Towards Exact Molecular Dynamics Simulations with Machine-Learned Force Fields
Supplementary Information
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Supplementary Figure 1. Comparison of probability distributions of the dihedral angles (methyl rotor vs. hydroxyl rotor) of
ethanol obtained from classical and path-integral MD simulations at 300 K. We contrast the results from a sGDML model
trained on CCSD(T) versus DFT reference calculations. The inclusion of nuclear quantum effects improves the sampling of the
PES for both levels of theory. The sampling was performed during 0.5 ns of simulation, using 16 beads for PIMD.



Supplementary Table 1. Prediction accuracy for interatomic forces and total energies of the sGDML@DFT on all datasets.
Energy errors are in kcal mol ™, force errors in kcal mol*A ™",

Dataset Energy Prediction Force Prediction
Magnitude Angle

Molecule # ref. MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Benzene 1000 0.10 0.12 0.06 0.09 0.06 0.09 0.0009 0.0017
Uracil 1000 0.11 0.14 0.24 0.37 0.22 0.31 0.0039 0.0064
Naphthalene 1000 0.12 0.15 0.11 0.17 0.11 0.15 0.0016 0.0026
Aspirin 1000 0.19 0.25 0.68 0.96 0.52 0.68 0.0094 0.0139
Salicylic acid 1000 0.12 0.15 0.28 0.44 0.32 0.45 0.0038 0.0064
Malonaldehyde 1000 0.10 0.13 0.41 0.62 0.39 0.56 0.0055 0.0087
Ethanol 1000 0.07 0.09 0.33 0.49 0.46 0.63 0.0051 0.0083
Toluene 1000 0.10 0.12 0.14 0.21 0.14 0.19 0.0020 0.0031
Paracetamol 1000 0.15 0.20 0.49 0.70 0.60 0.84 0.0073 0.0118
Azobenzene 1000 0.09 0.13 0.41 0.61 0.49 0.71 0.0059 0.0105

Supplementary Table 2. Prediction accuracy for interatomic forces and total energies of the sGDMLQCCSD(T) model on all
datasets. Energy errors are in kcal mol ™!, force errors in kcal mol *A™".

Dataset Energy Prediction Force Prediction
Magnitude Angle

Molecule # ref. MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Benzene 1000 0.004 0.005 0.04 0.06 0.04 0.06 0.0008 0.0013
Aspirin* 1000 0.16 0.21 0.76 1.07 0.56 0.74 0.0091 0.0123
Malonaldehyde 1000 0.06 0.08 0.37 0.56 0.34 0.46 0.0052 0.0082
Ethanol 1000 0.05 0.07 0.35 0.51 0.47 0.65 0.0056 0.0104
Toluene 1000 0.03 0.04 0.21 0.30 0.19 0.24 0.0028 0.0042
* CCSD

Supplementary Note 1. Alternative symmetry-adapted kernels
Assignment kernel

As an alternative to symmetrizing the kernel function, it is conceivable to normalize the data to a canonical
permutational configuration instead. Such an assignment kernel function performs a local reconstruction of the
symmetric part of the target function which is then “tiled” across the entire input domain. This involves compressing
the data x; to one of its symmetric subdomains via transformation to a fixed canonical reference configuration P;1x;
prior to training. Such an approach bears two major disadvantages over our symmetric model:

e Every query molecule must be first matched to the training set, making evaluations of the model computationally
costly.

e The “tiling” process causes discontinuous seams to form along borders of neighboring symmetric subdomains,
were different copies of the local model meet. These seams correspond with the symmetry lines of the molecule,
which are frequently crossed during MD simulations. Moreover, they reside in the extrapolation regime of the
local model, where the prediction performance is notoriously bad.



Our model resolves these issues by effectively optimizing all symmetric subdomains simultaneously. It retains all
advantages of the assignment kernel.

R-convolution kernel

A generic design paradigm for comparing complex structured objects like molecules, is the R-convolution kernel [1].
It partitions the object into smaller components x = (X1, ...,xp) for which a similarity measure in terms of a kernel
function kg: X x X — R is easier to define. The sum over all possible component assignments

D
k(x,x') = Z Hﬁd(xd’xfj) (1)
d

parts(x)
parts(x’)

gives an approximation of the overall similarity of both objects, which — by the closure properties of kernels [2, 3] — is
again a valid kernel. Most permutation invariant models rely on instances of this idea and only differ by the underlying
partitioning scheme and similarity measure to compare the components (e.g. graph kernels compare paths [4]). The
combinatorial nature of this approach guarantees that the correct assignments are always captured, alas only in unison
with all the others. This imprecision inevitably limits the sensitivity of such a metric. Our kernel function explicitly
exercises the correct symmetries and is hence able to provide unbiased similarities.

Supplementary Note 2. Permutation matrices

Throughout this paper, we use permutation matrices P(7) = P in column representation, obtained by permuting the
columns of the identity matrix of dimension N x N, such that (P),;; = 1 if j = 7(¢) and 0 otherwise. The multiplication
Px will hence permute the rows of the column vector x. We do not distinguish between permutation matrices acting
on different representations of the same data. While PR permutes the atoms of a molecule represented by a 3 x N
matrix R = (r1,...,ry) of Cartesian coordinates, P) represents the same permutation, but acting on a linearized

input space Z representation R = (r/,... ,r)" of dimension 3N x 1.

Supplementary Note 3. Training sGDML using a descriptor

For notational convenience, the main text describes the formulation of the sSGDML model for generic inputs x.
When the input to the force field kernel function is a descriptor, the symmetric (training) kernel matrix evaluates to

1 S

Hess(kgym)(D(x), D(x')) = g Z(VD(pr)Pp)THess(ﬁ)(D(pr),D(qu’))VD(qu)Pq (2)

after application of the chain rule, where VD is the gradient of the descriptor.
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