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SUPPLEMENTARY METHODS

SUBJECTS

Two independent samples with multi-paradigm fMRI data were used in this study.
The discovery sample (the NAPLS-2 sample) consisted of 182 subjects at CHR for
psychosis (including 19 subjects who converted to psychosis during clinical
follow-up (CHR-C, age 17.63 + 3.37 years, 12 males) and 163 subjects who did not
convert (CHR-NC, age 18.98 + 4.20 years, 93 males)) and 120 healthy controls (HC,
age 20.10 * 4.73 years, 70 males) as part of the NAPLS-2 project ! recruited from
eight study sites across the United States and Canada: Emory University, Harvard
University, University of Calgary, University of California Los Angeles, University
of California San Diego, University of North Carolina Chapel Hill, Yale University,
and Zucker Hillside Hospital. The included subjects completed a battery of fMRI
scans with five different paradigms (resting state, working memory, episodic
memory encoding, episodic memory retrieval, emotional face processing) at the
initial recruitment point. All participants provided written informed consent for
the study. The protocol and consent forms were approved by the institutional

review boards at each site.

The participants received the Structured Clinical Interview for Diagnostic and
Statistical Manual of Mental Disorders (DSM-IV 2) and the Structured Interview for
Prodromal Syndromes 3 at baseline and at 6-month intervals up to approximately
2 years, and at the point of conversion to psychosis by trained clinicians. At each
assessment point, prodromal symptom severity was quantified using the Scale of
Prodromal Symptoms (SOPS 3). The general exclusion criteria included a prior
history of neurological disorders, substance dependency in the last six months and
IQ < 70 (assessed by the Wechsler Abbreviated Scale of Intelligence ). The CHR
subjects met the SIPS criteria for a prodromal risk syndrome 3 at baseline after
excluding individuals who had ever met DSM-IV criteria for a psychotic disorder 2.
The converters met DSM-IV criteria for an Axis-I psychotic disorder or had at least
one fully psychotic symptom at follow-up. Healthy controls were excluded if they
met the criteria for a psychotic disorder or prodromal syndromes, or had a first-
degree relative with mental illness. Sample details are provided in Supplementary
Table 1.



The verification of our findings was performed in an independent case-control

sample (the CNP sample). This sample was drawn from the public dataset (UCLA

CNP study °, https://openfmri.org/dataset/ds000030/) consisting of 50 patients
with schizophrenia (SZ), 49 patients with bipolar disorder (BD), 43 patients with
attention-deficit hyperactivity disorder (ADHD) and 130 healthy controls (HCs).
The subjects were recruited from the greater Los Angeles area and provided
written informed consent following procedures approved by the Institutional
Review Boards at UCLA and the Los Angeles County Department of Mental Health.
The participants underwent part or all of the seven fMRI paradigms employed in
the cohort (resting state, risk taking, working memory, episodic memory encoding,
episodic memory retrieval, stop signal, task switching). Seven HCs and three
patients with ADHD were excluded from the analysis due to the loss of T1 images
or insufficient fMRI data available (less than two paradigms, for a full exclusion
list see Supplementary Table 6), leaving a total of 262 subjects: 50 SZ (age 36.46
8.88 years, 38 males), 49 BD (age 35.29 + 9.02 years, 28 males), 40 ADHD (age
32.05 £ 10.41 years, 21 males) and 123 HCs (age 31.53 * 8.80 years, 65 males).

Sample details are provided in Supplementary Table 3.

Diagnoses for the three disorders in the sample were based on the structured
clinical Interview for DSM-IV 2 and the Adult ADHD Interview °. Any patients who
met criteria for more than one diagnosis were excluded. Healthy subjects were
excluded if they had a life-time diagnosis of a major Axis-I disorder, substance
abuse or significant medical illness. For all participants, verbal 1Q was quantified
using the vocabulary subtest of the Wechsler Adult Intelligence Scale (WAIS 7), and
performance IQ was measured using the matrix reasoning subtest of the WAIS.

See Poldrack et al. > for a detailed sample description of this public dataset.

FMRI PARADIGMS AND DATA ACQUISITION

The NAPLS-2 sample included five fMRI paradigms: an eyes-open resting state
paradigm, a verbal working memory task, a paired-associates memory encoding
task, a paired-associates memory retrieval task and an emotional face matching

task. Details on these paradigms have been fully described in our previous work &
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2,10 All data were acquired from 3T MR scanners (Siemens Trio, GE HDx and GE
Discovery) located at eight study sites using gradient-recalled-echo echo-planar
imaging (GRE-EPI) sequences with identical parameters at all eight sites. The
working memory and face matching tasks were scanned with TR = 2.5 s while the
other paradigms used TR = 2 s. All other parameters were the same across all
paradigms (TE = 30 ms, 77 degree flip angle, 30 4-mm slices, 1mm gap, 220 mm
FOV).

The CNP dataset included seven fMRI paradigms: an eyes-open resting state
paradigm, a balloon analog risk taking task, a spatial working memory task, a
paired-associate memory encoding task, a paired-associate memory retrieval task,
a “Go-No Go” stop signal task and a “color-shape” task-switching task. Details on
these paradigms see Poldrack et al. >. The data were collected from 3T Siemens
Trio scanners located at UCLA using the same GRE-EPI sequence: TR = 2s, TE = 30
ms, 90 degree flip angle, 34 4-mm slices, 192 mm FOV.

DATA PREPROCESSING

Both samples followed the same data preprocessing pipelines implemented in the
Statistical Parametric Mapping software (SPM12,

http://www. fil.ion.ucl.ac.uk/spm/software/spm12/). In brief, all images were

slice-time corrected, realigned for head motion, registered to the individual T1-
weighted structural images, and spatially normalized to the Montreal Neurological
Institute (MNI) template. Finally, the normalized images were spatially smoothed

with an 8 mm full-width at half-maximum (FWHM) Gaussian kernel.

NETWORK CONSTRUCTION AND PRINCIPAL COMPONENT ANALYSIS

The network analysis followed previously published procedures 10.11.12,13 hased
on a functionally defined brain atlas reported by Power et al 1. Of note, the original
Power atlas with 264 nodes does not include nodes in the bilateral hippocampus,
bilateral amygdala and bilateral ventral striatum. Since these regions are of
particular interest in clinical neuroscience and in psychotic disorders, we

additionally included these nodes based on previously published coordinates
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from meta-analyses 15 1617 thereby increasing the total number of nodes to 270
(one node per region and hemisphere). This expanded Power atlas has also been

used in prior work 10,12, 18,

We extracted the mean time series of each of the 270 nodes from the preprocessed
images. The extracted time series were further corrected for mean effects of task-
evoked coactivations (for task data), white matter (WM) and cerebrospinal (CSF)
signals, 24 head motion parameters (6 translation and rotation parameters, their
first derivatives, and the square of these 12 parameters), and frame-wise
displacement (FD), and then temporally filtered (rest data: band-pass 0.008-0.1
Hz; task data: high-pass 0.008 Hz). Pairwise correlations were performed between
the noise-corrected, filtered time series of each of the 270 nodes, yielding a 270 x
270 connectivity matrix for each subject during each paradigm. All connectivity
matrices for the same subjects were then vectorized, mean centered and entered
into a principal component analysis (PCA) using singular value decomposition
(SVD). Essentially, the PCA decomposes the original connectivity matrices into a
set of principal components (PCs) that are orthogonal to each other. Each
generated component is a linear combination of original matrices, and the
components are organized in the way such that the first PC accounts for the largest
variance in the original data. In our data, the PCA yielded a total of five PCs, where
the first PC scores represent the shared connectivity patterns that explain the
most variance across all paradigms. We extracted these first PC scores for each

subject for further statistical analysis.

NETWORK-BASED STATISTIC

We first aimed to identify connectome-wide state-independent changes that can
potentially predict psychosis. To this end, network-based statistic (NBS) was
employed to probe connectivity differences between the three outcome groups in
the NAPLS-2 sample. The whole procedure followed the previously published
work 11 12,19 In brief, NBS controls for cluster-level family-wise error (FWE)
occurred during the entry-wise matrical comparisons and offers a larger power
than mass-univariate tests on independent entries. This was done by first applying
an initial linear regression model on each of the N(N-1)/2 = 36,315 (N = 270)
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edges in the individual-specific PC matrices, with group modeled as regressor of
interest. Notably, since the PCA approach essentially extracts the common
variance that is shared across paradigms, it is likely to capture signals that are
associated with subjects’ demographic, head motion, and/or medication status.
Therefore, we strictly controlled for these variables in the regression model by
including age, sex, IQ, site, mean FD across all paradigms and antipsychotic dosage
(measured as chlorpromazine equivalent dosage per day) as regressors. This step
generated a P-value matrix representing the probability of accepting the null
hypothesis on the group effect for each edge. All edges with P values < 0.0005 were
then thresholded into a set of suprathreshold links, and connected clusters within
this set were identified using breadth first search 20. The significance of the
identified clusters was subsequently tested by 10,000 permutation testing, where
subjects were randomly reallocated into the three groups and the maximal size of
the identified cluster was recalculated during each permutation. The corrected P
value for the cluster was determined by the proportion of the derived cluster sizes
in the permutation distribution that were larger than the observed group

difference.

SUPPLEMENTARY ANALYSIS WITH THE SUBSAMPLE

To further verify that the observed network changes were not driven by
demographical, motion and medication differences between groups, we tested the
significance of the identified network in an unmedicated and matched subsample.
The subsample was selected using an iteration-based approach. First, all subjects
that had received any antipsychotic medications or had a mean FD > 0.5 mm were
excluded. The remaining subjects in the converter group (11 subjects) were used
as the target sample and the remaining subjects in the non-converter and control
groups were randomly selected to match this target sample in terms of age, sex,
IQ and head motion. The whole procedure was iterated by 10,000 times, and the
optimal subsample was chosen for the non-converter and control groups as
having the lowest deviation of these measures from the converter group during
iterations. An analysis of covariance (ANCOVA) model was subsequently
performed, where the mean values of the identified network were extracted from

the PC matrices for all selected subjects and entered into the model as dependent



variable and group as independent variable, covarying for age, sex, site, IQ and

head motion. Significance was set at P < 0.05.

ASSOCIATION WITH GRAY MATTER VOLUME

To examine whether the observed functional changes would relate to their
structural differences, we also analyzed subjects’ high-resolution T1-weighted
imaging data in the NAPLS-2 sample. The images were processed using the
standard pipeline implemented in the FreeSurfer software (version 5.3,

https://surfer.nmr.mgh.harvard.edu/). In brief, surface-based cortical

reconstruction was performed that includes segmentation of the white matter,
tessellation of the gray/white matter boundary, and inflation of the folded
tessellated surface in each individual 2122 23, Cortical thickness measures were
extracted by calculating the shortest distance from each point on the gray/white
boundary to the pial surface at each vertex 24. Cortical volumes were subsequently
calculated as the multiplication of cortical thickness and cortical area at each
vertex. The subcortical volumes labeled using an automated, atlas-based,

volumetric segmentation procedure 25.

For all involved cortical, subcortical and cerebellar regions in the identified
network, we calculated their mean volumes from the processed structural data
and correlated these measures with the mean values of the network in the PC
matrices using Pearson correlation. FWE correction was used to control for false

positives in the multiple comparison.

VERIFICATION OF FINDINGS IN THE CNP SAMPLE

As a proof of concept, we further tested the presence and specificity of the
observed network changes in the CNP sample. Here, the data processing for the
CNP sample followed exactly the same procedures as that for the NAPLS-2 sample.
After computing the first PC scores from the employed paradigms for each
individual, the same network that showed significant group effect in the NAPLS-2
sample was extracted from each individual’s PC matrix in the CNP sample and was

further averaged to generate a subject-specific metric. ANCOVA model was used
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to compare the derived metrics between the four groups, where age, sex, [Q, mean
FD across all paradigms and antipsychotic dosage were included in the model as
covariates. For detected group main effect, post-hoc analyses were performed for
pair-wise comparisons between each of the two groups and significant post-hoc
findings were considered as P < 0.05 after Bonferroni correction. Subsample
selection followed the similar procedure as described above, where all subjects
with FD > 0.4 mm, performance 1Q < 7 or verbal IQ < 5 were removed. The
remaining subjects in the converter group (27 subjects) were used as the target
sample to match the other three groups by 10,000 iterations, generating an

optimally matched subsample for the CNP data.

VALIDITY OF USING TASK REGRESSION IN THE STUDY

The task regression step in the analysis of task-related data raises the question as
whether the residual data would simply reflect “resting-state” network structure,
in which case the claim of “cross-paradigm connectivity” would be invalid. To
examine the validity of this processing step, we performed two supplementary
analyses. First, we tested the similarity between the functional connectivity
matrices derived from different paradigms and different processing methods (i.e.,
rest data vs task data without task regression, rest data vs task data with task
regression, task data without task regression vs task data with task regression) by
computing their Pearson correlations. If the task regression results in a
residualized component resembling the resting state, a close similarity between
rest data and task data with task regression would be found, which should be
higher than the similarity between task data with task regression and task data
without task regression. However, the results showed exactly the opposite - the
task data with task regression and task data without task regression were highly
correlated (r > 0.97), and were more similar to each other than task data vs rest
data (r < 0.59, Supplementary Fig 5). These results support the argument that task

regression would not drive the residual data to resemble the resting state.

Second, to assess whether the task regression step would change the main
hyperconnectivity findings, we reran the entire analysis using the task data

without task regression. Our analysis revealed a very similar network covering the
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cerebellum, thalamus and cerebral cortex (Prwe = 0.004, Supplementary Fig 6),
suggesting that the observed cerebello-thalamo-cortical hyperconnectivity is not

influenced by the task regression procedure.

SUPPLEMENTARY DISCUSSION

DIFFERENCES BETWEEN CURRENT WORK AND PREVIOUS WORK IN PSYCHOSIS
CHR

The current work differs from previous work (in particular Anticevic et al. 26) in
terms of both methods and interpretation. First, the analysis in Anticevic et al. was
performed on the resting-state data only, and thus the resulting network changes
are more likely to reflect the most significant abnormality in CHR cases during rest.
In contrast, the current work aimed to investigate the most consistent functional
changes in CHR cases, regardless of paradigm. As a consequence, we interpret the
results as a reflective of “state-independent” change rather than a significant
change during any specific paradigm. Second, Anticevic’s work was hypothesis-
driven and specifically tested the connectivity between thalamus and other parts
of the brain using the thalamus as a seed region. The current work, however,
employed a data-driven method (i.e. NBS) without any a priori hypothesis. Taken
together, work by Anticevic et al. was a verification study testing a specific
hypothesis during resting state, while the current work is an discovery-oriented

study investigating the most consistent changes in CHR independent of paradigm.



SUPPLEMENTARY FIGURES

Supplementary Fig 1. Percent of variance explained by the first PC (A) and factor
loadings for the first PC in each paradigm (B) in the NAPLS-2 sample. Almost 70%
of total variance was explained by the first PC for all three groups. No significant
group differences were found in percent of variance and factor loadings. CHR-C =
converters, CHR-NC = non-converters, HC = healthy controls, RS = resting state,
WM = working memory, EMenc = episodic memory encoding, EMret = episodic

memory retrieval, FM = emotional face matching. Error bars indicate standard

errors.
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Supplementary Fig 2. Percent of variance explained by the first PC (A) and factor
loadings for the first PC in each paradigm (B) in the CNP sample. Similar to the
NAPLS-2 sample, almost 70% of total variance was explained by the first PC for
the four groups in the CNP sample. No significant group differences were found in
percent of variance and factor loadings during the risk taking, episodic memory
encoding, episodic memory retrieval and stop signal paradigms. However, the
resting state, working memory and task switching paradigms showed a significant
difference in factor loadings between groups. RS = resting state, RT = risk taking,
WM = working memory, EMenc = episodic memory encoding, EMret = episodic
memory retrieval, SS = stop signal, TS = task switching. SZ = schizophrenia, BD =
bipolar disorder, ADHD = attention deficit hyperactivity disorder, HC = healthy

control. Error bars indicate standard errors.
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Supplementary Fig 3. Group comparisons of the identified network in the
matched subsamples drawn from the NAPLS-2 (A) and CNP (B) samples. For
NAPLS-2 subsample, all subjects with medication were removed. Similar to the
findings in the larger samples, significant group differences were present in the
matched subsamples, suggesting that the observed hyperconnectivity is not
driven by group differences in demographics, head motion and/or medication.
CHR-C = converters, CHR-NC = non-converters, HC = healthy controls, SZ =
schizophrenia, BD = bipolar disorder, ADHD = attention deficit hyperactivity

disorder. Error bars indicate standard errors.
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Supplementary Fig 4. Permutation testing on the specificity of the observed
cerebello-thalamo-cortical network. For a total of 10,000 permutations (x-axis),
none of the derived P values were significant after Bonferroni correction. In stark
contrast, the observed network (upper right dot) was highly significant even after
Bonferroni correction, suggesting the specificity of the observed network in

psychosis prediction. The red dashed line indicates the level of significance.
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Supplementary Fig 5. Similarity between functional connectivity matrices

derived from different paradigms and processing methods. The task data with task

regression and task data without task regression were highly correlated, and were

much more similar to each other than the rest data vs task data (regardless of task

regression), suggesting that task regression would not drive the residual data to

resemble the resting state. WM = working memory, EMenc = episodic memory

encoding, EMret = episodic memory retrieval, FM = emotional face matching.

Error bars indicate standard errors.
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Supplementary Fig 6. Similar cerebello-thalamo-cortical network
hyperconnectivity was found using data without task regression. SM =
sensorimotor network, VIS = visual network, AUD = auditory network, DMN =
default-mode network, FPN = frontoparietal network, CON = cingulo-opercular
network, ATT = attention network, SC-CRB = subcortico-cereballar network.
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SUPPLEMENTARY TABLES

Supplementary Table 1. Demographic and clinical details on the NAPLS-2 sample

CHR-C CHR-NC HC P value
(N=19) (N =163) (N =120)
Age (year) 17.63 + 3.37 18.98 + 4.20 20.10 + 4.73 Overall: 0.02
CHR-C vs. CHR-NC:
0.61
Sex (M/F) 12/7 93/70 70/50 0.87
1Q 108.63 + 14.10 104.71 + 15.20 109.88 + 14.93 Overall: 0.02

SOPS - Positive

SOPS - Negative

SOPS -

Disorganization

SOPS - General

Medication (%

medicated)

Medication (CPZ

equivalent dosage,

mg/day)

Head motion (mean

FD, mm)

12.47 + 2.27

9.74 + 6.14

7.32 + 3.86

7.74 + 3.97

36.84

119.87 + 180.14

0.25 + 0.15

11.27 + 3.77

10.93

-+

6.07

494 + 3.08

8.53 + 4.32

19.02

36.84 + 102.31

0.25 + 0.23

1.31 + 2.40

1.79 + 2.30

0.76 + 1.23

1.54 + 2.34

0.19 + 0.12

CHR-C vs. CHR-NC:

0.85
Overall: <0.001

CHR-C vs. CHR-NC:

0.37
Overall: <0.001

CHR-C vs. CHR-NC:

0.96
Overall: <0.001

CHR-C vs. CHR-NC:

0.001
Overall: <0.001

CHR-C vs. CHR-NC:

0.99
Overall: <0.001

CHR-C vs. CHR-NC:

0.07
Overall: <0.001

CHR-C vs. CHR-NC:

<0.001
Overall: 0.02

CHR-C vs. CHR-NC:
0.99
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Supplementary Table 2. Demographic and clinical details on the unmedicated,

demographically matched subsample drawn from the overall NAPLS-2 sample

CHR-C CHR-NC HC P value
(N=11) (N =40) (N =40)
Age (year) 18.36 + 3.78 19.32 + 3.58 19.27 + 4.72 0.78
Sex (M/F) 7/4 21/19 24/16 0.71
1Q 113.82 * 112.75 * 113.80 + 17.02 0.95
12.77 14.81
SOPS - Positive 12.82 + 2.48 11.28 + 3.22 1.03 + 1.72 Overall: <0.001
CHR-C vs. CHR-NC: 0.25
SOPS - Negative 9.18 + 7.40 10.05 + 5.50 1.69 + 2.35 Overall: <0.001
CHR-C vs. CHR-NC: 0.99
SOPS - 8.00 + 4.20 4.60 + 3.02 0.49 + 0.94 Overall: <0.001
Disorganization
CHR-C vs. CHR-NC: 0.001
SOPS - General 6.82 + 4.26 8.75 + 4.82 1.05 + 1.62 Overall: <0.001
CHR-C vs. CHR-NC: 0.39
Medication (% 0 0 0 -
medicated)
Medication (CPZ 0 0 0 -
equivalent dosage,
mg/day)
Head motion (mean  0.25 * 0.10 0.17 + 0.09 0.20 + 0.12 0.08

FD, mm)
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Supplementary Table 3. Demographic and clinical details on the CNP sample

SZ BD ADHD HC P value
(N =50) (N =49) (N =40) (N =123)
Age (year) 36.46 + 8.88 35.29 + 9.02 32.05 + 10.41 31.53 + 8.80 Overall: 0.004
SZ vs. HC: 0.01
Sex (M/F) 38/12 28/21 21/19 65/58 Overall: 0.04
SZ vs. HC: 0.01
1Q - Performance 10.04 + 2.79 13.02 + 3.01 13.45 + 2.69 13.52 + 2.77 Overall: <0.001
SZ vs. HC:
<0.001
1Q - Verbal 7.56 + 2.17 10.26 + 2.60 10.72 + 2.43 10.72 + 4.86 Overall: <0.001
SZ vs. HC:
<0.001
Head motion 0.27 + 0.13 0.19 + 0.78 0.17 + 0.07 0.15 + 0.07 Overall: <0.001
(mean FD, mm)
SZ vs. HC:
<0.001
Medication (CPZ 551.00 + 252.38 + 22.50 + - <0.001
equivalent 930.95 444.77 118.23

dosage, mg/day))
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Supplementary Table 4. Demographic and clinical details on the demographically

matched subsample drawn from the overall CNP sample

Sz BD ADHD HC P value
(N =27) (N =27) (N =27) (N =27)
Age (year) 35.93 + 8.43 36.26 + 8.29 36.19 + 10.26 35.59 + 9.33 0.99
Sex (M/F) 18/9 16/11 16/11 14/13 0.75

1Q - Performance 11.11 + 2.22 11.74 + 2.63 12.85

I+

2.75 12.70 + 2.80 0.06

1Q - Verbal 8.48 + 1.78 9.15 + 2.38 10.04 + 2.38 9.74 + 2.31 0.06

Head motion 0.22 + 0.07 0.20 + 0.08 0.18 + 0.07 0.17 + 0.09 0.16

(mean FD, mm)

Medication (CPZ 411.78 177.78

I+
I+

33.33 + - <0.001
equivalent 529.36 308.71 143.52
dosage, mg/day))
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Supplementary Table 5. The 84 edges in the identified network cluster from the
NBS analysis in the NAPLS-2 sample

Edge No. Node A Node B

1 Occipital Inf R Angular R

2 Supp Motor Area L Cerebellum R

3 Temporal Mid L Lingual R

4 Anqgular R Lingual R

5 Frontal Sup Medial R Lingual R

6 Frontal Sup Medial R Lingual R

7 Angular R Lingual R

8 Anqgular R Occipital Inf R

9 Frontal Sup Medial R Lingual R

10 Frontal Med Orb R Temporal Inf R
11 Frontal Sup Medial R Temporal Inf R
12 Temporal Mid L Fusiform R

13 Postcentral R Frontal Sup Orb R
14 Occipital Mid L Frontal Mid Orb L
15 Angular R Frontal Mid Orb L
16 Angular R Frontal Mid Orb L
17 Supp Motor Area L Cerebellum R

18 Postcentral R Cerebellum R

19 Precentral R Cerebellum R

20 Postcentral R Cerebellum R

21 Postcentral R Cerebellum R

22 Postcentral R Frontal Mid R

23 Postcentral L Frontal Mid R

24 Postcentral R Frontal Mid R

25 Rolandic Oper L Frontal Mid R

26 Rolandic Oper R Frontal Mid R

27 Postcentral R Frontal Mid R

28 Rolandic Oper R Frontal Mid Orb L
29 Frontal Sup Medial R Frontal Mid Orb L
30 Rolandic Oper R Frontal Mid Orb R
31 Postcentral R Thalamus L

32 Postcentral R Thalamus L

33 Postcentral R Thalamus L

34 Claustrum R Thalamus L

35 Rolandic Oper R Thalamus L

36 Postcentral R Thalamus L

37 Temporal Mid L Thalamus L

38 Temporal Mid R Thalamus L

39 Temporal Mid L Thalamus L

40 Temporal Mid L Thalamus L

41 ParaHippocampal L Thalamus L

42 Lingual R Thalamus L

43 Fusiform R Thalamus L
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44 Occipital Inf R Thalamus L
45 Lingual R Thalamus L
46 Temporal Inf R Thalamus L
47 Occipital Mid L Thalamus L
48 Occipital Mid L Thalamus L
49 Occipital Inf L Thalamus L
50 Precentral R Thalamus L
51 Temporal Mid L Thalamus L
52 Temporal Mid L Thalamus L
53 Temporal Mid L Thalamus R
54 Temporal Mid L Thalamus R
55 Precuneus L Thalamus R
56 Temporal Mid R Thalamus R
57 Temporal Mid L Thalamus R
58 Anqgular R Thalamus R
59 Frontal Sup Medial R Putamen R
60 Frontal Sup Medial R Putamen R
61 Precuneus L Temporal Sup R
62 Precuneus L Temporal Sup R
63 Thalamus L Temporal Sup R
64 Temporal Mid L Cerebellum L
65 Anqular L Cerebellum L
66 Frontal Sup Medial R Cerebellum L
67 Frontal Sup Medial R Cerebellum L
68 Frontal Sup Medial R Cerebellum L
69 Temporal Mid R Cerebellum L
70 Frontal Sup Medial R Cerebellum L
71 Angular R Cerebellum L
72 Temporal Mid L Cerebellum L
73 Temporal Inf R Cerebellum R
74 Temporal Mid L Cerebellum R
75 Temporal Mid L Cerebellum R
76 Angular R Cerebellum R
77 Temporal Mid R Cerebellum R
78 Frontal Sup Medial R Cerebellum R
79 Angular R Cerebellum R
80 Temporal Mid L Cerebellum R
81 Frontal Sup Medial R Cerebellum R
82 Temporal Sup R Cerebellum R
83 Thalamus L Fusiform L
84 Thalamus L Temporal Mid L
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Supplementary Table 6. List of subjects excluded from the CNP dataset due to the

lack of T1 images or insufficient fMRI data available (less than two paradigms).

Subject ID Group Reason for exclusion

10971 HC NoT1

10501 HC NoT1

10299 HC No T1

10428 HC NoT1

11121 HC NoT1

11067 HC NoT1

70035 ADHD NoT1

70036 ADHD NoT1

10193 HC Only one fMRI paradigm available
70002 ADHD Only one fMRI paradigm available
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