
Supplementary Information
Circuit Quantum Electrodynamics of Granular 

Aluminum Resonators
Maleeva et al.



2

SUPPLEMENTARY DISCUSSION

Current distribution

We perform all calculations in the limit of a one dimensional current distribution along the resonator. Here we
present the results of a finite elements simulation of the current distribution for the five lowest stripline resonator
modes. Supplementary Figure 1 shows the current distribution along (top row) and across (bottom row) the stripline
resonator. The current along the resonator is at least two orders of magnitude higher than the current in the
perpendicular direction. This validates the 1D current distribution assumption and allows us to exclude drum-like
modes as a source of deviation from the linear dispersion relation.

101

101

102

103

104

0

1

0 1

0

1

Jy

Jx

0 1 0 1 0 1 0 1

y
/
`

x/b

y
/
`

x/b x/b x/b x/b

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

J
(A

/m
)

Supplementary Figure 1. Current distribution. Finite elements method simulation of surface current density in a high
kinetic inductance λ/2 stripline resonator with dimensions 40× 1000 µm2. The top row shows the current density Jy along the
y-dimension (` = 1000 µm) for the first five modes. The corresponding current density Jx along the x-dimension (b = 40 µm)
is shown in the bottom row. Jy is at least two orders of magnitude larger than Jx for all modes. Therefore, we conclude that
up to the fifth mode the resonator follows the well known λ/2 current distribution, and that the measured nonlinear dispersion
relation of the third mode, reported in the main text, is not caused by a drum mode like behavior.



3

Details on analytical model

In order to derive the equation of motion for a 1D JJ array we write the Kirchhoff laws and Josephson equations
for two neighboring effective junctions as

In = In+1 + C0
dVn
dt

,

In+1 = In+2 + C0
dVn+1

dt
,

Vn+1 − Vn =
~
2e

d(χn+1 − χn)

dt
,

(1)

where Vn and χn are the voltage and the phase on the nth node respectively, and In is the current through the nth JJ.
Combining these equations and introducing an excitation as an external current Iext cos(ωt) applied to the mth cell,
where xm = l/2, we obtain

2In+1 − In+2 − In + δm,nIext cos(ωt) =
~C0

2e

d2ϕn
dt2

, (2)

where ϕn = χn+1 − χn is the phase difference across the nth JJ. The JJ current is described as the following

In = Ic sin(ϕn) +
~CJ

2e

d2(ϕn)

dt2
. (3)

Substituting this expression to Supplementary Eq. (2) we obtain the equation of motion in the discrete limit

2Ic sin (ϕn+1)− Ic sin (ϕn+2)− Ic sin (ϕn) +

+
~CJ

2e

d2

dt2
(2ϕn+1 − ϕn+2 − ϕn) +

+δm,nIext cos(ωt) =
~C0

2e

d2ϕn
dt2

.

(4)

In order to obtain the dispersion relation of the resonator we rewrite Supplementary Eq. (4) in the continuous limit

Ica
2 d

2

dx2
sinϕ(x, t) +

~CJ

2e
a2
d2

dt2
d2

dx2
ϕ(x, t)+

+aδ

(
x− `

2

)
Iext cos(ωt) =

~C0

2e

d2

dt2
ϕ(x, t).

(5)

We consider here the first resonance mode with sinusoidal current distribution I(x, t) = I(t) sin
(
πx
`

)
; the correspond-

ing phase difference is ϕ(x, t) = ϕ(t) sin πx
` . By substituting the phase difference ansatz in Supplementary Eq. (5),

multiplying the equation by sin πx
` and integrating it along the resonator, we obtain the equation of motion of the

resonator

~
2e

(
C0 +

π2a2

`2
CJ

)
d2ϕ(t)

dt2
+ 2Ic

π2a2

`2
J1[ϕ(t)] =

2a

`
Iext cos(ωt). (6)

We approximate the Bessel function to first order J1[ϕ(t)] ∼ ϕ(t)/2, thus obtaining

αIc
π2a2

`2
ϕ(t) +

~
2e

(
C0 +

π2a2

`2
CJ

)
d2ϕ(t)

dt2
=

2a

`
Iext cos(ωt). (7)

in the linear limit. Notably this equation is very similar to the motion equation of a current biased JJ. Solving
Supplementary Eq. (7) we obtain the first resonance frequency of our system

ω1 =
aπ

l

√
2eIc

~
(
C0 + π2a2

l2 CJ

) . (8)
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Performing the same calculations using the coordinate distribution of the higher resonance modes, we obtain the
dispersion relation

ωn =
naπ

l

√
2eIc

~
(
C0 + n2π2a2

l2 CJ

) . (9)

In order to derive the self-Kerr coefficient of the fundamental mode we solve the nonlinear equation of motion. The
coupling of our resonator to the environment and internal losses of the resonator are introduced to Supplementary
Eq. (6) as a damping term with a parameter γ = ω1/Qtotal (∼ 104 − 105 according to the experiment)

ϕ̈(t) +
4eĨc

~C̃
J1[ϕ(t)] + γϕ̇(t) =

4e

~C̃
a

`
Iext cos(ωt), (10)

where Ĩc = Ic
π2a2

`2 and C̃ = C0 + π2a2

`2 CJ. Since we are working in resonance regime, we require the system to oscillate
only with the driving frequency ω by assuming

ϕ = ϕa cos(ωt+ δ), (11)

where ϕa is the amplitude of the response for each JJ and δ is a phase delay due to losses in the system. Solving
Supplementary Eq. (10) with ansatz (11) we obtain

ϕa =
4e
~C̃

a
` I√

(ω2 − 4ω2
1J0[ϕa/2]J1[ϕa/2]/ϕa)

2
+ γ2ω2

. (12)

For small ϕa we can expand the Bessel functions in series up to the third order, thus obtaining

ϕa =
4e
~C̃

a
` Iext√(

ω2 − ω2
1

(
1− 3ϕ2

a

32

))2
+ γ2ω2

. (13)

Since at resonance the response ϕa reaches its highest value, we derive the resonance frequency of the nonlinear
resonator by maximizing Supplementary Eq. (13).

ω = ω1

√
1− 3ϕ2

a

32
' ω1

(
1− 3ϕ2

a

64

)
. (14)

One can see that in comparison to a single JJ with the resonance frequency, ω = ω1

(
1− ϕ2

a

4

)
, the 1D array has

similar, but lower first order nonlinearity. By relating the phase response to an average circulating photon number N̄
(see Appendix ), we obtain the self-Kerr coefficient for the fundamental mode

K11 =
3

16
πea

ω2
1

jcVgrAl
. (15)

In the following, we consider the cross-Kerr coupling between two different modes m and k with eigenfrequencies ωa
and ωb. In order to obtain the cross-Kerr coefficients Kmk one needs to solve the equation of motion with excitation
terms aδ

(
x− `

2

)
(Im cos(ωat) + Ik cos(ωbt)), representing the drive of mth and kth modes

Ica
2 d

2

dx2
sinϕ(x, t) +

~CJ

2e
a2
d2

dt2
d2

dx2
ϕ(x, t)+

+aδ

(
x− `

2

)
(Im cos(ωat) + Ik cos(ωbt)) =

~C0

2e

d2

dt2
ϕ(x, t).

(16)

We are mainly interested in the cross-Kerr coupling of the fundamental mode and we start with considering the
coupling between the first and third modes. Similarly to the self-Kerr case, we look for a solution of the equation as
a sum of the two driven modes

ϕ(x, t) = ϕ1(t) sin
πx

`
+ ϕ3(t) sin

3πx

`
. (17)
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Using the Jacobi–Anger identity we expand the nonlinear term in Supplementary Eq. (16) up to third order

sin

(
ϕ1(t) sin

πx

`
+ ϕ3(t) sin

3πx

`

)
=

2 sin
πx

`

(
J1[ϕ1(t)]J0[ϕ3(t)] + J2[ϕ1(t)]J1[ϕ3(t)]

)
+

+2 sin
3πx

`

(
J3[ϕ1(t)]J0[ϕ3(t)] + J0[ϕ1(t)]J1[ϕ3(t)]

)
.

(18)

Here we limited the series only to the first and third modes, sin
(
πx
`

)
and sin

(
3πx
`

)
, in which we are currently

interested. We consider the case of strong pumping of the first mode and weak probing of the third mode. Therefore,
Supplementary Eq. (16) can be simplified and splits into two separate equations for each mode

~
2e

(
C0 +

(πa
`

)2
CJ

)
ϕ̈1 + 2Ic

(πa
`

)2
J1[ϕ1] = 2

a

`
I1 cos(ωat), (19)

~
2e

(
C0 +

(
3πa

`

)2

CJ

)
ϕ̈3 + Ic

(
3πa

`

)2 (
1− ϕ2

1

4

)
ϕ3 = −2

a

`
I3 cos(ωt). (20)

Since the first mode drive is much stronger than the third mode drive, the equation of motion of the first mode (19)
contains only self-Kerr nonlinearity and looks like Supplementary Eq. (10). On the contrary, the equation of motion
of the third mode (20) is linear in ϕ3 and contains only cross-Kerr nonlinearity. In analogy to the self-Kerr coefficient
derivation, we look for the solution of Supplementary Eq. (20) at the same frequency of the drive ω

ϕ3 = ϕb cos(ωt+ δ), (21)

where ϕa is the amplitude of the third mode response for each JJ and δ is a phase delay due to losses in the system.
Solving Supplementary Eq. (20) with ansatz (21) we obtain

ϕb =

4e

~
(
C0+( 3πa

` )
2
CJ

) a
` I3√(

ω2 − ω2
3

(
1− ϕ2

a

8

))2
+ γ2ω2

. (22)

Again, we derive the resonance frequency by maximizing Supplementary Eq. (22)

ω = ω3

√
1− ϕ2

a

8
' ω3

(
1− ϕ2

a

16

)
, (23)

which gives the cross-Kerr coefficient between the first and third modes

K13 =
1

4
πea

ω1ω3

jcVgrAl
. (24)

Performing the same procedure for first and all the other modes, we obtain the cross-Kerr coefficients

K1n =
1

4
πea

ω1ωn
jcVgrAl

. (25)
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Circuit quantization

The total Qtotal and coupling quality factor Qc can be extracted from the measurement, allowing the average
number of photons in the resonator to be calculated. In the case of one port waveguide for the first resonance mode
it can be written as

N̄ = Pin
4Q2

total

~ω2
1Qc

, (26)

where Pin is the input power at the cavity port. The average number of photons relates to the amplitude of the
current circulating in the resonator as

I2res = 2π
a

`
~ω1N̄/LJ , (27)

where LJ = ~
2eIc

is the Josephson inductance of one junction1. At resonance, ϕa reaches its maximal value, which is

ϕa =
2π

Φ0
IresLJ , (28)

where Φ0 = h/2e is the (superconducting) magnetic flux quantum. The self-Kerr nonlinearity is proportional to the
second order of the phase response

ϕ2
a = 4πea

ω1

jcVgrAl
N̄ (29)

Substituting Supplementary Eq. (29) in Supplementary Eq. (14) we obtain

ω = ω1 −
3

16

πeω2
1

Ic

a

`
N̄ = ω1 −K11N̄ (30)
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Details on samples

We measure the fundamental frequency of all resonators directly with the VNA. Due to its symmetry, the second
mode is decoupled from the waveguide mode. For the two longest resonators made of grAl#1 film (4000 µΩ cm),
the third mode, which is outside the frequency range of our VNA, can be excited by a second tone, generated by an
RF generator, and detected via its cross-Kerr interaction with the first mode. Knowing the first and third resonance
frequencies we use Eq. (3) of the main text to derive the plasma frequency

ωp = 2ω1ω3

√
2

9ω2
1 − ω2

3

, (31)

which for f1 = 6.287± 0.001 GHz and f3 = 18.255± 0.001 GHz gives ωp = 68± 0.1 GHz.
Figure 3a and b depict the measured S11 response in the single photon regime for the stripline resonator of 0.6 mm

length and 0.04 mm width made of grAl#1 film. A circle fit routine2 is used to extract the internal and coupling
quality factors Qi = 105 and Qc = 104 respectively3, and the resonance frequency f1 ≈ 6.3 GHz.

Supplementary Table 1. Details on the samples from Fig. 4. The resonant frequencies and the quality factors are extracted from
measurements in the low frequency setup, in a strongly shielded enviroment. For sample grAl#3, listed on the last line, only
measurements using the high frequency setup were performed, which does not allow an accurate measurement of the intrinsic
(unloaded) eigen frequencies and quality factors.
ρ, µΩ cm `, µm b, µm VgrAl, µm3 f1, GHz f3, GHz Kexp

11 , Hz Qc Qi Tc, K
2000 2.7 0.05 0.003 4.7031 - 29×103 6×103 3.3×104 1.99
2000 2.7 0.2 0.01 4.9555 - 7.4×103 5×103 1.1×104 1.99
4000 400 5.4 43.2 6.995 - 135 60×103 1.5×105 -
4000 600 10 120 6.287 18.255 21 10×103 1.5×105 -
2800 600 8.9 107 7.6139 - 18.8 20×103 3.0×104 -
2800 600 7.3 88 7.231 - 6 12×103 8.0×104 -
4000 1000 40 800 6.024 17.645 5 4×103 1.5×105 -
2800 1000 31.2 624 8.635 - 0.9 4×103 2.8×104 -
1600 1200 12 288 3.16 - 1.1 24×104 1×104 2.03
900 1200 12 288 3.51 - 0.2 20×104 1×104 2.13
40 2500 2 100 5.18 - 65×10−3 12×104 0.2×104 1.9
80 2500 2 100 4.12 - 26×10−3 31×104 3×104 2.04
220 2500 2 100 2.58 - 22×10−3 31×104 3×104 2.17
160 2500 2 100 2.57 - 18×10−3 30×104 3×104 -
3000 1200 12 432 4.0 - - - - 1.91

An overview of samples holders and sample geometries is provided in Supplementary Fig. 2 (in this appendix).
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Supplementary Figure 2. (a) 2D sample holder for reflection and transmission measurements of microwave resonators which are
coupled to an on-chip feedline in a notch-type geometry. (b), (c) Lumped element resonators fabricated from granular aluminum
(grAl) in a standard KID geometry with inductors in a Hilbert 2 and Hilbert 3 meander shape, respectively, and interdigitated
shunt capacitors. The resonators are either coupled capacitively or inductively to the aluminum CPW transmission line. For
both samples, the grAl volume contributing to the total kinetic inductance of the fundamental mode and, thus to the self-Kerr
coefficient K11, is highlighted in blue. Although the inductor in the Hilbert 3 shape is much longer, the smaller wire width
results in an overall smaller total volume. (d) 3D sample holder for reflection measurements. (e), (f) Rectangular shaped
distributed microstrip-stripline resonator with open boundary conditions fabricated from grAl. The whole resonator volume
contributes to the kinetic inductance (green shaded area), and the shape of current profile is accounted by C in Eq. (4). (g)
Aluminum-shunted lumped element grAl resonator formed by two large aluminum islands connected via a thin bridge. (h)
The kinetic inductance of pure aluminum and the geometric inductance of the bridge are neglectable, only a small un-shunted
volume of highly resistive grAl in the center of the bridge is contributing to the total inductance of the resonator. (i) The
zoom-in into the bridge center shows the un-shunted grAl film, shaded in light red, and the total grAl volume contributing to
the kinetic inductance according to the expected current flow, shaded in dark red.
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Martin-Puplett Interferometer (MPI)
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Supplementary Figure 3. Optical diagram of the Martin-Puplett interferometer. The source radiation is two combined
beams from two blackbodies at 77 K (liquid Nitrogen) and 300 K. The rotating polarizer P1 combines and polarizes the beam,
which is then divided by two partial beams by the beam splitter BS. The wire grids of the beam splitter BS are oriented at 45

◦

to the normal of the drawing so that the polarization component perpendicular to the grid is transmitted and the component
parallel to the grid is reflected. Two roof mirrors (one of each is movable) bring two components back to BS with a 90

◦
rotation

of the polarization. If the two roof mirrors are equally spaced from BS, the input and output beams of the BS are polarized
identically. After polarizer P2 only one orthogonal polarization is transmitted to the cryostat. The cryostat optical system
consists of a lens at room temperature, and two aperture and lens pairs, at 4 K, and at 100 mK, in front of the sample.

We use the Martin-Puplett interferometer (MPI) as a broad-band illumination source, with a resolution up to 1
GHz. A schematic drawing of the MPI is shown in Supplementary Fig. 3. Three wire grids are used as polarizer
P1, beam splitter BS and polarizer P2. If the polarization of an incident wave is parallel to the wires, the wire grid
behaves like the surface of a metal and the wave is reflected, whereas it would be a perfectly transparent element
for a wave that is polarized orthogonally to the wires. The source radiation, emitted from two black bodies, at
room temperature (red) and liquid nitrogen temperature (blue), is combined on the polarizer P1, which is a wire grid
inclined by 45◦ with respect to the plane of the drawing. The polarizer P1 is rotating with frequency ω0 about its axis,
which creates the output beam containing two orthogonal polarizations that are swept over all possible orientations
by a full rotation of P1. In the following discussion we’ll consider P1 at a fixed moment in time. The beam is divided
into two partial beams by the beam splitter BS, which is a fixed wire grid at a 45◦ angle to the incoming beam.
The component of the incident beam with polarization parallel to the wires of BS is transmitted towards the fixed
roof mirror, and the orthogonal component is reflected towards the movable roof mirror. The roof mirrors reflect the
incident beams and flip their polarizations by 90◦. The movable roof mirror can be displaced by an amount dx. The
two beams recombine at BS with an accumulated path difference ∆ = 2dx, resulting in a phase difference 2π∆/λ
which gives rise to interference. After the reflection both polarizations are flipped with respect to their first encounter
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with BS, therefore the transmission/reflection routine is inverted. The polarizer P2 provides a reference for the ω0

modulation of the polarization produced by P1. The single polarization output beam enters the cryostat through the
room temperature lens. Here, the incoming beam is collected and sent to the cold optics, consisting on two additional
focusing lenses, an in-focus aperture to reduce the intensity, and an out-of-focus aperture to crop the image. The
intensity of the on-sample radiation for a single wavelength is4

I(∆) ∝ I0(λ)(1 + cos(2π∆/λ)), (32)

where I0 is defined among others by the diameter of the apertures and position of the sample with respect to the
optical exes of cryostat optical system. I(∆) is an even, periodic function of the roof mirror displacement, with the
first maximum appearing at the origin, which is result of the alternatingly constructive and destructive interference.
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Supplementary Figure 4. Interferograms (left) and relative spectra (right, also present in the main text) of Hilbert-shaped
resonators made of Al, grAl#2, and grAl#3. The black line shows the averaging over for nominally identical resonators at each
sample.

The interferogram is the modulated term of Supplementary Eq. (32) integrated over all wavelengths. The parity of
the integrand allows us to recast the cosine modulation as an exponential having the same argument, thus showing
that the interferogram and the spectrum are Fourier transform (FT) pairs. The interferogram has a global maximum
at the origin since different wavelengths will interfere in a fully constructive fashion only in the case of zero path
difference. Furthermore, the interferogram is a stronger signal than the monochromatic intensity, since it encodes
contributions from all wavelengths. Interferograms and their corresponding spectra (MPI responce versus illumination
frequency) are shown in Supplementary Fig. 4.

The interferogram is generated by recording the on-sample irradiation at roof mirror steps Tx ∼ 10 µm. This is
equivalent to multiplying the a priori continous signal with a comb of Dirac deltas with spacing Tx. The FT of this
product is a convolution of the spectrum with a 1/Tx Dirac comb in impulse space, i.e. an array composed by images
of the spectrum spaced 1/Tx apart. The images are symmetrical and bounded by some ±fmax. The highest frequency
that can be attained before image overlapping and subsequent aliasing is given by step Tx, for Tx ≈ 50 µm the highest
frequency fmax = c/2Tx ≈ 3000 GHz. For all measurements presented in Supplementary Fig. 4 lowpass filters are
used, for Al samples the cutoff frequency is 180 GHz, for grAl#2 and grAl#3 the cutoff frequency is 300 GHz
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Critical current

The geometry and the switching current measurements for a DC-SQUID made with granular aluminum are presented
in Fig 5. The measurements over 4 samples with resestivities 250, 1520, 3200 and 5550 µΩ·cm are summerized
in Supplementary Fig. 6.
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Supplementary Figure 5. Switching current distribution of a grAl DC-SQUID. (a) Switching current histogram at
effective zero field for the SQUID shown in (b). The red curve shows the measured data. For each measurement, the bias
current through the SQUID is increased at a constant rate until a finite voltage drop across the SQUID is detected. The applied
current at this switching point defines Isw. From a fit to the data (black dashed line) according to the expected switching
probability distribution a mean value of 4.01µA is obtained (for details on the fitting curve see5,6). (b) SEM image of the
respective SQUID. The sample design was patterned on a Si/SiO2 wafer by e-beam lithography followed by the evaporation of
a 20 nm thick grAl thin film with a sheet resistance of 1600 µΩ·cm. The two SQUID junctions have a combined cross section
of 2 × 90nm×20nm, resulting in a critical current density jc ≈ 1.1mA µm−2, quoted in the main text.
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Supplementary Figure 6. Measured critical current density jc as a function of the inverse grAl normal state
resistivity ρ. Switching currents of several SQUIDs were measured for each resestivity point at a temperature of 20 mK. The
geometries of the constrictions were extracted from SEM images, see Supplementary Fig. 5, to calculate the current density.
The error bars indicate the standard deviation of the measured resistivites and switching current densities, respectively, over
each ensemble of samples. A red line shows the linear scaling used in Supplementary Fig. 4 of the main text.
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