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1. The acoustic impedance of the 1-dimentional membrane 

In this paper, the 1-dimentional (1-D) membrane is modeled as a thin plate, which is 

characterized by its mass density 
mρ , Young’s modulus E, Poisson’s ratio  , thickness d and width 

l. The transverse displacement of the 1-D membrane   satisfies the flexural wave equation1 
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where 2

m m= k D and m m   d , 1 2  p p p is the pressure difference across the membrane, 

1p  and 2p  are the acoustic pressure on the both sides of the 1-D membrane. D represents the 

flexural rigidity, which is given by 
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According to factorization method, Eq. (1) can be rewritten as 
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Here, the 1-D membrane is placed along the y-axis and clamped at its edges to a straight pipe, as 

shown in Fig. 1s. Assuming a uniform pressure distribution across the membrane, the following 

general solution for the transverse displacement ( ) y  can be obtained 
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The 1-order differential coefficient of ( ) y  can be expressed as 
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where A, B, E and F represent the four constants. As shown in Fig. 1s, there are four boundary 
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conditions corresponding to the 1-D clamped membrane: ( ) 0  y l , | 0


 y l

d

dy
, ( 0) 0  y , 

and 0| 0
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d
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. By substituting these four boundary conditions into Eq. (4), which is given by 
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Equation (6) can be rewritten as 
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Here, since the coefficient  4

mp k D  can be easily eliminated with normalization, we will assume 

A, B, E, F as the non-dimensional coefficient in the following discussion. Then from Eq. (7), we can 

obtain 
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By substituting Eq. (8) into Eq. (7), which gives 
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Equation (9) can be rewritten as 
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Therefore, the four constants of Eq. (4) can be expressed as 
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where m
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2 msin( )b k l . Generally, the acoustic 

impedance of the 2-dimentional circular membrane can be defined as  2
am =  SZ pdS j S , In 

our 1-D membrane, the cross-sectional area of the membrane S is the width of the 1-D membrane l. 

Therefore, the acoustic impedance of the 1-D membrane is given by  
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where (1 ) ( )  ll y dl is the average transverse displacement over the membrane surface. Here, 

assuming a uniform pressure distribution over the membrane, by substituting Eq. (4) into Eq. (12), 

the acoustic impedance of the 1-D membrane can be given by 
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where the expressions of A, B, E and F have been presented in Eq. (11). Therefore, the effective 

acoustic impedance of the 1-D membrane can be derived from Eq. (13), and the membrane provides 

an effective acoustic reactance to shift the phase of the incident acoustic wave over the whole 2  

range and realize the highly efficient transmission.  
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Figure 1s. 1-dimentional membrane clamped to a straight pipe. Red solid line refers to the 1-dimentional 

membrane. 
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