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Supplementary Figure 1. Enolase expression or activity are unchanged in MCT-rat PH model.

(A) Whole lung tissues were isolated from MCT-induced PH rats and Western blotting was used to measure the level of

enolase. (B) Normalized quantification of protein and (C) the mRNA level demonstrate the expression level of ENO1, ENO2,

and ENO3 in whole lung from MCT treated rat PH model. (D) the enolase activity in whole lung from MCT treated rat PH model

(n=4). Data represent the mean ± SEM. Student t test and one-way ANOVA were used to compare two and multiple groups.

Bonferroni posttests were carried out after ANOVA.
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Supplementary Figure 2. ENO1 was elevated in the lungs of hypoxia-induced PH mice and SuHx-induced PH rats.

(A) Immunohistochemistry of ENO1 in the lung sections of control and hypoxia-induced PH mice (Scale bars, 50 μm). (B)

Immunohistochemistry of ENO1 in the lung sections of control rats, SuHx-induced PH rats, and MCT-induced PH rats (Scale

bars, 100 μm).

A

B

Normoxia-mouse Hypoxia-mouse

CTRL-rat SuHx-rat MCT-rat



PEP in mouse whole lung
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Supplementary Figure 3. PEP level is elevated in the whole lung tissue of hypoxia-induced PH mice.

PEP levels were measured in the whole lung tissue of hypoxia-induced PH mice and the control mice (n=4, **P<0.01).

Data represent the mean± SEM. Student t test were used to compare two groups.



PEP in hPASMC
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Supplementary Figure 4. ENOblock inhibits the enolase activity in PASMCs.

(A)We treated PASMC with 10 μM ENOblock for 8 h and measured the enolase activity (n=5). (B) We treated PASMC

with 10 μM ENOblock, exposed them to normoxia or hypoxia for 8 h, and measured PEP levels in cell lysates (n=3-4).

*P<0.05, **P<0.01). Data represent the mean ± SEM. Student t test and one-way ANOVA were used to compare two

and multiple groups. Bonferroni posttests were carried out after ANOVA.
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Supplementary Figure 5. ENO1 overexpression induces PEP levels in PASMC.

PASMCs were transfected with pCMV3-ENO1-GFP or control plasmid (GFP). 48 h after transfection, cells were collected

and the intracellular PEP levels were measured (n=4-5, *P<0.05). Data represent the mean ± SEM. Student t test were

used to compare two groups.
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Supplementary Figure 6. The activation of the AMPK-Akt pathway is independent of PEP in PASMC.

(A) PASMCs were treated with 500 µM or 2 mM PEP for 24h, and the intracellular PEP level were measured

afterwards (n=5, per group), **P<0.01, n.s. = non-significance. (B) PASMCs were treated with 2mM PEP for different

periods of time and the levels of p-AMPKα and p-Akt were measured by Western blotting in the cell lysate. Data

represent the mean ± SEM. Student t test and one-way ANOVA were used to compare two and multiple groups.

Bonferroni posttests were carried out after ANOVA.
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Supplementary Figure 7. ENO1 is responsible for the sustained activation of AMPK-Akt-GSK3β axis during hypoxia.

(A) PASMCs were treated with hypoxia for different periods of time, and the key proteins in the ENO1-AMPK-Akt-GSK3β

cascade were measured by Western blotting in the cell lysate. (B) A diagrammatic sketch indicating the mechanism of

transient and continuous activation of ENO1-AMPK-Akt-GSK3β cascade during hypoxia. (C) Wild-type (WT), AMPKα1–null,

and AMPKα2–null MEFs were treated with hypoxia for 30 min, and the key proteins in the AMPK-Akt cascade were measured

by Western blotting.
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Supplementary Figure 8. The AMPK-Akt pathway is activated in APAH-PASMC independent of PEP.

(A) Western blotting images and (B,C) normalized quantification (to Actin or its total corresponding kinase, respectively) of

AMPK/Akt pathway phosphorylated proteins in PASMC isolated from control donors and PAH patients (n=4-5 per group,

*P<0.05, **P<0.01). (D) The intracellular PEP levels were measured in these PASMC samples. Data represent the mean ±

SEM. Student t test and one-way ANOVA were used to compare two and multiple groups. Bonferroni posttests were carried out

after ANOVA.
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Mitochondrial stress test
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Supplementary Figure 9. Silencing of ENO1 reverses hypoxia-induced metabolic shift in PASMC.

PASMC (shCTRL and shENO1) with a relatively long-term of hypoxia (2% O2) for 48 h. After the treatment, we seeded the cells

in the plates for 4 hours to allow the cells attached to the plate and formed a monolayer. DMOG treatment group was also

included as a positive control, and the DMOG was kept in the cultural media during the tests. (A) The OCR levels were

measured using the mitochondrial stress test (n=4-5 per group), and (B) the ECAR levels were measured using the glycolysis

stress test (n=4-5 per group), showing the effects of hypoxia and DMOG. (C) The OCR levels measured by the mitochondrial

stress test and (D) the ECAR levels were measured using the glycolysis stress test, showing the effects of ENO1 silencing on

hypoxia-mediated metabolic shift. The (E) basal respiration level, (F) basal glycolytic level, and (G) basal OCR/ECAR were

calculated accordingly. *P<0.05, **P<0.01, n.s. = non-significance. Data represent the mean ± SEM. Student t test and one-

way ANOVA were used to compare two and multiple groups. Bonferroni posttests were carried out after ANOVA.
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Supplementary Figure 10. ENO1 mediates the metabolic shift to glycolysis partly via Akt activation in PASMC.

PASMC was transfected with pCMV3-ENO1-GFP. After 48 h, we seed the cells in the plates and treated with 1 μM GSK690693

for 12 h, followed by the Seahorse tests. (A) The OCR levels were measured using the mitochondrial stress test (n=5-8 per

group), and (B) the ECAR levels were measured using the glycolysis stress test (n=5-8 per group) showing the effects of ENO1-

overexpression and Akt inhibition on cell metabolism. The (C) basal respiration level, (D) basal glycolytic level, and (E) basal

OCR/ECAR were calculated accordingly. **P<0.01, n.s. = non-significance. Data represent the mean ± SEM. Student t test and

one-way ANOVA were used to compare two and multiple groups. Bonferroni posttests were carried out after ANOVA.
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Supplementary Figure 11. Silencing of ENO1 promotes β-oxidation and glutamine consumption level in PASMC.

(A) PASMC were kept in glucose-depleted medium contains Oleate as energy source for 1h before the basal O2 consumption

levels were measured using the Seahorse system. (B) PASMC were cultured in starved medium and the glutamine

concentration in cell culture media after different incubation time were measured thus the glutamine consumption levels can

be calculated. *P<0.05. Data represent the mean ± SEM. Student t test and one-way ANOVA were used to compare two and

multiple groups. Bonferroni posttests were carried out after ANOVA.
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Supplementary Figure 12. ENOblock treatment inhibits enolase activity in the mouse whole lung tissue.

The enolase activities were measured in the lysate of whole lung tissues isolated from the ENOblock treated mice in

both normoxic and hypoxic conditions (n=3, *P<0.05). Data represent the mean± SEM. Student t test and one-way

ANOVA were used to compare two and multiple groups. Bonferroni posttests were carried out after ANOVA.



Supplementary Figure 13. Myocardin is down-regulated in APAH-PASMC.

(A) Western blotting images and (B) normalized quantification of SMC contractile proteins (Myocardin, MHC, Calponin,

and SMA,) in PASMCs isolated from control donors and PAH patients (n=4-5 per group, *P<0.05, **P<0.01). Data

represent the mean ± SEM. Student t test and one-way ANOVA were used to compare two and multiple groups.

Bonferroni posttests were carried out after ANOVA.
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Supplementary Figure 14. Inhibition of ENO1 reversed Sugen/hypoxia-induced PASMC de-differentiation in rats.

Immunohistochemistry staining of Myocardin and MHC in a pulmonary artery of lung sections of Sugen/Hypoxia-induced

PH rats and treated with ENOblock (Scale bars, 100 μm).
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Supplementary Figure 15. Silencing of ENO1 simultaneously inhibits the AMPK/Akt pathway and elevates Myocardin

levels and Caspase 3 cleavage in PASMC.

(A-C)Three lines of PASMC isolated from each group of control donors and PAH patients were transfected with lentivirus

containing an shRNA against ENO1. The p-ACC, p-PRAS40, Myocardin levels and Caspase 3 cleavage were measured by

Western-blotting and quantified in D-G, respectively. (H) The cell proliferation and (I) cell death level were measured by

the BrdU assay and LDH assay. n=3 per group, *P<0.05, **P<0.01. Student t test and one-way ANOVA were used to

compare two and multiple groups. Bonferroni posttests were carried out after ANOVA.
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Supplementary Figure 16. Cell proliferation between IPAH-PASMC and APAH-PASMC. 

Human PASMC samples (IPAH PASMC, n=13, APAH PASMC, n=6) were subjected to (A) cell cycle 

analysis and the (B) BrdU incorporation assay. 
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Supplementary Figure 17. Cell proliferation between human PASMC purchased from Lonza and 

normal PASMC from donors. 

Human PASMC purchased from Lonza and samples from control donor (n=8) were subjected to (A) 

cell cycle analysis and (B )the BrdU incorporation assay. 
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Supplementary Figure 18. Uncropped Western blots for Figure 1A, E, and H. 
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Supplementary Figure 19. Uncropped Western blots for Figure 2A, E, F, J, K, and N. 
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Figure 3A Figure 3E
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Supplementary Figure 20. Uncropped 

Western blots for Figure 3A, E, and i. 



Figure 4A

Supplementary Figure 21. Uncropped Western blots for Figure 4A, and B. 
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Figure 4C

Supplementary Figure 22. Uncropped Western blots for Figure 4C. 
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Figure 4E

Supplementary Figure 23. Uncropped Western blots for Figure 4E. 
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Figure 5A Figure 5C
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Supplementary Figure 24. Uncropped Western blots for Figure 5A, and C. 



Figure 5D Figure 5F
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Supplementary Figure 25. Uncropped Western blots for Figure 5D, and F. 



Figure 5G

Supplementary Figure 26. Uncropped Western blots for Figure 5G. 
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Figure 5H

Supplementary Figure 27. Uncropped Western blots for Figure 5H. 
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SFig. 1A

Supplementary Figure 28. Uncropped Western blots for Supplementary Figure 1A. 
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SFig. 6B

Supplementary Figure 29. Uncropped Western blots for Supplementary Figure 6B. 
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SFig. 7A

Supplementary Figure 30. Uncropped Western blots for Supplementary Figure 7A. 
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SFig. 7C

Supplementary Figure 31. Uncropped Western blots for Supplementary Figure 7C. 
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SFig. 8A

Supplementary Figure 32. Uncropped Western blots for Supplementary Figure 8A. 
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SFig. 13A

Supplementary Figure 33. Uncropped Western blots for Supplementary Figure 13A. 

Myocardin

MHC

Calponin

SMA

Actin

40

55

40

55

35

40

150

250

150

250



SFig. 15A

Supplementary Figure 34. Uncropped Western blots for Supplementary Figure 15A. 
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SFig. 15B
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Supplementary Figure 35. Uncropped Western blots for Supplementary Figure 15B. 
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SFig. 15C

Supplementary Figure 36. Uncropped Western blots for Supplementary Figure 15C. 
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control 

subjects IPAH APAH *

N 5 6 6

Age, y NA 38.2 (10.4) 36.5 (20.7)

Female/male 3/2 4/2 4/0

mPAP, mmHg NA 52.8 (10.2) 55.6 (26.9)

PVR, wood units NA 11.3 (3.8) 9.5 (2.5)

6MWD, m NA 386.7 (71.4) 327.4 (177.8)

Race** 5W 2W/1A/3B 2W/1A/1U

Supplementary Table  1. Baseline characteristics of PAH patients whose samples were obtained from PHBI.

Data are shown as mean (SD).
*: Information of 2 patients are unavailable.
**: W for White, B for Black or African American, A for Asian, and U 
for unknown.  



Primer ID Sequence (5’-3’)

hRPL19-S ATCATCCGCAAG CCTGTG

hRPL19-A TGA CCTTCTCTG GCATTC G

mRPL19-S AGC CTG TGA CTG TCC ATTC

mRPL19-A ATC CTC ATC CTT CTC ATC CAG

rRPL19-S AGC CTG TGA CTG TCC ATT C

rRPL19-A ATC CTC ATC CTT CGC ATC C

hENO1 -S ATCTCACAGTGACCAACCCA

hENO1-A TGGTTGACTTTGAGCAGGAG

hENO2-S CTGTGGTGGAGCAAGAGAAA

hENO2-A TGGATTTGTTCTCAGTCCCA

hENO3-S CCACGGGTATCTATGAGGCT

hENO3-A CAGCCTTCAGGACTCCTTTC

rENO1-S ATCCTTAGAATCGAGGAGGAGC

rENO1-A TCTCCGGTCCATGCCTTACT

rENO2-S GTACGGCAAGGATGCCACTA

rENO2-A GCTCCAAAGCTTCGCTGTTC

rENO3-S TGGAGAACAATGAGGCCCTG

rENO3-A GCCACATCCATGCCAATCAC

mENO1-S AGCGATCCTACTGCCAGAAAT

mENO1-A GATCGACCTCAACAGTGGGA

mENO2-S TCATGAGAATTGAGGAAGAGCTGG

mENO2-A GTTCAGGCAAGCGGGGTT

mENO3-S AAGGAAGGCTTTCCAGCTCCA

mENO3-A AAGAGTGGACAGTTGATCCCTT

Supplementary Table 2. qPCR primers used in this study


