
Fig. S1: Average silhouette width indicates no separation between the transcriptomes of the 

CMS and CRIS subtypes, when evaluated across different dissimilarity metrics. A) Average 

silhouette widths indicate that there is no separation between the CRIS subtypes in our 18 

datasets, as well as the additional CRC xenograft dataset (GSE76402) and CRC cell line dataset 

(GSE59857). Dissimilarity is calculated using the stroma free 565 CIRS signature genes in [1]. 

This panel is the CRIS equivalent of Figure 2A. B) The lack of separation between subtypes is 

consistent when evaluated using different dissimilarity metrics for both CMS and CRIS 

subtypes. 



Fig. S2: Subtypes reported by the Consortium visually show little to no separation in the 
top four PCs in all 18 datasets. 

  



 

 

Fig. S3: Breast cancer patients’ transcriptome visually form distinct subtypes (clusters) in 

the first four PCs with respect to subtype assignment [2]. This is in contrast against CRC 

patients.  

 

  



Fig. S4: Examination of transcriptome discreteness on datasets with unsupervised 

clustering. Measure of discreteness (y-axis) was evaluated on the top 3000 most variable genes 

(green), or the 565 CRIS signature genes (red), across different number of clusters (x-axis). 

Prediction strength, gap statistic, and average silhouette width are evaluated for each dataset 

when clustered to 2-8 clusters. For gap statistic and average silhouette width, results from k-

medoid clustering was evaluated; for average silhouette width, k-medoid, non-negative matrix 

factorization, and consensus hierarchical clustering were evaluated. Strong evidence for discrete 

classes would be supported by the peaking of the statistics at a particular number of clusters 

(especially, given the CMS and CRIS subtype claims, at 4 or 5 clusters), which was absent in 

these results. Additional notes: 1) results for CRIS signature genes also include two additional 

CRC xenograft and cell line datasets; 2) difference in gap statistic is mostly driven by sample 

sizes; the larger the number of samples clustered, the higher the statistic is. Error bars indicate 

standard errors. 

 

 

  



Fig. S5: Steps carried out in this study for the identification of continuous subtype scores 

for CRC. 

Training Data

PCA on each dataset

Loadings for top 20 PCs in each dataset

Correlate loading vectors across datasets

Generate network based on |r| > 0.5

Find clusters within the loading network

"Average" loading for each cluster

"Average" loadings for each cluster could be
used to assign scores to new patients, each

cluster giving one new score

Compare patients using the 2 subtype scores

Validate these scores in validation sets. 
Two are successfully validated (PCSS1 and PCSS2); 

they represent robust, continuous ways 
of differentiating patients than discrete subtypes.



Fig. S6: PCSS1 and PCSS2 are validated in both training and validation datasets, but not 

in datasets with normal tissues only, randomly selected PCs, or “randomized” datasets 

obtained by permuting expressions for each gene. The validation of each continuous score in 

a dataset is quantitatively represented by the highest absolute correlation between that score’s 

average loading vector and those for the top eight PCs of the dataset (Methods: Validation of 

continuous subtype scores). The permuted datasets have the weakest correlations with PCSS1 

and PCSS2 because they were derived by permuting expression values for each gene 

independently, thus breaking any structures there might be in the transcriptome. 

 

  



Fig. S7: Pearson correlations of “pseudo”-continuous scores with PCSS1 and PCSS2 

exceed 0.9 even with only the top ~200 genes with high absolute loadings, suggesting in 

practice the top genes can be used as signatures to assign continuous scores in place of the 

transcriptome. Error bars indicate 95% confidence intervals. The correlations were taken 

average across the entire 18 data sets. 
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Fig. S8: Transcriptional profiles of MSI gene signatures corresponds strongly to MSI 

status, but do not cluster discretely. A) PCSS1 and PCSS2 form a continuous space that 

strongly correlate with, but do not separate MSI status. B) Silhouette width provides no evidence 

for discrete separation of the transcriptional profiles of MSI and MSS patients on a MSI gene 

signature transcriptomes, as provided in [3]. Boxplots show the distribution of silhouette widths 

of all samples in each dataset, whereas diamonds mark out average silhouette widths. 

  



Fig. S9: PCSS1 and PCSS2 further differentiate prognostic in high-risk CMS4 subtype. A) 

For CMS4 patients, those with high PCSS1 or PCSS2 (defined as either score being greater than 

its upper-quartile) have significantly worse survival through meta-analysis Points and error bars 

in the figure indicate log hazard ratios and confidence intervals within individual study, as well 

as the aggregated results from meta-analysis (“RE Model”). B-C) Independently, high PCSS1 

(PCSS1 greater than upper-quartile) and high PCSS2 (PCSS2 greater than upper-quartile) are 

also associated with worse prognosis in CMS4 patients. D) For CRIS-B patients, high PCSS1 

(PCSS1 greater than median) is associated with worse survival, but the effect is not statistically 

significant. 
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Fig. S10: Correlations between the high risk discrete CRIS-B subtype and continuous 

scores are consistent across studies and stromal content. The log odds-ratios of regressing 

CRIS-B subtype on PCSS1 (left) and PCSS2 (right) across studies are visualized as forest plots. 

The effect sizes are consistent across all 18 bulk tissue studies, and importantly, also across the 

xenograft dataset (GSE76402) and CRC cell line dataset (GSE59857). The other CRIS subtypes 

also have consistent correlations with PCSS1/2 (Supplemental Table 6). 

 

  



Fig. S11: Same as for CMS, continuous scores are more closely associated with molecular 

and clinical/pathological variables than CRIS subtypes. This figure is the CRIS equivalent to 

the results included in Figure 4C. Likelihood ratio tests were used to compare the full model, 

containing both CRIS subtype and score as predictors, to a simplified model containing only 

CRIS (left) or score (right) as predictor. Test results for different datasets (p-values) are 

represented by points in the box plots. Interpretations for p-values are the same as in Figure 4. 

  



 

Fig. S12: PCSS1 and PCSS2 are distributed unimodally (panel A), and visually don’t 

separate the CMS subtypes (B), as quantitatively evidenced by silhouette width (C). A) 2-

dimensional density contours show that the joint distribution of PCSS1 and PCSS2 is unimodal. 

B) PCSS1 and PCSS2 visually don’t separate CMS subtypes. C) Average silhouette widths on 

PCSS1&2 (calculated using Euclidean distance) indicate no separation between the subtypes. 

Error bars indicate standard errors. 
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