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Figure A1l: Main concepts. Binary matrix B is a 1-Dollo phylogeny matrix because there exists a 1-Dollo
completion A without any forbidden submatrices (Table Al). From A and the 1-Dollo state tree S[1], we
can obtain the 1-Dollo phylogeny T by constructing the binary factor matrix B’.

A Supplementary Material

A.1 Results from the Main Text

We start by recapitulating the definitions and theorems from the main text. Fig. Al illustrates the main
concepts.

Definition 1. A k-Dollo phylogeny T is a rooted, node-labeled tree subject to the following conditions.

1. Each node v of T' is labeled by a vector b, € {0,1}".
2. The root r of T is labeled by vector b, = [0,...,0]”.
3. For each character ¢ € [n], there is exactly one gain edge (v, w) in T" such that b, . = 0 and b,, . = 1.
4. For each character ¢ € [n], there are at most k loss edges (v, w) in T such that b, . = 1 and by, . = 0.

k-Dollo Phylogeny problem (k-DP). Given a binary matrix B € {0, 1}"™*" and parameter k& € N, deter-
mine whether there exists a k-Dollo phylogeny for B, and if so construct one.

k-Dollo Phylogeny Flip and Cluster problem (k-DPFC). Given matrix D € {0, 1, ?7}"*™, error rates
a, € [0,1], integers k,s,t € N, find matrix B € {0,1}"*" and tree T such that: (1) B has at most
s unique rows and at most ¢ unique columns; (2) Pr(D | B, «, ) is maximum; and (3) 7" is a k-Dollo
phylogeny for B.

Definition 2 (Estabrook et al. (1975); Gusfield (1991)). A rooted, node-labeled tree T is a perfect phylogeny
provided the following conditions hold.

1. Each node v of T is labeled by a vector a,, € {0, ...,k + 1}"™.
2. The root r of T is labeled by vector a,. = [0, ...,0]T.
3. Nodes labeled with state ¢ for character ¢ form a connected subtree 7}, ;) of T'.

Theorem 1 (Perfect Phylogeny Theorem (Gusfield, 1991)). A binary matrix A € {0,1}™*" is a perfect
phylogeny matrix if and only if no two columns of A contain the three pairs (1,0); (0,1) and (1, 1).

Definition 3 (Fernidndez-Baca (2000)). A state tree S is a rooted, node-labeled tree, whose root node is
labeled by state 0, and whose other nodes are uniquely labeled by states {1,...,k + 1}.



Table Al: There are 25 forbidden submatrices for k = 1. Let 1) = {i,... k4 1}. Here, iy, 4}, j1, j} €
1M, iy, j2 € 1®), 0] € IW\ {iz} and j{ € I\ {ja}.
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Definition 4 (Fernandez-Baca (2000)). Let A € {0,...,k 4+ 1}"*" and let 8§ = {S1,...,S,} be a set of
state trees for each character. The binary factor matrix B" = [b), ] of (A, 8) has dimensions m x n(k + 1),
and entries

ey

p?e -

b= {07 if ﬁSc Qp,cs

1, ifi=sg, ape.
where ¢ = |e/(k+1)| +1,i = (emod (k+ 1)) + 1 and S, is the state tree of character c.

Theorem 2 (Fernandez-Baca (2000)). Matrix A has a perfect phylogeny consistent with states trees & =
{S1,...,S,} if and only if the binary factor matrix B’ of (A, 8) is a perfect phylogeny matrix.

Definition 5. The k-Dollo state tree S[k]| is a state tree with nodes {0, ...,k + 1} and edges {(0,1)} U
{(1,d) |ie{2,....,k+1}}.

Definition 6. Let B € {0,1}"*". Matrix A € {0,...,k + 1}"*" is a k-completion of B provided (1)
apc €40,...,k+1}\ {1} if and only if b, . = 0; and (2) ap . = 1 if and only if b, . = 1.

Definition 7. Let I() = {i,... k+ 1}. Matrix A € {0,..., k + 1} is a k-Dollo completion provided
there exist no two columns and three rows in A of the following form:

) . . .
i1 0 i1 J] i2 0 12 J;
0 jifor{ 0 go|or|df jifor|if 2
g g S 3 :
1N 1 02 2 ) 2 J2

where i1, i}, 71,7, € IW, iy, jo € I®, " € IW\ {ip} and j € IV \ {jo}.

Table A1 lists the forbidden submatrices for k = 1.



A.2 Combinatorial Characterization

Let A € {0,...,k+ 1} ™ and let §[k] be a set comprised of n k-Dollo state trees. By Definition 5, we
have that the binary factor matrix B’ of (A, 8[k]) is defined as follows.

Definition 8. The binary factor matrix B' = [}, ] of (A, 8[k]) has dimensions m x n(k + 1), and entries

, ifap.=0andi=1
ifap.€{1,....,k+1}andi =1,
ifa,. #diandi > 1,

, ifap.=1dandi > 1,

2

p?e_

0
1
0
1

where c = |e/(k+1)| +1,i= (emod (k+ 1)) + 1.
We now prove the key theorem that underlies SPHYR.
Theorem 3. Let B € {0,1}"*". The following statements are equivalent.

1. There exists a k-Dollo phylogeny T for B.

2. There exists a k-Dollo completion A of B.

3. There exists a k-completion A of B such that the binary factor matrix B’ of (A, §[k]) is a perfect
phylogeny matrix.

4. There exists a k-completion A of B, and perfect phylogeny T for A whose characters are consistent
with S[k].

Proof. We proof the theorem by first proving that statement 1 implies statement 2. Then, we show that
statement 2 implies statement 3. By Lemma 4.3 in (Ferniandez-Baca, 2000), we have that statement 3
implies statement 4. Finally, we prove that statement 4 implies statement 1.

(1 = 2) Let T be a k-Dollo phylogeny for B. Recall that there exists a bijection between the leaves of
T and the rows of B, and that each node v of T is labeled by binary vector b, € {0,1}". We describe how
to construct a matrix A € {0, ..., k+ 1}"*" from T First, for each character ¢ € [n], we identify all edges
(v, w) of T where c is lost—i.e. (v, w) is a loss edge for cif b, . = 1 and b,, . = 0. We number each loss
edge (v, w) for ¢ by o (v, w, c) starting from 1.

Consider row vector by, of B and its corresponding leaf v, of T". We define the corresponding row vector
a, = [ap,c] of A by considering each character ¢ € [n]. If b, = 1, we set a, . = 1. If b, . = 0 and there
exists a loss edge (v, w) for ¢ on the unique path from v, to the root r of T', we set a,, . = o(v,w,c) + 1.
Otherwise, we set a,, . = 0. By definition of 7, there are at most k loss edges for each character c. Each
entry a, . thus has a integer value in {0, ...,k + 1}. Hence, matrix A is a k-completion.

Now, assume for a contradiction that A is not a valid k-completion of B. Thus, there exist two characters
(columns) ¢, d and three leaves (rows) u, v, w containing three forbidden pairs (Definition 7). We distinguish
four cases.

1. There exist iy, ,, j1, 7, € IV such that

Qy,c  OQy,d 11 0

Qy,e Opd | = 0 71|. 3)
YR

Qw,c OQu,d 1N

We focus on edges ¢, 1) and e(g,1). There are three subcases.



(a)

(b)

(©)

Edge e(. 1) precedes edge e(q 1), i.e. (¢, 1) 27 (d, 1):

Leaf v has character states (c¢,0) and (d,ji1). As T is a k-Dollo phylogeny, we have that
(d,1) =7 (d, j1) 27 v. This means that (¢, 1) <7 (c,0), which yields a contradiction.

Edge e(4,1) precedes edge e(. 1, i.e. (d, 1) Zr (c, 1):

Leaf u has character states (c, 71) and (d, 0). As T"is a k-Dollo phylogeny, we have that (¢, 1) <7
(¢,i1) =7 u. This means that (d, 1) <7 (d,0), which yields a contradiction.

Edges e(.,1) and e(4 1) occur on distinct branches:

As i},77 > 1, we have that (¢,1) = (c,4}) and (d,1) =<7 (d,j}). Moreover, leaf w has
character states (¢, 4}) and (d, j1), and thus it holds that (¢,#}) <7 w and (d, j;) =<7 w. This,
however contradicts the premise that edges €. 1) and e(4 1) occur on distinct branches.

2. There exist i1, i} € TN jo € I?) % € T\ {j3} such that

. .

Qy,c  OQy,d 1 N

Qy,e Qpd | = 0 J2]- 4
Y .

Qy,c  Qw,d 1 J2

We focus on edges ¢, 1) and e(q ;,). There are three subcases.

(a)

(b)

©

Edge e(.,1) precedes edge (4 ;,), i.e. (¢,1) =7 (d, ja):

Leaf v has character states (c,0) and (d, j2). This means that (¢, 1) <7 (¢,0), which yields a
contradiction.

Edge e (4 j,) precedes edge e (. 1), i.e. (d, j2) = (¢, 1):

By definition we have that (¢, 1) <7 (¢,41) and (¢, 1) =<7 (c,i}). Thus the two paths from the
root to leaves u and w share the edges e(q4 j,) and e(.,1). Now, leaf u has character state (d, 1)
and thus we have that (d, j2) <7 (d, j{). This means that path from the root to leaf u contains
either two distinct loss edges (if 71 > 2) or a gain after a loss (if j{ = 1) for character d. Both
cases yield a contradiction.

Edges e 1) and ey j,) occur on distinct branches:

As i € MW\ {is}, we have (c,1) <7 (c,i¥). Leaf w has character states (c, %) and (d, jo).
Thus, it holds that (¢,1) =7 (c¢,i]) =<7 w and (d, j2) =<7 w. This, however contradicts the
premise that edges e, 1) and ey ;,) occur on distinct branches.

3. There exist iy € 12" € TMW\ {is}, 51,7, € IV such that

Qy,c  OGyud 12 0
o

Qy,c  OQyd =1% Ji]- (5)
. .

Qu,c OGw,d 2 N

We focus on edges e(. ;,) and (4 1). There are four subcases.

(a)

(b)

Edge e(c,,) precedes edge e(4 1), i.€. (¢, 72) =7 (d,1):

As iy € I®), we have that (c,1) =<7 (c,i2). Leaf v has character states (c, ") and (d, j;). This
means that (¢,7) =p w and (d,j1) =<7 w. As (¢,i2) =7 (d,1) <r (d,j1) and iz # ], we
have that the path from the root to w contains either two distinct loss edges (if ¢/ > 2) or a gain
after a loss (if ¢/ = 1) for character c. Both cases yield a contradiction.

Edge e(4,1) precedes edge e(.;,), i-e. (d, 1) =7 (¢, i2):

Leaf u has character states (c,i2) and (d,0). This means that (d,1) <7 (d,0), which yields a
contradiction.



(c) Edges e( ,) and (4 1) occur on distinct branches:

As 77 € TMW \ {jo}, we have that (d,1) <7 (d,j7). Leaf w has character states (c, i) and
(d, j{). Thus, it holds that (¢,i2) =7 w and (d,1) =<7 (d,j}) =7 w. This contradicts the
premise that edges €. ;,) and €4 1) occur on distinct branches.

4. There exist is € I, i) € MW\ {ig}, jo € I? ¥ € TM\ {j5} such that

. "™
Qu,c OQyud 2 N

P
Gy,  Gyd =171 J2]- (6)
Qyw,c  OGuw,d 2 J2

We focus on edges (. ;,) and e(y j,). There are three subcases.

(a) Edge e, precedes edge e(q j,), i-€. (¢, i2) =7 (d, jo):
Leaf v has character states (c,4}) and (d, j2). This means that (c,}) <7 v and (c¢,i2) =p
(d,j2) =1 v. Asiy € I 7 € I\ {iy}, we have that the path from the root to v contains
either two distinct loss edges (if j1 > 2) or a gain after a loss (if j{ = 1) for character d. Both
cases yield a contradiction.

(b) Edge e(q;,) precedes edge e(.,), i-€. (d, j2) =7 (¢, 42):
Leaf u has character states (c,i2) and (d, j{). This means that (d, jo) <7 (c,i2) <7 v and
(d,7) <7 u. Asj € I® 47 e I\ {j}, we have that the path from the root to u contains
either two distinct loss edges (if j1 > 2) or a gain after a loss (if j{ = 1) for character d. Both
cases yield a contradiction.

(c) Edges e(,) and e(q j,) occur on distinct branches:

Leaf w has character states (c,i2) and (d, j2). Thus, (c,i2) =7 w and (d, j2) =7 w, which
contradicts the premise.

Each case results in a contradiction, thus A must be a k-Dollo completion of B.

(2 = 3) Let A be a k-Dollo completion of B, and let B’ be the binary factor matrix of A. Assume
for a contradiction that B’ is not a perfect phylogeny matrix. Thus, by Theorem 1, there exist three taxa
u,v,w € [m] and two characters e, f € [n(k + 1)] such that

b{u,e b;yf 1 0
b be|l=1[0 1]. (7
e Uiy 11

Letc=le/(k+1)|+1,¢p=(emod (k+1))+1,d=|f/(k+1)]+1and ¢ = (f mod (k+ 1))+ 1.
We distinguish four cases.

1. ¢ =1 and ) = 1: This means that matrix A contains the following submatrix.

Qy,c  Qy,d i1 0

Qy,ec Qpd | = 0 J1], (8)
T

Qy,c  Qw,d 1

where 1,4, j1, 74 € I). Thus, matrix A violates the first condition of Definition 7. Hence, matrix
A is not a k-Dollo completion, which contradicts the premise.



2. ¢ = 1 and ¢ > 1: This means that matrix A contains the following submatrix.

-/

Qy,c  Qy,d i1

Qy,ec Qpd | = 0 Jj21, )
g

Qy,c  Qw,d 1 J2

where i1,7) € IM jy € 1) j € I\ {ja}. If j/ = 0 then matrix A violates the first condition of
Definition 7. If j/ # 0 then the second condition of Definition 7 is violated. Hence, matrix A is not a
k-Dollo completion, which contradicts the premise.

3. ¢ > 1 and ¢y = 1: This means that matrix A contains the following submatrix.

Qy,c  OGyu,d 19 0
g

Aye Qud | = v J1]> (10)
. .7

Gy, Gw,d 2 1

where iy € 1), i’ € I'\ {i2}, 1,7, € I, If / = 0 then condition 1 of Definition 7 is violated. On
the other hand, of i # 0 then matrix A violates the third condition of Definition 7. Hence, matrix A
is not a k-Dollo completion, which contradicts the premise.

4. ¢ > 1 and ¢ > 1: This means that matrix A contains the following submatrix.

-/

Qy,c  Qy,d ig J

g
Qyc Oyd =1v J29, (1 1 )
Qy,c  Quw,d i2  Jo

where i,j € I® i € T\ {iz},j’ € I\ {j2}. If i’ = 0 and j/ = 0 then condition 1 of Definition 7
is violated. If i/ = 0 and j’ # 0 then condition 2 of Definition 7 is violated. If i’ # 0 and j' = 0
then condition 3 of Definition 7 is violated. If ' # 0 and 7’ # 0 then condition 4 of Definition 7 is
violated. Hence, matrix A is not a k-Dollo completion, which contradicts the premise.

Each case results in a contradiction, thus the binary factor matrix B’ is a perfect phylogeny matrix. This
means that the binary factor matrix of a k-Dollo completion is a perfect phylogeny matrix.

(3 = 4) This direction follows from Theorem 2 by Fernandez-Baca (2000), which states that a matrix
A €{0,...,k+ 1}™*" has a perfect phylogeny consistent with states trees S = {S1,...,.5,} if and only
if the binary factor matrix B of (A, 8) is a perfect phylogeny matrix.

(4 = 1) Let A be a k-completion of B. Let T be a perfect phylogeny for A whose characters are
consistent with S[k]. Let a,, = [a, | be the vector associated with each node v of 7. For each node v of T,
we define the vector b, = [b, ] as follows.

0, ifaye =0,
bv,c =41, if Qy,c = 1, (12)
0, ifay.>1

We claim that the tree T', where each node v is labeled by b,, is a k-Dollo phylogeny. For the root node
r of T', we have that a, . = 0 for each character ¢ € [n]. Thus, by definition b, . = 0 for each character
c. Consider a character ¢ € [n]. Since each node v with a, . = b, . = 1 forms a connected subtree of T
and c is consistent with S[k], we have that there is exactly one edge (v, w) in T" such that a, . = b, = 0
and a, . = by, = 1. By construction ¢ has at most k loss states, numbered I?) = {2,... k + 1}. Again,
by consistency of T with S[k| and the fact that for all states i € I (2) each node v with ay,. = 1 forms a
connected subtree of 7', there exist at most k edges (v, w) in T such that a, . = 1 and a, . = i for some
i € I®. Hence, there are at most k edges (v, w) in T such that b, . = 1 and b, . = 0. This proves that the
tree 1" whose nodes v are labeled by b, is a k-Dollo phylogeny. O



A.3 Column Generation for k-DP and £-DPFC

In this section, we provide additional implementation details. For both the k-DP and the £-DPFC problem,
we preprocess the input matrix D € {0, 1, 7}"*" and remove characters (columns) and taxa (rows) of the
following form.

1. Characters ¢ such that d,, . = 0 or dp, . =7 for all taxa p € [m].

2. Characters ¢ such that there exists exactly one taxon p € [m] where dj, . = 1 and dy . € {0, ?} for all
taxa g € [m] \ {p}.

3. Characters ¢ such that d,, . = 1 or dp, . =7 for all taxa p € [m].
4. Taxa p such that d,, . = 0 or d, . =7 for all characters ¢ € [n].

These taxa and characters can be safely removed due to the fact that & < 0.5 and S < 0.5, and that the
corresponding columns and rows do not contribute to conflicts. It is not hard to show that there exist optimal
solutions B* to the k-DPFC problem where identical columns and rows of input matrix D are identical in
B* as well. Thus, we remove repeated rows and columns from D = [d,, ] yielding D’ = [d}, .| and include
a multiplicative factor in the objective function that accounts for the number of entries in D that corespond
to each entry d, ..

We now provide additional details for the column generation procedure used for solving the k£-DP prob-
lem. As described in the main text, the ILP is as follows:

m n k+1 1 k+1—i
min ZZZ%W <mn> (13)

p=1 c=1 i=2

st. apeqi €{0,1} Vp e m],cen],ie{0,....,k+1} (14)
k1
Z ap,ci =1 Vp € [m],c € [n] (15)
i=0
ape1 =0 Vp € [m],c € [n]stb,. =0 (16)
ape1 =1 Vp e [m],ce[n]stb,.=1 (17)

m n m n

DN tpei 2D D i Vie{3,....k+1} (18)
p=1c=1 p=1c=1
Up,d,0 + q,c0 + Agdjy T Qrei + arajy <5 (19)
Ap,ciy + Opd gy + Age0 + Aqd gy + Qe+ Ardj, <O (20)
p,ciy T Ap,d,0 + Ag,c,il! + Qq,d,ji T Orein + Qr.d, 1 <5 21
Up,ciis T pd jy + Qqeit + Oqdjo + Greiy + Ardjy <O (22)

Algorithm 1 provides pseudocode for the overall procedure, and invokes functions SEPARATE1 (Algo-
rithm 2), SEPARATE2 (Algorithm 3), SEPARATE3 (Algorithm 4) and SEPARATE4 (Algorithm 5). In the
main text, we describe that separation proceeds in O(mk?) time for each pair ¢, d of distinct characters.
This time bound can be achieved by considering only a single element of each set P, () and R. In practice,
however, considering all elements of these sets considerably strengthens the formulation and leads to better
performance. Doing so leads to output-sensitive asymptotic run times of O(mn? 4 |€’|) for SEPARATEI,
and O(mn?k3 + |€’|) for SEPARATE2, SEPARATE3 and SEPARATE4.



The ILP for the k-DPFC problem is as follows.

min Z [aw(p),w(c),l IOgB + (1 - a7r(p),¢(c),1) IOg(l - /8)]

(p,e)eX:
dp.c=0
(23)
+ Z [ ()01 108(1 — @) 4+ (1 = Grp) p(e)1) log(@) ]
(p,)eX:
dpe=1
s.t. ah7f7i€{0,1} VhE[S],fG[t],’iG{O,...,k‘—Fl}
(24)
k41
D apgi=1 Vh e [s], f €[]
i=0
(25)
(18) — (22)

Algorithm 6 provides pseudocode for the column generation procedure used for solving a variant of the
k-DPFC problem, where one is given a row clustering and column clustering. This procedure uses the same
separation functions as in Algorithm 1. In contrast to the previous algorithm, a feasible solution always
exists for the k-DPFC problem, as 1-entries of the input matrix might be edited. As such, the ILP solver will
never determine that the model is infeasible.

A.4 Simulation Results for £-DP

Table A2 shows additional statistics of SPHYR’s performance on the simulated k-DP instances.

A.5 Simulation Results for k-DPFC

We use default arguments for SiFit with 100 restarts and 10,000 MCMC iterations for each restart. That is,

java —jar SiFit.jar -r 100 -m Sm$ -n $n$ —-fp $\alpha$ —-fn S$\beta$ \
-iter 10000 -df 0 -ipMat <INPUT>

The above command produces an output tree in NEWICK format called <INPUT>_mlTree.newick,
and also infers a false negative rate FN, loss-of-heterozygosity rate LOH and deletion rate del. To infer the
vertex labeling, we use

java —cp SiFit.Jjar SiFit.algorithm.InferAncestralStates \
-fp $\alpha$ -fn FN -w LOH -d del -df 0 —-ipMat <INPUT> \
-tree <INPUT>_mlTree.newick —-geneNames <GENE_LABELS> \
—cellNames <CELL_LABELS> -expectedMatrix <INPUT>.leaves

We use default arguments for SCITE with 100 restarts and 1000000 MCMC iterations for each restart.
That is,

scite —-i <INPUT> -r 100 -1 1000000 -a -m $m$ -n S$n$ \
-fd $\alpha$ —-ad $\beta$ -o <OUTPUT> -e 0.1

We have the following figures, where we consider the effect of varying « € {0.0001,0.001,0.01} and
B €{0.1,0.2,0.3}.



Algorithm 1: k-DP (B, k)

Input: Input matrix B € {0, 1}""*" and natural number %
Output: k-Dollo completion A € {0,...,k + 1}™*" of B, if one exists

1 Let C be comprised of (15) — (18)
2 Set objective function to (13)
3 forp + 1tomdo

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

forc < 1tondo
fori < Otok+ 1do
if b, . = i then
C«+ CU {ap707¢ € {0,1}}
else
C <+ CU{apci € {0}}
e« 0
repeat
Solve ILP
if ILP is infeasible then return INFEASIBLE
Let A be the ILP solution
€'+ SEPARATEI (A, k) U SEPARATE2(A, k) U SEPARATE3(A, k) U SEPARATE4(A, k)
foreach variable ap . ; € C' do
if i = 0 then
Extend domain of a2 in € to {0, 1}
if 2 <i < k+ 1 then
Extend domain of ay ¢ 4+1 in C to {0, 1}
C+—ceuc

22 until ¢’ = ()
23 return A
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Algorithm 2: SEPARATEL (A, k)

Input: Matrix A € {0,...,k + 1}"*" and natural number k
Output: Set €’ of violated constraints of the form (19)
1 €«
2 for c < 1tondo
3 ford < c+1tondo
// Condition 1

4 P«

5 for p +— 1 tomdo

6 foreach i; € I(Y) do

7 ifapci, =1landa,qo=1then P« PU{(apci ,apd0)}
8 Q<0

9 for ¢ < 1to m do

10 foreach j; € I(V) do
11 ifageo=1and agq; =1then Q < QU {(aq,c0,0qd; )}
12 R+

13 for r < 1tomdo

14 foreach (i}, j1) € IV x IV) do

15 ifa,.; =landa,q; =1then R« RU{(a, q,arq4j)}
16 foreach (a, i, ,apq0) € P do

17 foreach (a,0,aq.4;,) € Q do

18 foreach (a, ., a,4) € R do

19 ¢+ CU {anc,il + Qp,d,0 + Gq,c0 T Cg,dj T Ay c,it + Ay, d,j <5}

20 return ¢’
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Algorithm 3: SEPARATE2(A, k)

Input: Matrix A € {0,...,k + 1}"*" and natural number %
Output: Set €’ of violated constraints of the form (20)

1 G« 0

2 for c + 1tondo

3 ford <~ c+1tondo

4 for j, € I do
// Condition 2
5 P+
6 for p < 1 tom do
7 foreach (i1, ;") € I x (IMW\ {js}) do
8 if Qp.ciy = 1 and Ap d, g1 = 1then P+ PU {(anc,il , apydyji/)}
9 Q<+ 10
10 for ¢ < 1tom do
11 if agc0=1and agqj, = 1then Q < QU {(ag,c0:qd,)}
12 R+
13 for r < 1tom do
14 foreach i), € I") do
15 ifa,.; =1landayq;, =1then R« RU{(a, . ard;j)}
16 foreach (ay ¢, ap,q0) € P do
17 foreach (ayc0,aq.45,) € Q do
18 foreach (a, ., arq,,) € R do
19 ¢+ ¢ U{apci, + Apd gy + Age0 + Qqdgo + Qreit + Ard g, < 5}

20 return ¢’

12



Algorithm 4: SEPARATE3 (A, k)

Input: Matrix A € {0,...,k + 1}"*" and natural number %
Output: Set €’ of violated constraints of the form (21)

1 G« 0

2 for c + 1tondo

3 ford <~ c+1tondo

4 for is € 1 do
// Condition 3
5 P«
6 for p +— 1tomdo
7 if Qp.ciz = 1 and Gp.d,0 = 1then P +— PU {(ap,c,,-z, ap7d70)}
8 Q<+ 0
9 for ¢ < 1tomdo
10 foreach (17, j1) € (IM\ {ix}) x IV do
11 if aq,c,i’l’ =1 and Qq.dj1 = 1 then Q — Q U {(aq7c7i/1/, aqdm)}
12 R+
13 for r < 1tomdo
14 foreach j; € IV do
15 if arci, =1landa, g =1then R < RU {(@r.c,iy, ar7d7ji)}
16 foreach (ay ci,, apq0) € P do
17 foreach (a, i, aq.4,5,) € Q do
18 foreach (a,c,, ar,d,ji) € Rdo
19 ¢« CuU {ap,c,iz + ap’dp) + Ag.c,i! + aq7d7j1) + Qrcin + Ay d,jt <5}

20 return ¢’
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Algorithm 5: SEPARATE4(A, k)

Input: Matrix A € {0, ...,k + 1}™*" and natural number &
Output: Set €’ of violated constraints of the form (22)

1 G« 0

2 forc<+ 1tondo
3 ford < c+1tondo

wn s

20
21 return ¢’

for iy € I do
for j, € I?) do

// Condition 4
P10
for p < 1tomdo
foreach j/ € T\ {j,} do
if apci, = land a, g v = 1then P < P U {(apc iy, apajy)}
Q<+ 0
for g < 1tomdo
foreach ¥ € (I \ {iy}) do
if Agc it = 1 and Qq.d,jo = 1then Q + QU {(aq7c7i/1/, aq7d7j2)}
R+
for r < 1tomdo
ifa,ci, =1anday,qj, =1then R < RU{(arci,, ardj,)}
foreach (ayciy; ay q50) € P do
foreach (ay ., aq.4,5,) € Q do
foreach (a,.;,,ar4j,) € R do
¢« cu {ap,cyiQ + Qp.d,j!! + Qg .c,i! + aquij) + Arciy + Ardj, < 5}
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Algorithm 6: SOLVEAB(D, a, 3, s,t, k, 7, 1)

Input: Input matrix D € {0, 1, ?}™*", a false positive rate « € [0, 1], a false negative rate 5 € [0, 1],
natural numbers k, s, t, row clustering 7 : [m] — [s] and column clustering ¢ : [n] — [t]
Output: k-Dollo completion A € {0, ...,k + 1}**! with maximum likelihood
Z;nzl Z?:l log Pr(dp,c ‘ bw(p),dz(c)’ «, 5)
1 Let C be comprised of (18), (24) and (25)
2 Set objective function to (23)
3 Letm Y(h) = {p € [m] | 7(m) = h} foreach h € [s]
4 Lety~1(f) = {c € [n] | ¥(c) = f} foreach f € [t]
5 for h <~ 1to s do
6 for f < 1totdo

7 Lo ~—0
8 L1 +~0
9 foreach p € 7—!(h) do
10 foreach c € ¢ ~1(f) do
1 if d, . = 0 then
12 Lo+ Lo+ 10g(1 — B)
13 L1+ Li+logp
14 elseif d, . = 1 then
15 Lo+ Lo+ loga
16 Ly «+ L; +log(1l — «)
17 if Ly > L; then
18 C«+ CU{anys1 € {0}}
19 foreach j € {0,2,...,k+ 1} do
20 C+CuU {ah,fyj € {0, 1}}
21 else
22 @%GU{ahJ,l S {0,1}}
23 foreach j € {0,2,...,k+ 1} do
24 C <« CU{anys; € {0}}
25 €'«
26 repeat

27 Solve ILP
28 Let A be the ILP solution
29 €’ <~ SEPARATEI (A, k) U SEPARATE2(A, k) U SEPARATE3(A, k) U SEPARATE4(A, k)

30 foreach variable ay.; € C' do

31 if 7 = 1 then

32 Extend domain of a, . j in € to {0, 1} foreach j € {0,2,...,k+ 1}
33 else

34 Extend domain of a;, . in € to {0,1}

35 C—Cuce
36 until @' = ()
37 return A
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Table A2: Simulation results for £-DP instances with varying number m of taxa, number n of charac-
ters and maximum number % of losses. For each combination of m,n and k, we simulated 60 instances
with varying loss rates {0.1,0.2,0.4}. See the main text for simulation details. For each instance, we show
the percentage of instances solved to optimality (within 5 hours), the median run time in seconds, the me-
dian number of iterations of the column generation procedure, the median percentage of variables that were
included in the model and the median percentage of constraints that were included in the model.

n =25 n = 50 n = 100
™ 1 k|| solved sec #it. vars. cons. solved sec #it.  vars. cons. solved sec  #it.  vars. cons.
1 100% 1.9 2 30% 1e-04% | 100% 2.7 2 42%  9e-05% | 100% 2.8 2 3.5%  4e-05%
25 | 2 100% 1.3 1 2.5% 2e-05% | 100% 2.8 2 35% 2e-05% | 100% 32 6 29%  8e-06%
3 100% 1.6 1 20% 7e-06% | 100% 3.0 2 2.8% 4e-06% | 100% 33 6 24%  2e-06%
1 100% 2.6 2 29% 3e-05% | 100% 2.6 2 33% 2e-05% | 100% 2.8 2 37% 1e-05%
50 | 2 100% 2.5 2 23% 5e-06% | 100% 2.8 4 26% 3e-06% | 100% 4.2 6 3.6% 3e-06%
3 100% 2.7 2 1.9% 2e-06% | 100% 3.1 4 21%  8e-07% 95% 9.2 7 3.0% 1e-06%
1 100% 3.1 2 21% 6e-06% | 100% 3.1 2 29%  4e-06% | 100% 32 2 34%  3e-06%
100 | 2 100% 2.8 2 1.6% 9¢-07% | 100% 3.1 4 23% 6e-07% | 100% 7.1 7 32% 8e-07%
3 100% 2.6 2 1.3% 2e-07% | 100% 3.3 5 1.9% 2e-07% 75% 15.6 9 2.6% 3e-07%
e Fig. A2 shows the tradeoff between the false positive rate and false negative rate for varying «, 5 and
k.
e Fig. A3 shows the effect of o, 5 and k (for SPHYR) on the false positive rate (FPR).
e Fig. A4 shows the effect of o, 5 and k (for SPHYR) on the false negative rate.
e Fig. A5 shows the effect of a, 5 and k (for SPHYR) on the ancestral pair recall.
e Fig. A6 shows the effect of o, 5 and k (for SPHYR) on the incomparable pair recall.

Fig. A7 shows the effect of o, 8 and k (for SPHYR) on the clustered pair recall.
Fig. A8 shows the effect of «, 5 and k (for SPHYR) on the run time.

A.6 Metastatic Colorectal Cancer (CRC) Patient 1
We have the following figures.

e Fig. A9 shows the input and output matrices of colorectal patient CRC1 from (Leung et al., 2017).
e Fig. A10 shows the SCITE output tree reported by Leung et al. (2017).

e Fig. A1l shows the SiFit output tree.

e Fig. A12 shows the SPhyR output tree.
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Figure A2: Tradeoff between false positive rate (FPR) and false negative rate (FNR) for varying «,
B and k (for SPHYR). A false positive (FP) is a 1-entry in the output matrix B that is a O-entry in the
simulated matrix B*. The false positive rate (FPR) is the fraction of false positives among the 1-entries of
B. A false negative (FN) is a 0-entry in the output matrix B that is a 1-entry in the simulated matrix B*.
The false negative rate (FNR) is the fraction of false negatives among the 0-entries of B.
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Figure A3: The effect of «, 5 and k (for SPHYR) on the false positive rate (FPR). For each method, the
FPR decreases with increasing «. For SPHYR (all k) and SiFit, the FPR increases with increasing 3. SCITE
is fairly robust to changes in S with respect to the FPR.
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Figure A4: The effect of o, 3 and k (for SPHYR) on the false negative rate (FNR). For each method,
the FNR increases with increasing . On the other hand, the methods are fairly robust to changes in 3 with
respect to the FNR.
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Figure AS5: The effect of «, 8 and k (for SPHYR) on the ancestral pair recall. The ancestral pair recall
is the fraction of pairs of ancestral character states of the simulated tree 7™ that are retained as such in the
output tree 7'. For this measure, the methods are fairly robust to changes in « and 5. Observe that £ = 0
performs worse than k£ = 1 and k£ = 2 for SPHYR, illustrating the necessity of allowing character loss.
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Figure A6: The effect of o, 5 and k (for SPHYR) on the incomparable pair recall. The incomparable
pair recall is the fraction of pairs of incomparable character states of the simulated tree 7™ that are retained
as such in the output tree 7. For this measure, the methods are fairly robust to changes in « and 3.
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Figure A7: The effect of «, 5 and k (for SPHYR) on the clustered pair recall. The clustered pair recall
is the fraction of pairs of clustered character states of the simulated tree 7" that are retained as such in the
output tree 7T'. For this measure, the methods are fairly robust to changes in « and .
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Figure A8: The effect of o, 5 and %k (for SPHYR) on the run time. SiFit and SCITE are Markov-chain
Monte Carlo methods, and the run time of these methods is not affected by « and 3. In contrast, the run
time of SPHYR increases with increasing 8 and k. On the other hand, the run time for SPHYR increases
with decreasing «.
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Figure A10: SCITE output tree TsciTr reported by Leung ef al. (2017). Edge labels are placed to the

right of each edge. Red leaves form the metastatic clade. Blue leaves are additional cells that SPHYR infers
to be part of this clade.
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Figure A11: SiFit output tree Tg;r;; with « = 0.0152 and 8 = 0.0789. Edge labels are placed to the right
of each edge. 15 SNVs on this tree have undergone parallel evolution, and 14 have been lost (prefixed by

6_’)‘
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Figure A12: SPhyR output tree Tspyyr With s = 10,7 = 15, o = 0.0152 and $ = 0.0789. Edge labels
are placed to the right of each edge. No SNVs on this tree have undergone parallel evolution, and 14 have
been lost (prefixed by ‘~’). Red leaves correspond to cells that form the metastatic clade in Tspnyr. Blue
leaves correspond to cells that SPHYR infers to also be part of the metastatic clade. With the exception of
PD_40, these cells originate from the metastatic anatomical site and were designated by Leung et al. (2017)
as metastatic diploid (MD).
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