire in the ∆t2
window but not in the ∆t1 one. V∞1 and V∞2 are the asymptotic potentials for the two periods.
Vmax can be computed from those two values (see text). (Right) Numerical optimization of the
weights with n = 70. With small f , the optimal solution appears to be close to et/τ .
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