
Note 1: Defining the hypersphere parameters

1.1 General comments

We assume that appropriate transformations (e.g., biexponential [1]) have been applied to the marker inten-
sities for each cell. We also assume that normalization of marker intensities between samples, if necessary,
has already been performed (see Note 2.2). In data sets where samples were barcoded and multiplexed for
staining and processing [2], normalization of intensities is not required as the same technical biases should
be present in all samples and thus should cancel out when comparing between samples. Assignment of cells
to hyperspheres is then performed using the transformed (and normalized) intensities for each cell. Each
hypersphere represents a portion of the M -dimensional space (i.e., a subspace) in which cells are counted.

It is important to stress that, while each hypersphere contains a subset of cells in the population, this
should not be confused with a cell subpopulation. The latter refers to a biologically meaningful or functional
subset of cells, while the former is simply an analytical construct used to quantify cell abundance.

1.2 Centring on existing cells

Each hypersphere is centred at a point defined by an existing cell. This is necessary because there are an
infinite number of hyperspheres in the M -dimensional space. Centring on existing cells ensures that only non-
empty hyperspheres are considered. In practice, we further reduce computational work by only constructing
hyperspheres at every (randomly chosen) 10th cell. This avoids redundant work in high-density subspaces
where many of the resulting hyperspheres would be near-identical in terms of their positions and cell counts.
Note that many adjacent hyperspheres will be overlapping, which has some implications for FDR control.
This is demonstrated in Figure 1d and motivates the development of the spatial FDR (see Note 4.1).

1.3 Choosing the hypersphere radius

1.3.1 Overview

The radius r of each hypersphere dictates the trade-off between count size (the number of cells assigned to
a hypersphere) and spatial resolution (the ability to distinguish between adjacent subspaces). Our choice
of radius r = 0.5

√
M increases with the number of markers M , to avoid problems with sparsity at high

dimensions; and it acounts for the variability of the intensities for each marker, whereby cells with a 10-fold
difference in marker expression are routinely assigned to the same hypersphere. (This is motivated by noting
that technical or biological variability often results in an order of magnitude difference in observed expression
within the same functional subpopulation [2, 3, 4].) This is described in more detail in the following text.

1.3.2 Formulating an expression for the radius

Consider a subpopulation where the intensities of each marker are distributed around some mean intensity
with standard deviation r0. The expectation of the squared Euclidean distance between any two cells in
this subpopulation is 2r20M . Now, construct hyperspheres centred at each of the cells in the subpopulation.
Setting the hypersphere radius as r = r0

√
2M ensures that most hyperspheres will contain a large proportion

of cells from the same subpopulation. Indeed, a simple simulation with Normally-distributed intensities for
30 markers indicates that the majority of hyperspheres contain more than 50% of the subpopulation.

We further assume that the expression of a marker will differ by up to 10-fold across functionally similar
cells, due to technical noise or biological variability within the same subpopulation. (Expression profiles
for more variable markers like CD25 may consist of multiple internal subpopulations.) For typical analyses
involving transformed intensities on the log10-scale, an interval of length 1 will span an order of magnitude
in marker expression. When centred around the mean, this interval should contain most of the intensity
distribution for a single subpopulation. According to Chebyshev’s inequality, the interval defined by a
distance of r0

√
2 from the mean will contain at least 50% of the values from an arbitrary distribution. We

equate these interval lengths to obtain a rough estimate for the standard deviation of the intensities, i.e.,
2r0
√

2 = 1. Applying this to the radius yields r = 0.5
√
M , meaning that each hypersphere will be able

to include cells with 10-fold differences in expression for one or more markers. Thus, each hypersphere will



contain enough counts for further analysis, even when the intensities vary across an order of magnitude.
We refer to the value of r0

√
2 as the “tolerance” in the code, representing half the width of the intensity

distribution for a single marker in a homogeneous population that is positive for that marker.
We verify the choice of formulation of r by examining the distance between each cell x and its neighbours

in the first sample from each time course. The nearest neighbours of x are identified in the full M -dimensional
space and represent other cells in the same subspace as x. As the number of markers increases, the distance
to the neighbours increases at a rate that is roughly consistent with the square root function (Supplementary
Figure 1). This justifies the use of the relation r ∝

√
M . With increasing M , the radius will also increase

such that a hypersphere centred at x will still contain the neighbours of x, i.e., sensitivity of counting for
cells in the same subspace is preserved. In contrast, cells in other subspaces will cease to be assigned to the
hypersphere as they become separated from x on other markers, i.e., specificity of counting is improved.

For the Oct4 -GFP and Nanog-Neo time courses, the radius is consistent with the average distance from
each cell to its 10th nearest neighbour. This means that around 10 cells from the subspace will be assigned to
each hypersphere when r0

√
2 = 0.5. Combined with counts from the other samples in the time course, this

provides enough information to reliably detect DA hyperspheres. In contrast, the radius in the Nanog-GFP
time course is consistent with the distance of each cell to its 1st nearest neighbour. This is because the first
sample in the Nanog-GFP time course contains fewer than 3000 cells, while samples in the other time courses
contain over 10000 cells. The sparsity of cells in this sample results in fewer neighbours at any given distance.
For experiments with few cells across all samples, a larger r0 may be required to obtain sufficient counts for
further analysis. (Note that we keep r0

√
2 = 0.5 for Nanog-GFP, as the other samples in the time course

contain 5-10-fold more cells. Thus, counts will be large enough to detect differences later on.)

1.3.3 Additional remarks on radius choice

The suitability of the default setting of r0
√

2 = 0.5 can be assessed for each data set by examining the distance
from each cell to its nearest neighbours. Supplementary Figure 2 shows these distances for each cell in the
Oct4 -GFP reprogramming time course. Here, the default radius corresponds to the median of the distances
from each cell to its 15th nearest neighbour. This means that half of all hyperspheres will contain more than
15 cells, which is large enough for downstream hypothesis testing. In contrast, a smaller value of the radius
(e.g., r0

√
2 = 0.4) would not even include the nearest neighbour for each cell on average. This would lead

to a count of 1 for most hyperspheres, which is not sufficient for further statistical analysis. The neighbour
distances can be used to gauge whether a larger radius should be used for a particular analysis, though it
is not generally necessary to decrease the default radius when these distances are small. A reduction in the
neighbour distances will naturally occur with an increase in the total number of cells per sample – decreasing
the radius would undermine any improvement in power due to an increase in cell counts per hypersphere.

A consequence of working in high-dimensional space is that small changes to the radius will result in
large changes to the counts. For example, in an experiment consisting of 30 markers, increasing the radius
by 10% will increase the hypersphere volume (and the potential number of counted cells) by over 17-fold.
In this respect, the analysis is quite sensitive to the choice of radius. However, a more relevant assessment
of sensitivity is to consider changes in the counts per hypersphere. We repeated the DA analyses using
radius values that approximately halved or doubled the median number of counted cells in each hypersphere
relative to the default (Supplementary Figure 2). We observed that most of the DA hyperspheres from the
default analysis were still detected in the repeated analyses (Supplementary Table 1). Over 60% of the DA
hyperspheres were recovered with a smaller radius, while using a larger radius detected almost all of them
(and an extra 35%). These differences are expected because larger hyperspheres have greater counts and
more evidence to reject the null hypothesis, albeit at the cost of spatial resolution. Nonetheless, the general
similarity in the results indicates that the analysis is robust to substantial changes in the size of the counts.

An obvious question is whether an “optimal” value of r0 can be obtained for any given data set. This
value depends on the variability of marker intensities in each subpopulation. For example, setting r0 to the
standard deviation of the marker intensities for a single subpopulation allows more cells associated with that
subpopulation to be counted into the hypersphere, while reducing the chance of counting cells from adjacent
subpopulations. However, the standard deviation of each subpopulation is not easy to estimate empirically,
as we do not know the true number of subpopulations in the M -dimensional space. Indeed, a single optimal
value may not exist, e.g., if different subpopulations or markers have different standard deviations.



A suboptimal choice of r0 is not a critical concern for a DA analysis. A value of r0 that is too small will
reduce power to detect a DA subspace as the counts are too low. A value that is too large will also reduce
power through the loss of spatial resolution – specifically, cells from non-differential subspaces will be included
in the counts for a hypersphere in a differential subspace, reducing the log-fold change in abundance. In both
cases, power is affected rather than error rate control. While loss of power is undesirable, the analysis will
still be valid as any discoveries (that are made in spite of the diminished power) can be trusted. We note that
“contamination” of a non-DA hypersphere with cells from differential subspaces is also possible for large r0,
which could lead to the detection of the former as a false positive. However, the effect of this contamination
is mitigated by the fact that the position of each hypersphere is defined using the median intensities. Any
contamination that substantively changes the counts for a hypersphere will also shift its position towards the
differential subspace. Thus, a contaminated hypersphere that is erroneously classified as DA will be assigned
to or near the differential subspace (based on its position), rather than a non-differential subspace (based on
its centre). This reduces the detection rate of false positives in the non-differential subspace.

To demonstrate this effect, we set up a simulation where we examined the effect of increasing the radius
on the position of each hypersphere (Supplementary Figure 3). When larger radii were used, hyperspheres
centred on cells from a non-DA subpopulation exhibited larger log-fold changes in abundance (Supplementary
Figure 4). This is consistent with increasing contamination from cells in the neighbouring DA subpopulation.
However, the positions of the affected hyperspheres were also shifted towards the DA subpopulation. In
most simulation scenarios, this shift was sufficiently large that the hyperspheres with large log-fold changes
(> 1) were indistinguishable from hyperspheres centred on cells from the DA subpopulation itself. The
only exception occurred when the size of the DA subpopulation was reduced, such that some of the non-
DA hyperspheres had large log-fold changes but lay outside the subpopulation boundaries. Even in this
case, a substantial shift in position towards the DA subpopulation was observed, mitigating the effect of
misinterpreting these hyperspheres as part of a differential subspace. Using very large hypersphere radii also
results in a decrease in the log-fold changes for hyperspheres centred on cells from the DA subpopulation.
This is consistent with loss of power when cells from non-DA subspaces are included in the counts.

1.4 Using weighted medians to compute the hypersphere position

The median position is more appropriate than the hypersphere centre for characterising the location of the
hypersphere, when the cells assigned to the hypersphere are not symmetrically distributed around the centre.
When calculating the median-based position for a hypersphere h, each cell from sample s is assigned a weight
of T−1s where Ts is the total number of cells in s. For each marker, the weighted median of intensities from all
cells in h is computed. The set of weighted medians for all markers represents the coordinates of the position
of h. This weighting scheme ensures that the calculation of the position is not dominated by large samples
with many cells. Obviously, it converges to a simple median in data sets containing samples of similar size.

1.5 Choosing a transformation for the intensities

The interpretation of the default hypersphere radius assumes that the transformed intensities lie at or close to
a log10 scale. We use the logicle (or biexponential) transformation [1] implemented in the flowCore package
[5], which is linear around zero but approaches the log10 scale when applied to high values for the raw
intensities. Other transformations can be used provided that this scale is approximately maintained. For
example, the inverse hyperbolic sine function converges to the logarithmic function at high values.

In general, we do not scale the intensities to equalize the standard deviation of the intensity distribution
across markers. This is because differences in the range of expression between markers may be biologically
interesting and should be preserved. For example, in a population of T cells, CD25 may be expressed across
a wide range of intensities reflecting a range of different activation states. In contrast, CD3 (a classical T
cell marker) should be present at high intensities in all cells with low variance across the population. Scaling
to equalize the standard deviations for all markers would compress the CD25 intensity distribution and
compromise the resolution of potentially relevant subpopulations, while also amplifying irrelevant changes in
CD3 expression. Without scaling, more highly variable markers will dominate the placement of hyperspheres.
This is desirable as it ensures that biological differences between subpopulations can be captured.



One argument for rescaling intensities is to improve the resolution of subpopulations separated on low-
variance markers, by increasing their dynamic range to be equal to that of high-variance markers. While
this may provide some benefit, it is not necessary when small hyperspheres are used. Consider a marker
m that is lowly expressed in one subpopulation and absent in all other subpopulations. As long as the
level of expression in the positive subpopulation exceeds the variability due to biological/technical noise
(as quantified by the hypersphere radius), the cells in that subpopulation will be allocated into a separate
hypersphere, regardless of whether the dynamic range of marker m is smaller than that of other markers. In
other words, the resolution is already sufficient for separating subpopulations prior to the statistical analysis.
Furthermore, intensity scaling of low-variance markers can be detrimental as it “dilutes” the cells across a
wider dynamic range. This reduces the number of cells per hypersphere and DA detection power.

Note 2: Strategies for dealing with technical intensity shifts

2.1 Overview

In barcoded experiments, technical effects causing shifts in marker intensity between samples are avoided
[2]. This is due to use of multiplexed staining and cytometry, which ensures that any fluctuations in the
experimental procedures (e.g., staining efficiency, cellular concentration, detector sensitivity) affect all samples
equally. Although barcoding is becoming more common [6, 7], its application is not always possible. For
example, if the number of samples is greater than the number of available barcodes, samples will need to be
split into batches for separate barcoding and analysis. This may introduce intensity shifts between batches,
where similar cells in different batches have different intensities due to technical factors. For hypersphere
counting, these shifts are problematic as cells from the same subpopulation may no longer be counted into
the same hypersphere across samples. This has some detrimental consequences for the downstream statistical
analysis (see below). Here, we present some strategies for handling intensity shifts in several scenarios.

2.2 Intensity shifts between separately barcoded batches

2.2.1 Outline of the normalization method

Consider an experimental design containing multiple batches of separately barcoded samples, such that
intensity shifts are present between but not within batches. Intensities can be normalized between batches
by assuming that the pooled intensity distribution across samples in each batch should be similar between
batches (i.e., if intensity shifting were not present). This is usually reasonable in experimental designs
where each batch contains samples from the same or similar set of conditions. The aim of the normalization
procedure is to transform the pooled intensity distributions for all batches towards some reference distribution,
thus removing any intensity shifts or changes in the shape of the intensity distribution between batches.

2.2.2 Creating a weighted distribution of intensities

The first step is to create a weighted distribution of intensities for each batch.

1. Let the number of samples for condition c in batch b be denoted by Scb. The average sample size S̄c

for condition c is computed by taking the mean of Scb across all batches.

2. Denote the number of cells in sample s of condition c in batch b as Tscb. Each cell in s has a weight of

wscb =
S̄c

ScbTscb
.

3. Cells are pooled across all samples within each batch. A weighted distribution of intensities is generated
for each marker m, based on the intensities and weights for all cells in the batch. This is used to generate
a batch- and marker-specific quantile function qmb(.) for the intensity distribution.

The weights ensure that the contribution of each condition is the same across batches, to accommodate
experiments where Scb differs between batches. They also ensure that the contribution of each sample is the



same within each batch, if Tscb varies between samples. Otherwise, the pooled intensity distributions may
not be similar across batches if some samples or conditions contribute more to one batch than to others. Note
that construction of qmb(.) is only performed using samples from conditions that are present in all batches.
If a batch is missing a condition, no amount of weighting can overcome this complete lack of information.

2.2.3 Performing range normalization across batches

A simple approach is to scale the marker intensities so that the range of the weighted distribution is the same
for each batch. We compute the minimum and maximum for each batch b as qmb(0.01) and qmb(0.99), i.e., the
1st and 99th percentiles of the reference distribution for marker m, respectively. (We use percentiles rather
than taking the actual extremes to protect against outliers.) The reference minimum and maximum are
defined as the average of qmb(0.01) and qmb(0.99), respectively, across all batches. For each batch b, a linear
scaling function is defined that converts qmb(0.01) and qmb(0.99) to the reference minimum and maximum,
respectively. This function is then applied to the intensities of m for all samples in b, yielding normalized
intensities where differences in the location and spread of the distribution between batches are eliminated.
However, this “range-based” normalization assumes that the technical differences between batches can be
fully described as a linear transformation of intensities. More complex non-linear effects are not supported.

2.2.4 Performing warping normalization across batches

An alternative strategy is to exploit existing methods for automatic normalization of flow cytometry data.
We adapt the approach used by the flowStats package (https://www.bioconductor.org/packages/flowStats).

1. For each batch b, randomly sample Tb cells with replacement from the weighted distribution of inten-
sities, where Tb is the total number of cells across all samples in b. This is necessary as the flowStats
implementation does not consider weights, which are instead reflected in the sampling probabilities.

2. Apply the normalization() function in flowStats to compute a monotonic warping function. Briefly, this
identifies high-density landmarks (i.e., peaks) in the intensity distribution for each batch. Landmarks
from all batches are pooled together and clustered based on their locations, i.e., intensity at the peak
summit. A smooth monotonic “warping” function [8] is defined for each batch to align the location of
each of its landmarks to that of other landmarks (from different batches) in the same cluster.

3. Apply the warping function for batch b to the intensities for marker m in all samples from b. This
yields normalized intensity values that are comparable across batches.

This approach is more flexible than range-based normalization as it accommodates non-linear shifts across
the intensity distribution. However, it relies on accurate identification of landmarks that can be matched
across batches. This may not be possible in noisy data sets with strong inter-batch heterogeneity.

2.2.5 General comments about inter-batch normalization

Both of the normalization methods above require an experimental design where at least one condition has
samples in every batch. Ideally, at least one sample from each condition would be present in each batch.
This ensures that information from all samples will be used to construct the weighted distribution for each
batch. In practice, a condition will not be used if it does not contain samples in all batches. This is not a
problem as the scaling/warping functions, once constructed, can be applied to any set of intensities, allowing
normalization of intensities for samples in all (used and unused) conditions. However, the obvious caveat is
that intensities outside the range of values used to construct the functions may not be accurately normalized.

Both methods also assume that the systematic differences between batches are primarily driven by tech-
nical factors. Any changes in the intensities are considered to be uninteresting and normalized out. However,
this may not be appropriate if batches are confounded with differences in the biological conditions. In the
simplest case, an increase in marker intensity might be due to differences in staining efficiency between
batches, or a genuine change in protein expression between conditions. Confounding factors can be avoided
with good experimental design, though some subtleties need to be considered – see the example below.



2.2.6 Application of the normalization methods to real data

As a demonstration, we applied our normalization procedure to the BMMC data set generated by Levine
et al. [9]. This data set consists of stimulated and unstimulated samples from each of multiple donors,
where barcoding was performed within but not between individuals, i.e., each individual represents a batch.
Before normalization, we observed large differences in the intensity distribution of some markers between
corresponding samples from different individuals (Supplementary Figure 5). Part or all of these differences
are likely caused by the technical effects of separate staining and cytometry between individuals. Shifts in
the maximum intensity were successfully eliminated upon range-based normalization. Application of warping
normalization also removed changes in the shape of the intensity distribution between individuals.

It is worth noting, however, that this experimental design is not ideal for our normalization methods. This
is because the technical differences between batches are confounded by genuine biological differences between
individuals. Subsequently, normalization to remove the former may also remove or distort the biological
effects. A more suitable design would contain samples from multiple individuals in each batch, such that
one could assume that there were no biological differences between the average of individuals within each
batch. To mitigate any distortions of the underlying biology in this data set, we only apply range-based
normalization as this is more restrained in how it corrects for the inter-batch differences. Nonetheless, the
DA analysis following our normalization still yields sensible results, as described in Note 7.

2.3 Intensity shifts between non-barcoded samples

A more difficult situation is that of a data set containing samples with no barcoding at all. For an intensity
shift between two samples in different conditions, it is impossible to determine whether the shift represents
a technical or biological effect. Subsequently, normalizing the location of the intensity distributions risks
discarding interesting biology. Instead, we use a different approach where the radius of the hyperspheres is
increased by the size of the shift. Cells from the same subpopulation in different samples are more likely to
be counted into the same expanded hypersphere, even after shifting of intensities between samples.

To calculate the magnitude of the intensity shift due to technical effects, we compute the mean intensity
of each marker in each sample. This yields a vector of means um for each marker m. We fit a linear model
to um for each m, using an appropriate design matrix that describes the experimental set-up. The residual
variance of the fitted model provides an estimate of the average squared shift between replicate samples. As
this component of the shift occurs between replicates, it is more likely to be technical in origin. We average
the variance estimates across all markers to obtain v2, the extra variance introduced by the shifting process.
Stochastic intensity shifts between samples increase the squared Euclidean distances between cells (from the
same subpopulation but in different samples) by 2v2 for each marker. Thus, the new hypersphere radius
should be

√
2M(r20 + v2) in order to be able to routinely assign such cells to the same hypersphere.

We tested this approach with simulations based on the reprogramming time courses. Simulated data were
generated as described in Note 3.4, using only the first sampling scheme for simplicity. Then, for each sample
and for each marker, we sampled a value from a Normal distribution with a mean of zero and a standard
deviation ranging from 0 to 0.3. This value was added to the marker’s intensities for all cells in that sample
to mimic an intensity shift due to technical effects. We counted cells into hyperspheres with and without
expansion of the radius, performed the DA analysis and computed the observed type I error rate. For small
shifts, the type I error rate was controlled with both the default and expanded radii (Supplementary Figure 6).
This is due to an increase in the negative binomial dispersion, which accounts for greater variability in counts
between replicates when cells from the same subpopulation are shifted in or out of the hypersphere between
samples. For larger shifts, increases in the dispersion were not sufficient to control the type I error rate with
the default radius. This is because the movement of entire subpopulations in or out of hyperspheres yields
cell counts that are not accurately modelled with the NB distribution. In contrast, the use of an expanded
radius mitigates the loss of error control. This reduces the effect of the shifts on the cell counts for each
hypersphere, which allows for smaller dispersions and ameliorates the inaccuracy of the NB model.

There are important caveats with this expansion approach, some of which are mentioned below. Firstly,
we assume that the variance of the shifting process is the same for different markers. This may not be true
if some antibodies or detector channels are more susceptible than others to technical effects. Secondly, we
assume that shifts in location between replicates are wholly technical. This is unlikely to be true, given that
biological variability will be present between, e.g., replicate mice or patients. Exact calculation of technical



shifts requires technical replicates, where the same sample is processed twice in separate rounds of staining
and mass cytometry. Thirdly, as observed above, accurate control of the type I error rate is not actually
achieved upon expansion. The improvement is only a mitigation of the more severe loss of control when the
default radius is used. Also, we have not considered non-linear effects where the size of the shift is a function
of the intensity, which may further reduce the accuracy of the method. Finally, expansion of the hypersphere
radius leads to loss of spatial resolution, which can reduce power to detect changes in abundance. While
these shortcomings are significant, the lack of barcoding in the data itself leaves few analytical options for
rigorous quantitation across samples. In such cases, radius expansion seems to be the best strategy.

Note 3: A brief description of edgeR’s statistical framework

3.1 Quasi-likelihood negative binomial generalized linear models

The following section largely paraphrases Lun et al. [10], with some minor adjustments. Consider a hyper-
sphere h with count yhs in each sample s. In edgeR, the count in each sample is modelled with a quasi-negative
binomial distribution with mean µhs. (We will discuss the dispersion parameters of this distribution later.)
The negative binomial distribution is well-suited to this application, as it is supported over all non-negative
integers and can accurately model both small and large cell counts. Estimation of the dispersions also al-
lows modelling of extra-Poisson variability in the counts from replicate samples. By combining this with
generalized linear models, we can handle overdispersed count data from a variety of experimental designs.

Using a log-link generalized linear model with G coefficients [11], the mean is represented as

logµhs =

G∑
g=1

xsgβhg + ohs ,

where βhg is the hypersphere-specific value of coefficient g, xsg is the sample-specific predictor for g, and ohs
is the hypersphere- and sample-specific offset. For simple one-way layouts, each coefficient represents the
(log-transformed) average proportion of cells within a group, and each predictor specifies the group to which
each sample belongs. More complex designs can also be used where coefficients represent blocking factors or
real-valued covariates. The offset for each sample is defined as the log-transformed total number of cells, and
ensures that differences in the numbers of cells between groups do not cause differences in βhg. Estimation
of βhg for each h and g is performed by fitting the GLM to the count data for each hypersphere.

With the quasi-likelihood methods in edgeR, the mean-variance relationship of each count is modelled as

var(yhs) = σ2
h(µhs + µ2

hsφh) ,

where σ2
h is the shrunken quasi-likelihood dispersion and φh is the trended negative binomial dispersion. Any

increase in the observed variance of the counts will be modelled by an increase in these two dispersions.
We stress that the dispersions model the variability of the cell counts across replicate samples for each
hypersphere, not the variability of the marker intensities across cells. Thus, it is essential that the data set
contains some level of replication for dispersion estimation (though this should already be standard procedure
in any good experimental design). The two dispersions have different roles in this framework:

• The NB dispersion for each hypersphere is set to the fitted value of a mean-dispersion trend [11], i.e.,
φh = φ(µh) where φ is the mean-dependent trend function and µh is the average count across all samples
for each hypersphere h. This increases the accuracy of the model by accounting for empirical mean-
variance relationships. In contrast, using a fixed NB dispersion would assume a quadratic relationship.

• The raw QL dispersion for each hypersphere is estimated from the deviance of the fitted GLM. A
separate mean-dependent trend is fitted to the raw QL dispersions against µh for all hyperspheres, and
robust empirical Bayes (EB) shrinkage is performed to squeeze the raw estimates towards this trend
[12, 13]. The resulting values are referred to as the shrunken QL dispersions σ2

h. These improve the
accuracy of the model by accounting for hypersphere-specific variability above/below that modelled by
the trended NB dispersion. EB shrinkage stabilizes the estimates in the presence of limited replication.



Hypothesis testing is performed by formulating null hypotheses in terms of the various βhg. For example,
in a one-way layout with groups g ∈ {1, 2}, one could test for differential abundance between groups by testing
the null hypothesis βh1 = βh2 for each hypersphere. A similar approach can be used for more complex designs
– for example, if a spline is fitted to the abundances with respect to time, the corresponding coefficients can
be set to zero under the null to test for any time effect. The p-value for each hypersphere is calculated with
the QL F-test, which accounts for the uncertainty in estimating the shrunken QL dispersions.

3.2 Filtering hyperspheres on their average abundances

edgeR assumes that the input data have already been filtered to remove hyperspheres with low average
counts. Hyperspheres with very few cells do not have enough evidence to reject the null hypothesis, even
if they did contain genuine changes in abundance. Discarding them reduces the total number of tests and
mitigates the severity of the multiple testing correction [14]. We demonstrate this effect in Supplementary
Figure 8, where the minimum p-value from a NB GLM is a function of the mean count. For a given p-value
threshold, it is not possible to reject the null hypothesis if the mean count is too low. This motivates the use
of filtering to remove these uninformative tests, though the exact choice of filter threshold depends on the
specified p-value threshold (which, in practice, depends on the extent of the multiple testing correction).

By default, we use an average count threshold of 5 in our analysis, i.e., a hypersphere must contain an
average of 5 cells or more across all samples to be retained. This assumes that the multiple testing correction
is severe such that the p-values are scaled up by 10,000 prior to rejection at an adjusted p-value threshold
of 0.05 (Supplementary Figure 8). For the MEF and BMMC data sets, the correction is fairly mild so lower
filter thresholds could be used, e.g., to identify rare DA subpopulations. However, relaxing the filter may
not result in the detection of more hyperspheres – while more hyperspheres will be retained, the effect of
the multiple testing correction will increase concomitantly, potentially reducing power. The chosen filter
threshold of 5 provides a good compromise between retention of potential DA hyperspheres and removal of
the majority of low-abundance hyperspheres. This simplifies the interpretation of the results by focusing
on detection of changes in cell subpopulations of modest-to-high abundance that are likely to constitute the
major differences between conditions. It also reduces computational work by reducing the total number of
tests, and avoids problems with discreteness at low counts when fitting mean-dispersion trends in edgeR.

3.3 Normalizing the hypersphere counts across samples

As mentioned above, we define the GLM offsets as the log-transformed total number of cells per sample.
This means that GLM is effectively modelling the proportion of cells in each sample that are located inside
each hypersphere. Thus, differences in the input quantities of cells between different samples will not result
in spurious DA. Obviously, this means that global changes in abundance are not detected – for example, if
the abundances of all cell types increased by the same fold-change between conditions, the proportions would
remain the same. We disregard these global changes as they are inherently confounded with varying input
quantities in most real experiments. We also ignore hypersphere-specific biases (i.e., systematic differences
in abundance between hyperspheres caused by technical effects like staining efficiency) as these are expected
to cancel out when comparing counts from the same hypersphere. The use of barcoding and multiplexing
avoids introducing sample-specific biases related to differences in staining efficiency or machine behaviour.

Note that our strategy for normalizing the count data does not protect against composition effects.
Composition effects refer to indirect changes in the proportion of cells assigned to a subspace, caused by
changes to the total number of cells between conditions. For example, consider a situation where one subspace
experiences a large increase in cell abundance between conditions, while the abundances in all other subspaces
remain the same. The increase in the former drives an increase in the total number of cells in the affected
condition. This results in a decrease in the proportion of cells that are assigned to the other subspaces,
leading to differences being observed in hyperspheres that do not directly exhibit a change in abundance.
From a mathematical perspective, this is not incorrect as the proportions do change when the total counts
are altered. Nonetheless, detection of such subspaces may not be biologically relevant, so composition effects
should ideally be removed prior to further analysis. Unfortunately, conventional strategies for normalizing
these effects (from RNA-seq data analysis [15]) are not applicable here. If these methods were applied to
the hypersphere counts, they would assume that most hyperspheres are not differentially abundant. This is



unlikely to be true in many settings, e.g., due to large-scale changes upon stimulation or activation.
Rather, alternative strategies are required to mitigate composition effects. The simplest approach is to

gate out any high-abundance differential subpopulations. The total count can then be calculated from the
remaining cells, which avoids introducing composition effects from the differential subpopulation. Identifi-
cation of problematic subpopulations can be done before the DA analysis based on existing knowledge, or
afterwards based on the top DA hyperspheres. For example, consider a mixed population of T and B cells.
If these cells were analyzed together, a large increase in the number of B cells in one condition would result
in a concomitant decrease in the proportion of T cells – even if the number of T cells did not change between
conditions. This result would suggest that the T cell population decreases in abundance, which might be
misleading. Instead, one can gate on CD3 or CD19 to isolate T or B cells, respectively, and then analyze
each of the gated populations separately. This avoids detecting indirect changes in T-cell subpopulations due
to changes in B-cell abundance, and vice versa. Note that this is only necessary for DA subpopulations with
many cells, as changes in small subpopulations will not have a substantial effect on the total count.

Another approach is to test for differential abundance against a minimum log-fold change threshold.
This avoids detecting small changes in abundance caused by composition effects. Such changes may be
statistically significant but are unlikely to be biologically relevant [16], and are subsequently ignored. While
this is a more general approach than gating, it only protects against small composition effects – large changes
in the dominant subpopulation may induce large changes in abundance across all hyperspheres.

3.4 Assessing edgeR’s performance on mass cytometry count data

We tested the performance of edgeR using simulations constructed from the MEF reprogramming study. For
each MEF time course, we pooled cells from all associated samples. We generated new samples by randomly
sampling cells from the pool. Each new sample contained the same number of cells as one of the original
samples. We separated the new samples into two groups (i.e., biological conditions), counted cells into
hyperspheres and tested for DA between groups using edgeR. Here, we used a design matrix with a one-way
layout to fit a GLM to the counts for each hypersphere. A contrast was constructed to test for differences
between groups, as described above. As a comparison, we also tested the performance of the Mann-Whitney
test, which is often used to detect differential proportions in flow cytometry data [17] and has been applied
to mass cytometry data for the same purpose [18]. Each count in each hypesphere was converted into a
proportion of the total number of cells from the corresponding sample. The Mann-Whitney test was applied
to these proportions to test for significant differences between groups, using the wilcox.test function in R.

We used two sampling schemes for this simulation. The first scheme involved sampling with replacement
from the pool with a constant probability of sampling each cell. This is the simplest approach but assumes
that only sampling noise contributes to variability between replicates. In practice, additional biological
variability will be present due to differences in the composition of cell populations extracted from replicate
animals or cultures. To represent this, each cell j in the pool was assigned a probability weight Rjs for sample
s. (Rjs was sampled from a Gamma distribution with shape and rate set to 0.01. These parameters were
chosen to yield NB dispersions of 0.5-1.5 per hypersphere, comparable to values observed in Supplementary
Figure 7 for real data. In contrast, the first sampling scheme yields near-zero estimates.) The probability
of sampling cell j in sample s is proportional to Rjs, thus skewing selection towards a particular subset of
cells in that sample. However, as the values of Rjs differ between samples, the favoured subset will also be
different for each replicate. Thus, the weighting introduces extra variability by changing the cell composition
between replicates. Note that the null hypothesis is still true in this scheme – this is because E(Rjs) is the
same for all samples, which means that the average cell composition is the same between groups.

As all cells were sampled from the same pool, the null hypothesis of constant abundance should be true
for each hypersphere. Thus, p-values from both methods should be uniformly distributed. We calculated
the observed type I error rate as the proportion of p-values below a specified threshold α = 0.01 or 0.05.
For edgeR, we found that the observed type I error rate was close to or below the specified threshold for all
simulation schemes and threshold values (Supplementary Figure 9a). Accurate type I error control indicates
that the specificity of edgeR is maintained when applied to counts of cells assigned to hyperspheres. edgeR
also routinely yields lower p-values than the Mann-Whitney test for hyperspheres with extreme log-fold
changes in abundance between conditions (Supplementary Figure 9b). This is due to the loss of power from
using ranks with small sample sizes in the latter. edgeR is more sensitive as its parametric model accounts



for the size of the change in abundance, yielding smaller p-values at the same log-fold changes. These results
suggest that edgeR is appropriate for detecting differential abundance in mass cytometry data.

Note 4: Controlling the spatial FDR

4.1 A detailed explanation of the spatial FDR

Let us split the M -dimensional space into arbitrarily small non-overlapping partitions of similar volume. For
example, these partitions might be pixels in two-dimensional space, or voxels in three-dimensional space.
Each hypersphere is assigned to the partition containing its median-based position. The outcome of the test
for differential abundance for the hypersphere is used as a proxy for the outcome of its assigned partition
(Supplementary Figure 10). In the simplest scenario, a partition containing only one hypersphere will be
represented by that hypersphere. If multiple hyperspheres are assigned to a partition, a single hypersphere
is randomly selected as the representative. We define the FDR across the expected set of representative
hyperspheres (defined as the set of all hyperspheres, where each hypersphere is weighted by the probability
of being sampled from its partition) as the spatial FDR. By controlling this value below a specified threshold,
we effectively control the FDR across partitions, and thus, the FDR across the volume of those partitions.

In practice, we do not need to explicitly define partitions in order to control the spatial FDR. Rather, the
probability of sampling a representative hypersphere from a partition is inversely proportional to the density
of assigned hyperspheres in that partition. Given that our definition above considers small partitions of similar
size, the local density of each hypersphere can approximate the density of the partition to which it is assigned.
Thus, instead of directly allocating hyperspheres into partitions and computing the partition density (which
would involve arbitrary definitions of the shape, size and arrangement of partitions), we compute the local
density of each hypersphere by applying a kernel density estimator to the positions of all tested hyperspheres.
The weight of each hypersphere is defined as the reciprocal of its local density. This approximates the relative
probability (scaled by some constant, which can be ignored) of sampling that hypersphere as a representative
of its partition. Finally, the Benjamini-Hochberg method is applied to the hypersphere p-values with the
associated weights. This controls the FDR across the expected set of representative hyperspheres.

We stress that the aforementioned partitions are only necessary for the theoretical definition of the spatial
FDR. There is no need to actually construct these partitions when controlling the FDR in real analyses.

As described in Figure 1d, the spatial FDR can be roughly interpreted as the proportion of the volume
occupied by DA hyperspheres that corresponds to false positives. This is based on considering partitions of
similar size to the hyperspheres, such that the total volume of the partitions, and the proportion of which is
false positive, is similar to that of the hyperspheres. (The corresponding assumption in our control procedure
would be that the kernel bandwidth is similar to the hypersphere radius. However, the results are quite
robust to the choice of bandwidth – see Supplementary Table 1 – so we will ignore this subtlety.) While
a definition of the spatial FDR based on the hypersphere volumes is intuitive, it is difficult to implement.
Computing the total volume of (overlapping) hyperspheres in high-dimensional space is not straightforward.
It is also unclear how to define the “false positive volume” in the presence of overlaps between a false and
true positive hypersphere. Our definition of the spatial FDR, while less intuitive, is easier to control.

4.2 Applying the weighted Benjamini-Hochberg procedure

Let each null hypothesis i be associated with a p-value p(i) and a weight of w(i). Assume that there are n null
hypotheses, ordered such that p(1) < p(2) < ... < p(n). To control the FDR at some threshold α, a weighted
BH procedure is applied [19] to reject any null hypothesis where the p-value is less than the threshold

max
i

{
p(i) : p(i) ≤ α

∑i
l=1 w(l)∑n
l=1 w(l)

}
.

To control the spatial FDR, we apply the weighted BH method to the hypersphere statistics. Each
hypersphere corresponds to one null hypothesis, while its weight is defined as the reciprocal of its local
density. Here, a decision must be made regarding the choice of kernel density estimator and bandwidth.
For the latter, we compute the distance from each hypersphere position to its 50th nearest neighbour. The



bandwidth is defined as the median of this distance across all hyperspheres. This ensures that, on average,
around 50 neighbours will be available to stably calculate the local density for each hypersphere. We also use
a tricube kernel to provide some robustness to the choice of bandwidth (Supplementary Table 1). This gives
more weight to closer neighbours while reducing the influence of cells that fall just inside the bandwidth.

4.3 A discussion on the relevance of the spatial FDR

An obvious question is, why we do not directly count cells into equally sized and spaced partitions, rather than
using hyperspheres? This would certainly simplify FDR control as the BH method could be applied directly
to the p-values for the partitions. However, choosing a value for the spacing parameter is not straightforward.
A value that is too small would be computationally impractical, while a value that is too large will sacrifice
spatial resolution. Our approach avoids this problem by using hyperspheres centred on cells. This means that
a hypersphere will generally be present at relevant parts of the high-dimensional space (i.e., those occupied
by cells), while limiting the total number of hyperspheres to be proportional to the number of cells.

It is worth noting that we control the FDR in the expected set of representative hyperspheres, rather than
the expectation of the FDR with respect to all possible sets of randomly sampled representatives. Formally
speaking, control of the FDR would refer to controlling the latter value. The FDR across the expected set is
used in our analysis because it is simpler to compute. It also approaches the expected FDR when considering
small partitions, as strong correlations betwen hyperspheres in the same partition mean that the expected
set will have a similar (frequency-weighted) distribution of p-values as any instance of the sampled set.

In terms of interpretation, controlling the spatial FDR may not be the same as controlling the FDR
across the underlying subpopulations. For example, consider a scenario containing a DA subpopulation of
large volume and a non-DA subpopulation of small volume. Assume that both subpopulations are detected
after the DA analysis. In this situation, the observed spatial FDR would be small as the proportion of
volume taken up by the second (false positive) subpopulation is low. By comparison, the observed FDR
across subpopulations would be larger (50%) because one of the two subpopulations is a false positive. The
FDR across subpopulations is appealing as it is more intuitive than the spatial FDR. However, it is difficult
to control in general as it relies on the subpopulations being well-defined. Furthermore, the use of the spatial
FDR is justified by the potential presence of further substructure within the larger DA subpopulation. This
necessitates separate examination of each part of the first subpopulation, proportional to its volume.

A similar issue arises from the fact that visualization and interpretation of the differential subspaces is
performed in low dimensions, e.g., with PCA or t-SNE plots. There is no guarantee that the FDR across,
say, pixels in the two-dimensional space is equal to the spatial FDR computed in the original M -dimensional
space. One could overcome this problem by controlling the spatial FDR using hypersphere coordinates in
low-dimensional space. However, this level of statistical rigour seems unnecessary for data exploration. In
addition, one of the aims of the DA analysis is to simplify data visualization by only processing the subset of
DA hyperspheres. It is not clear how the FDR can be rigorously controlled across the low-dimensional space
if dimensionality reduction is performed on hyperspheres that have been pre-selected for significance.

We note that the concept of the spatial FDR is analogous to the FDR across areas [20] or the size-weighted
FDR across clusters [21] used in analyses of functional magnetic resonance imaging (fMRI) data. fMRI data
analysis is a similar problem in that the signal of interest has a spatial component (2-3 dimensions) and the
aim is to control the FDR across this space. However, the application of these methods to hypersphere-based
p-values is not obvious – we do not use random fields for hypothesis testing, and we explicitly avoid clustering
by using hyperspheres. This motivated the development of our own spatial FDR-controlling procedure.

4.4 Assessing the use of weights for spatial FDR control

We performed simulations based on the MEF reprogramming data to test the use of density-based weights.
Each sample was constructed using the weighted sampling scheme described in Note 3.4, for an experimental
design containing several replicates in each of two groups. We then added a further Ts/10 cells to each sample
s, where Ts is the original number of cells in s. The additional cells were assigned marker intensities of zero
for all samples in the first group, and intensities of 1 for all samples in the second group. This represents a
differential subpopulation between groups where a subpopulation at (0, 0, . . . , 0) is lost and a subpopulation
at (1, 1, . . . , 1) is gained. While more complex differential events can be simulated, we use this simple set-up



as we are not interested in the true differences, but rather, their effect on the detection of false positives.
We applied the BH method to the p-values for all hyperspheres, either directly or with density weights.

Detected DA hyperspheres were defined as those with adjusted p-values below 0.05. To measure the observed
spatial FDR across the detected hyperspheres, we partitioned the M -dimensional space into non-overlapping
hypercubes with side lengths ranging from 0.2 to 1. Each DA hypersphere was assigned to the hypercube
containing its median-based position. For each non-empty hypercube, we computed the proportion of its
assigned hyperspheres that were not truly differential. The observed spatial FDR was defined as the mean of
these proportions across all non-empty hypercubes. (This reflects the definition in Note 4.1. Each hypercube
represents a partition of similar volume, from which one hypersphere is chosen as a representative. The mean
proportion is an estimate of the expected proportion of representatives that are false positives.)

In our simulations, the BH method with density weights was able to control the observed spatial FDR
close to or below the specified threshold (Supplementary Figure 11). In comparison, näıve application of the
BH method (i.e., without weighting) failed to control the spatial FDR. This is because the näıve approach
controls the FDR across hyperspheres, which is generally not equivalent to controlling the FDR across volume
(Figure 1d). The weighting approach performs better as it explicitly controls for the latter feature.

Note 5: Detailed interpretation of non-redundant hyperspheres

While dimensionality reduction is useful for providing an overview of the data, it necessarily discards in-
formation that may actually be biologically relevant. To assist users with more detailed interpretation of
individual hyperspheres, we provide an option to prune out redundant hyperspheres. First, hyperspheres are
sorted by their p-value. A hypersphere is considered non-redundant if its position is more than 1 intensity unit
away (in one or more dimensions) from another non-redundant hypersphere with a lower p-value. One unit
represents an approximately 10-fold change in marker intensity between hyperspheres, which is large enough
to warrant separate examination of those hyperspheres, though users can adjust this threshold as desired.
The non-redundancy criterion is evaluated for all hyperspheres in order of increasing p-value, which ensures
that DA hyperspheres are reported as non-redundant rather than their neighbouring non-DA counterparts.
This procedure yields a small number of non-redundant hyperspheres that can be examined individually. For
example, over 7000 hyperspheres were detected as significantly DA in the Oct4 -GFP reprogramming time
course, but only 325 were considered to be non-redundant. These can be investigated using a simple user
interface like that shown in Supplementary Figure 12. This provides a clear view of the median intensity of
each marker and facilitates the identification of the biological subpopulation represented by each hypersphere.

Note 6: Description of the MEF reprogramming study

6.1 Overview

We demonstrate our approach using data from a study of mouse embryonic fibroblast (MEF) reprogramming
[4]. In this study, primary and secondary MEFs were reprogrammed to induced pluripotent stem cells.
Primary MEFs expressing green fluorescent protein (GFP) from the endogenous Oct4 locus (Oct4 -GFP) were
transduced with lentiviruses expressing a doxycycline-inducible suite of reprogramming factors. Secondary
MEFs expressing either GFP or a neomycin resistance gene from the endogenous Nanog locus (Nanog-GFP
or Nanog-Neo, respectively) already contained doxycycline-inducible reprogramming transgenes. For each
MEF reprogramming system, a time course was constructed by taking samples at 13-15 timepoints between
days 0 and 20 (for Oct4 -GFP) or 30 (for Nanog-GFP or Nanog-Neo) after doxycycline-induced transgene
expression. All samples from each time course were barcoded, stained with metal-conjugated antibodies and
profiled by mass cytometry. The aim of the original data analysis – and of our re-analysis – was to detect
subpopulations that change in abundance over time within each reprogramming system.

6.2 Annotating subpopulations in the Oct4 -GFP time course

To annotate Figure 2 in the main text, we examined the marker intensities of each characterised subpopu-
lation in Figure 3D of Zunder et al. [4] and identified the cluster with the most similar intensities in our



Supplementary Figure 13. The important markers for each subpopulation are listed below:

• MEFs were primarily defined as THY1highmEF-SK4highCD140ahigh and OCT4lowSOX2low with lower
expression of KLF4 relative to other subpopulations. This was visually supported by the fact that the
same cells were pS6highβ-CateninhighIκBαhigh in the original figure.

• The OSKM non-expressing population was identified as OCT4lowSOX2low with lower KLF4. In addi-
tion, a majority of cells exhibited lower THY1 and CD140a expression compared to the neighbouring
MEF population. This was further supported by low expression of pS6 in a majority of these cells, as
well as reduced β-Catenin and IκBα expression and higher p53 expression relative to MEFs.

• A small subset of MEFs in Figure 2 exhibited very high CD140a expression. This represents OSKM
non-expressing cells that reverted to a MEF-like endpoint state after doxycycline withdrawal.

• The OCT4highKLF4high population was identified as named, supported by high expression of SOX2.

• The SC4-like population was identified as KLF4highOCT4highCD73high, additionally supported by high
expression of KI67 and low expression of SOX2.

• Cells undergoing mesenchymal-epithelial transition were identified as EPCAMhigh, supported by high
expression of both β-Catenin and OCT4 in the majority of cells.

• KI67low reverting cells were identified as KI67lowCD73high. This annotation was supported by high
expression of mEF-SK4 in parts of the population.

• The NANOGhigh trajectory in the original study was a continuum of NANOG expression, starting from
NANOGlow cells and progressing to NANOGhigh cells. In our re-analysis, it manifests in Supplementary
Figure 13 as several NANOG-intermediate subpopulations close to the LIN28high and embryonic stem
cell (ESC)-like subpopulations. The annotation was supported by high expression of EPCAM and
SSEA1, as well as higher pS6 expression in some parts of the trajectory.

• ESC-like cells were identified as the population with the highest NANOG expression and high expression
of SSEA1 and LIN28. This was supported by high levels of H3K9ac, H4Kac, CD54, pSRC and pERK.

• LIN28high cells were identified as named, supported by high expression of CD24. They were further dis-
tinguished from ESC-like cells by having higher expression of CD140a and lower expression of NANOG.

• The KI67high population was identified as named, supported by lower expression of OCT4.

• The mixed 4F population from the original study was highly heterogeneous and difficult to characterize.
We identified it as mostly KLF4low, containing subpopulations with intermediate c-Myc expression and
both high and low SOX2 expression. However, we were unable to identify the OCT4low subpopulations.

In summary, we were able to detect most of the previously defined subpopulations as being DA over the time
course. This included intermediate populations as well as the reprogramming end points, i.e., the ESC-like
cells, the mesendoderm-like LIN28high cells, and THY1highmEF-SK4high cells that likely failed to reprogram
and instead reverted to a MEF-like phenotype. In particular, the abundance of MEFs dropped over time
while the abundance of ESC-like cells increased, consistent with the effects of reprogramming. Many of these
subpopulations were further resolved into distinct subsets based on specific markers such as IdU.

For several subpopulations, we examined changes in abundance at critical junctures in the time course.
Supplementary Figure 18 shows the effect of doxycycline-induced transgene expression and doxycycline with-
drawal. In the former, the MEFs decrease in abundance while the mixed 4F population begins to increase,
consistent with induction of some of the reprogramming factors. Upon withdrawal, the mixed 4F and SC4-
like subpopulations decrease as cells progress towards the reprogramming endpoints. This highlights the
flexibility of our analysis, where the data can be easily interrogated to study specific changes of interest.

We also identified changes in abundance of subpopulations that were not explicitly classified by Zunder
et al. This included an increase in potentially apoptotic cells with cleaved Caspase-3; a non-linear change in
abundance of a subpopulation of SC4-like cells with phosphorylated STAT3, AMPK and PLK1 (Supplemen-
tary Figure 19); and a decrease in abundance of a subpopulation of cells simultaneously expressing high levels
of the MEF marker THY1 along with the reprogramming factors SOX2 and OCT4. Thus, our DA analysis
method is able to identify significant changes in abundance even in small or transitional subpopulations.



6.3 Comparison to the Zunder et al. analysis

Our analytical pipeline offers several advantages over the original analysis of Zunder et al. [4]. The latter
is mainly descriptive, whereas the error-controlling procedures in our analysis provide a greater degree of
confidence as to whether the detected changes in abundance are genuine. Figure 2 also uses both visual
dimensions to separate subpopulations, while the original analysis reserves one dimension for time. This
enhances resolution of distinct subpopulations, albeit at the cost of temporal resolution. Of course, our ap-
proach is modular so alternative visualization schemes can be easily applied (on the significant hyperspheres,
or the cells contained within them) to focus on particular aspects of the data. For example, methods like
SPADE can be applied to organize the detected DA hyperspheres into a tree for visualization of lineages.

Note 7: Identifying subpopulations in the BMMC data set

Levine et al. [9] examined bone marrow aspirates from healthy donors and acute myeloid leukemia patients
under various brief stimulation conditions. To demonstrate the general applicability of our method, we per-
formed a limited re-analysis of this data set, with the aim of identifying changes in subpopulation abundance
upon IL-10 treatment in the five healthy donors only. We obtained the raw FCS files for the relevant samples
from Cytobank (accession 44185). Pre-processing of the marker intensities was performed as described for
the MEF reprogramming data set, with some modifications. Specifically, cells with high outlier values for the
viability marker were gated out to remove dead cells, and intensities were range-normalized across batches as
described above. We then used our pipeline to test for differences in abundance between each treated sample
and its donor-matched untreated control. Here, counts were modelled using an additive design for treatment
with a donor blocking factor. We also increased r0

√
2 to 0.55 to ensure that most hyperspheres contained

at least 15-20 cells, based on a plot similar to Supplementary Figure 2. Finally, to simplify interpretation,
we ran t-SNE separately on the significant hyperspheres with positive and negative log-fold changes. This
yielded two sets of coordinates that were placed side-by-side in a single plot for convenient visualization.

Our DA analysis revealed several differential subpopulations at a spatial FDR of 5% – namely, a CD11bhigh

CD64high population of monocytes, a CD19high population of B cells and a CD3high population of T cells
(Supplementary Figures 20-21). Within each subpopulation, pSTAT3high hyperspheres increased in abun-
dance upon stimulation compared to the untreated samples, while pSTAT3low hyperspheres decreased in
abundance. This represents an increase in pSTAT3 expression, consistent with the expected effects of IL-10
on mature immune cells. Similar to Levine et al., we found that only mature bone marrow populations re-
sponded to IL-10 stimulation. No changes in abundance were observed in CD34highCD3lowCD11blowCD19low

hyperspheres corresponding to progenitor populations. We also identified new subpopulations such as a
subset of CD3high cells that responded to IL-10 stimulation with increased pSTAT3 expression but did not
express the T lineage marker CD7. Thus, our method is able to provide statistical rigour as well as additional
biological insight.

Note 8: Detecting biological shifts in marker intensity

8.1 Overview

A complementary approach to DA analyses is to detect differential marker expression within the same sub-
population. Given a (manually or automatically defined) subpopulation, the average intensity of a particular
marker can be compared between conditions [18, 22]. This detects changes in the expression of activation or
signalling markers within a subpopulation. (In this note, we consider these as biological shifts in intensity, in
contrast to the technical shifts discussed in Note 2.3.) Our pipeline is different in that it tests for changes in
the abundance of cells, rather than their marker intensities. However, these two types of differential events
are closely related. Consider a marker X in subpopulation Y that increases in expression between two condi-
tions. In our analysis, this will manifest as the appearance of new subpopulation Y ′, separated from Y in the
high-dimensional space by an increase in the intensity of X. This new subpopulation will then be detected
as DA between conditions. We observed this effect in our re-analysis of the BMMC data set, where an in-
crease in pSTAT3 levels upon IL-10 stimulation manifested as an increase in the abundances of pSTAT3high



subpopulations and a concomitant decrease in the abundances of pSTAT3low subpopulations. Thus, changes
in intensity can be interpreted as changes in abundance for detection with a DA analysis pipeline.

8.2 Direct detection of intensity shifts between conditions

That said, it may be desirable to test for shifts in intensity directly, as this is easier to interpret than
identifying opposing changes in two separate DA subpopulations. We implemented this functionality using
the statistical methods in the limma package [23]. In this analysis, we separate our markers into two sets:

1. Markers to be tested for shifting. This typically includes markers that change in intensity within a
single cell over the conditions being compared, e.g., during activation or stimulation.

2. Markers that will not be tested for shifting. This includes markers that do not change in intensity for
each cell, e.g., when defining cell types. Here, testing for shifts has no clear biological meaning.

Hyperspheres are constructed using only the non-shifting markers in Set 2. Within each hypersphere, the
median intensity of a shifting marker in Set 1 is computed across all cells in each sample. This yields S median
intensities for each hypersphere where S is the number of samples. We perform weighted linear regression
on the set of medians for each hypersphere, under the assumption that the errors are normally distributed.
The weight for each median is set to the number of cells from that sample in the hypersphere. The precision
of the sample median is approximately proportional to the number of values from which it is computed [24]
– this ensures that a median calculated from a few cells is downweighted to reflect its instability.

Once the linear model is fitted to the medians, a variance estimate is obtained for each hypersphere. Note
that this represents the variability of the median intensities across replicates, not the variability of the cell
intensities within each sample, nor the variability of the cell counts across samples. Empirical Bayes shrinkage
is performed to stabilize the variance estimates by sharing information between hyperspheres. Hypothesis
testing is done using the moderated t-test, yielding a p-value against the null hypothesis that the median
intensity is the same across conditions. In this manner, each hypersphere is tested for shifts in intensity for
each marker in Set 1. The spatial FDR is then controlled using these p-values. This is reasonable as the only
purpose of the spatial FDR is to account for variations in the density of hyperspheres. Thus, the procedure
can be applied to any hypersphere-level p-values, be they for intensity shifts or changes in abundance.

It should be stressed that any markers to be tested for shifting (i.e., in Set 1) should not be used when
assigning cells to hyperspheres (Set 2 only). Consider a marker X containing potential shifts in intensity
between conditions. A hypersphere that is centred on a cell with high X expression would, by definition,
contain neighbouring cells that also have high expression of X. This means that there would be little, if any,
shifts in intensity for X within this hypersphere. Rather, the relevant comparison would be to cells with low
expression of X, but these would be in a different hypersphere and not visible to the testing procedure.

8.3 Comparison of detection power

Of the two approaches to detecting intensity shifts – direct detection by linear modelling of medians, or
through the DA framework – which should be used? To answer this question, we set up simple simulations
with intensity shifts of varying size and scope. We generated intensity values for 20000 cells with 30 markers,
each of which was sampled independently from a Normal(1, 0.5) distribution. These cells were randomly
allocated to four samples, with two groups of two replicates each. From the cells in the second group, we
randomly selected a proportion P and increased the intensity of the last marker by I for the selected cells.
We used P = 1 and 0.1 as well as I = log10(2) and log10(40), i.e., a 2- or 40-fold increase in marker expression
on the raw scale. In each simulation scenario, we set up hyperspheres on the first 29 markers and used the
direct detection method to test for intensity shifts between groups. We considered the shifting event to be
successfully detected if a hypersphere was detected at a spatial FDR of 5%, had a positive log-fold change in
the median intensities for the last marker and contained at least one cell with shifted intensity. We also set up
hyperspheres using intensities of all markers and performed a DA analysis between groups. Here, detection
was considered to be successful if a hypersphere was detected at a spatial FDR of 5%, had a positive log-fold
change in abundance and a median-based position within 0.5 intensity units of 1 + I for the last marker.

We observed that both methods were able to consistently detect shifts in intensity affecting the entire
population of cells (Supplementary Figure 22). Even small shifts were detected by the DA approach – while



the shifted population in one group and the unshifted population in the other group still overlap substantially
in M -dimensional space, the differences in cell density are sufficient to detect the shifting event. A more
interesting scenario is that of a large shift in a subset of cells, where the robustness of the median becomes a
disadvantage for the direct approach. Power is reduced because the median is not suited to capturing changes
in a small subset of cells. In contrast, the DA approach simply defines new hyperspheres for the affected
subset, allowing the shifting to be easily observed as a new subpopulation. Finally, both methods perform
poorly for small shifts in a subset of cells. This is to be expected as the shift is weak and hard to detect.

These results suggest that the DA approach provides more power for detection of intensity shifts. It also
allows detection of subpopulations with concomitant changes in multiple markers, e.g., if multiple signalling
pathways are activated. This simply manifests as DA hyperspheres where the median-based positions have
high intensity values for the appropriate combination of markers. On the other hand, the direct approach is
more interpretable as it explicitly describes the changes in intensity of a marker in a given subpopulation.
Thus, we have implemented both methods in our framework as each complements the other’s capabilities.

Note 9: Comparing to approaches based on clustering

9.1 Overview

As mentioned earlier, existing methods for analyzing mass cytometry data involve an initial clustering step.
This approach can be easily extended to DA analyses, where the number of cells in each cluster from each
sample is counted, and the counts for each cluster are tested for differences between conditions. We compare
our hypersphere-based method against two cluster-based approaches – a custom approach involving hierachi-
cal clustering of cells followed by testing with edgeR; and the CITRUS software [25], which uses statistical
methods developed for microarrays [26]. While testing for changes in abundance within clusters is intuitive,
it is subject to the performance of the clustering algorithm [27, 28]. This is especially relevant for subpop-
ulations that are not clearly separated from each other. For example, if a DA subpopulation is incorrectly
clustered with a non-DA subpopulation, any change in the former will be masked by the latter. This will
compromise detection power of the subsequent DA analysis. Cluster formation also depends upon the choice
of algorithm and parameters [29, 30], which complicates the assessment of cluster reliability.

9.2 Simulation design and analysis

We simulated data for an experimental design involving 30 markers and two replicates in each of two con-
ditions. For a population of 20000 cells, we sampled intensities for each marker from a Normal(1, 0.5)
distribution. Each of these cells was randomly allocated to a sample, producing a non-DA population with
equal representation in both conditions. We also simulated intensities for two subpopulations of 40 cells each,
where the cells from each subpopulation were allocated to samples in one condition only. Marker intensities
for cells in these subpopulations were sampled from a Normal(x, 0.3) distribution, where x = 4 for the first
marker in the first subpopulation and x = 2 otherwise. This yields two small DA subpopulations that lie
adjacent to each other but change in opposite directions between conditions (Supplementary Figure 23).

To perform the custom cluster-based DA analysis, all cells were used for complete-linkage hierarchical
clustering based on the Euclidean distances between cells in the M -dimensional space. Clusters were defined
by cutting the dendrogram with the cutree command in R to generate 5-500 clusters. For each cluster, the
number of cells from each sample was counted. These counts were analyzed in edgeR to identify clusters
with significant differences between conditions, as previously described. Correction for multiple testing was
performed by directly applying the BH method to the cluster-level p-values. Detected clusters were defined
at an FDR of 5%. To run CITRUS, the citrus.full command was used with family set to “classification”,
featureType set to “abundances” and modelType set to “sam”. Downsampling was performed to 1000 cells
per sample and the minimum cluster size was set to 5%. Clusters with significant differences between groups
were detected at an FDR of 5%, as reported by the SAM method. For our hypersphere-based method, the
DA analysis was performed as described and hyperspheres were detected at a spatial FDR of 5%.

For the cluster-based methods, the centre of each cluster in M -dimensional space was defined from the
median intensity across its cells for each marker. We use the cluster centre as a summary of the location of the
entire cluster, as this reflects the common use of the median marker intensity to characterise cell clusters in



practical applications [31, 25]. Each simulated DA subpopulation was considered to be successfully detected
if the centre of a detected cluster was within 0.5

√
M of the true subpopulation centre. This assessment

was repeated using the median-based positions of DA hyperspheres. For each method, we computed the
percentage of simulation iterations in which each DA subpopulation was successfully detected.

We observed that these subpopulations were consistently detected as being differentially abundant by our
hypersphere-based method but not by most of the cluster-based methods (Supplementary Figure 23). This is
because clusters cannot be unambiguously defined in this scenario, such that a cluster corresponding to one
of the DA subpopulations will include cells from the other subpopulation. Subsequently, the power to detect
this cluster is reduced as the DA log-fold change in one direction is weakened by the contribution from the
subpopulation changing in the other direction. This is likely to be problematic in situations where subpopu-
lations are not clearly separated. Examples include gating strategies commonly used in immunophenotyping
to characterise subsets of T and B cells [32], as well as protocols for isolation of haematopoietic stem cell
and progenitor populations [33]. Indeed, many of the subpopulations in the MEF data set form a continuous
trajectory over time [4], so suboptimal DA detection due to ambiguous cluster formation is not surprising
(Supplementary Figure 24). In such cases, the use of hyperspheres may be more appropriate because each
subspace is tested for differences, even if the underlying biological subpopulations are poorly defined.

9.3 Issues associated with overclustering

As Supplementary Figure 23 demonstrates, the use of a large number of clusters (i.e., “over-clustering”)
can mitigate the disadvantages of cluster-based methods compared to hyperspheres. At a certain number
of clusters, the size of each cluster will be roughly similar to that of each hypersphere. This improves the
spatial resolution of clustering and increases the power to detect small DA subpopulations. However, the
need to explicitly define cluster boundaries still leads to some loss of power relative to our hypersphere-based
method, particularly in cases where the separation between DA and non-DA subpopulations is not obvious.

There are also some practical issues with the use of over-clustering in routine analyses. The most obvious
problem is an appropriate choice of the number of clusters k. If k is too small, resolution is lost, while if
k is too large, the counts per cluster will be too low to reject the null hypothesis. In some respects, this is
analogous to the choice of the hypersphere radius r. However, r scales with the number of markers and is
largely agnostic to the true number of subpopulations in the data set. This is not the case with k, e.g., a
choice of k = 50 in a data set with 10-20 subpopulations defined by 10 markers may not be sufficient when
analyzing a more heterogeneous data set with 30 markers defining hundreds of distinct subpopulations.

While the DA analyses can be repeated with multiple k, integrating these analyses into a single set of
results is challenging. This is due to the redundancies and dependencies between different k, which affects
FDR control and interpretation of the results. For example, if a cluster is detected as DA, and all its internal
subclusters are also detected, how many discoveries does that actually constitute? If some of the subclusters
are false positives, what would the FDR be? Should all, some or none of the subclusters be reported and
visualized? Even with a single k, the FDR across clusters is not easily interpretable after over-clustering,
because we cannot assume that each cluster represents (accurately or otherwise) some biologically meaningful
subpopulation. Rather, the interpretation would become closer to that of the spatial FDR, possibly requiring
some additional work to explicitly control the spatial FDR if the volume of each cluster is not the same.

9.4 Comparing to CITRUS in other modes

The CITRUS software has several other modes of operation – one to identify features of subpopulations
that associate with the conditions (“glmnet”) and another to build a classifier (“pamr”). These modes
are primarily intended for prediction and classification. In contrast, we perform formal hypothesis testing
to identify significant changes (in abundance, or shifts in intensity) between conditions for explanatory
purposes. These functions are not easily comparable as the aims of prediction and explanation are distinct
from a statistical perspective [34]. For example, consider a treatment condition that increases the intensity
of two markers, e.g., pSTAT3 and pSTAT5. Our approach would detect significant shifts between conditions
in both of these markers. However, a prediction strategy would only be obliged to include one marker in the
predictive model, as the other marker is redundant and unnecessary for distinguishing between conditions.
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Supplementary Table 1: Effect of changes to the hypersphere radius on the DA analysis. The number of
hyperspheres retained after filtering is shown, along with the number detected with significant differences at
a spatial FDR of 5%. In each altered analysis, the number of DA hyperspheres gained or lost relative to the
original analysis is reported. The effect of altering the bandwidth in the spatial FDR calculation was also
tested, by defining the bandwidth using the 20th (smaller) and 100th nearest neighbour (larger).

Dataset Statistic Original Value of r0
√

2 Bandwidth
0.48 0.52 Smaller Larger

Oct4 -GFP Total 7720 4984 10799 7720 7720
Significant 7416 4837 10242 7418 7414
Gained - 35 2916 2 0
Lost - 2614 90 0 2

Nanog-GFP Total 6297 4137 8700 6297 6297
Significant 5947 3917 8291 5947 5944
Gained - 63 2389 0 0
Lost - 2093 45 0 3

Nanog-Neo Total 22043 15025 28944 22043 22043
Significant 21532 14663 28271 21532 21532
Gained - 53 6809 0 0
Lost - 6922 70 0 0
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Supplementary Figure 1: Euclidean distance from each cell to its nearest neighbours as a function of
the number of markers. For each cell in the first sample of each time course in the MEF reprogramming
study, its nearest neighbours were identified in the full (36-dimensional) space. A subset of 9-25 markers
were randomly chosen and the distance to each neighbour was recalculated for each cell in the reduced space.
Here, the distance to the 10th nearest neighbour is shown for Oct4 -GFP and Nanog-Neo, while that to the
1st nearest neighbour is shown for Nanog-GFP. Each point represents the mean distance and the error bar
represents the sample standard deviation across all cells for a given number of markers. This calculation was
also repeated using all 36 markers. The hypersphere radius used for each number of markers is shown in red.
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Supplementary Figure 2: The relationship between the radius (based on the choice of r0
√

2) and the cell
count for each hypersphere in the Oct4 -GFP time course. For each hypersphere centred on a cell, the radius
required to include a certain number of nearest neighbours is computed. The distribution of radii across all
hyperspheres is shown as a boxplot for each neighbour. The red line represents the default r0

√
2 = 0.5. The

blue lines mark the r0
√

2 corresponding to median distances required to include 7 and 29 neighbours.
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Supplementary Figure 3: Schematic of the simulation design used to examine the effect of increasing the
hypersphere radius. Here, the experimental design consists of two samples from different conditions and 30
markers. Two subpopulations are present in the high-dimensional space, one of which is DA between samples
(red) and the other is not (grey). Cells from each subpopulation (10000 each) are uniformly distributed
within a 30-dimensional sphere with radius (referred to as “size”, above) of length 0.5

√
30, centred at the

subpopulation mean (crosses). The means of the two subpopulations are separated by a distance of 0.5 in
each dimension. Each hypersphere’s position is calculated by taking the median in each dimension across all
cells in the hypersphere. Note that the radii of the hyperspheres and subpopulations need not be identical.
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Supplementary Figure 4: Simulation results demonstrating the effect of expanding the radius on the
median-based position of each hypersphere. For each hypersphere, the distance between its position and the
mean of the DA subpopulation was computed and plotted against the log-fold change in cell counts between
samples. Hyperspheres are coloured based on whether they were centred on cells from the DA (red) or non-
DA (grey) subpopulations. The vertical dashed line marks the distance corresponding to the size of the DA
subpopulation, while the horizontal dashed line represents a log2-fold change of 1. This process was repeated
to create plots for a range of increasing hypersphere radii and for different simulation scenarios. Scenario 1
refers to the default scenario described in Supplementary Figure 3, while scenario 2 involves decreasing the
number of cells in the DA subpopulation to 5000; scenario 3 increases the distance between subpopulations
to 0.8 in all dimensions; and scenario 4 decreases the size of the DA subpopulation to 0.2

√
30.
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Supplementary Figure 5: Histograms of phosphorylated STAT3 intensities of BMMCs from five healthy,
untreated individuals in the Levine et al. data set, before normalization (left), after range-based normalization
(middle) and after warping normalization (right). Each curve represents a separate individual and is labelled
with a different colour. Points represent the proportion of cells with zero intensities in each batch.
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Supplementary Figure 6: Observed type I error rates in the simulation of intensity shifts, for DA analyses
using either the default hypersphere radius (r0

√
2 = 0.5) or an expanded radius designed to accommodate the

estimated shift. Simulations were based on the MEF reprogramming time courses, using values sampled from
a Normal distribution with mean zero and standard deviation of 0 (no shift) to 0.3 (moderate shift) to shift
marker intensities between samples. The observed type I error rate was calculated at a nominal threshold of
0.01 (left). The common dispersion estimate across all hyperspheres was also computed (right). All values
represent the mean across 50 simulation iterations, with error bars representing the standard error.
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Supplementary Figure 7: NB dispersion estimates for all hyperspheres in each time course of the MEF
reprogramming data set, plotted against the average number of cells across all samples in each hypersphere.
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Supplementary Figure 8: Minimum p-value from edgeR as a function of the mean. This assumes an
experimental design containing five replicates in each of two groups, where each replicate has the same total
number of cells. edgeR was applied to test for significant differences between groups using a NB dispersion
of 1. Dashed lines represent p-value thresholds and the smallest mean count required to achieve them.
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Supplementary Figure 9: Performance of edgeR for detecting DA hyperspheres, using simulations based
on the MEF reprogramming time courses. (a) Observed type I error rates with edgeR for each simulated time
course with technical or biological variability, constructed by simple or weighted sampling of cells respectively.
Bar heights represent the mean of 10 simulation iterations, with error bars representing standard errors. The
red lines denote the specified thresholds of 0.01 (left) or 0.05 (right). (b) Log10-ratios of the p-values computed
by edgeR against those from the Mann-Whitney (MW) test, plotted against log2-fold changes. Simulations
were performed using weighted sampling for the Oct4 -GFP time course, and each hypersphere was tested for
differential abundance. Coloured points represent hyperspheres with absolute log-fold changes greater than
two and p-values that are smaller in edgeR compared to the MW test (purple) or vice versa (orange). The
number of such hyperspheres is also reported. The size of each point is determined by the edgeR p-value.
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Supplementary Figure 10: Assignment of hyperspheres to hypothetical partitions. Each point represents
the median-based position of a hypersphere in a data set with two markers, coloured based on its test outcome
(red for significant increases in abundance between conditions, blue for significant decreases, white for no
significant differences, and grey for false positives). Each hypersphere is assigned to a partition, and the test
outcome of each partition is defined as that of its hyperspheres. For simplicity, all hyperspheres in a partition
have the same outcome here. The aim is to control the spatial FDR across partitions, rather than the FDR
across hyperspheres. In this example, the spatial FDR is 25% while the FDR across hyperspheres is 5%.
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Supplementary Figure 11: Control of the spatial FDR using the näıve and weighted BH methods, in
simulations based on the MEF reprogramming time courses. The observed spatial FDR was calculated in
M -dimensional space using hypercubes of width 0.2 to 1. Bar heights represent the mean of 50 simulation
iterations, and the error bars represent standard errors. The red line denotes the nominal threshold of 5%.



Supplementary Figure 12: A Shiny-based user interface for detailed interpretation of non-redundant
hyperspheres. Each density curve represents the distribution of intensities across all cells for a particular
marker. The red dot indicates the median intensity for the hypersphere being examined, while the interval
contains 95% of all cells in the hypersphere. The area under the curve is coloured depending on whether the
median is high (yellow) or low (purple) compared to the intensities for the majority of cells. Each hypersphere
can be annotated based on its intensities (e.g., to describe the subpopulation that it represents), and these
labels are stored in memory for future use. In addition, the closest non-redundant hyperspheres that have
already been labelled are shown for each new hypersphere, to simplify further labelling of nearby hyperspheres
in the high-dimensional space. Navigation through the set of hyperspheres is done based on the hypersphere
number or by selecting locations in a dimensionality reduction plot (in this case, t-SNE is used).



Supplementary Figure 13: Marker intensities of differentially abundant subpopulations in the Oct4 -GFP
time course, detected at a spatial FDR of 5%. Each plot corresponds to a marker while each point represents
a hypersphere, coloured according to its median intensity for the corresponding marker. The boundaries of
the colour range for each marker were set to the 1st and 99th percentiles of the intensities for all cells.



Supplementary Figure 14: Differentially abundant subpopulations in the Nanog-GFP time course, de-
tected at a spatial FDR of 5%. Each point is a hypersphere and is coloured according to its log-fold change
in abundance over time. Grey points are hyperspheres with significant but non-linear changes in abundance.



Supplementary Figure 15: Marker intensities of differentially abundant subpopulations in the Nanog-
GFP time course, detected at a spatial FDR of 5%. Each plot corresponds to a marker while each point
represents a hypersphere, coloured according to its median intensity for the corresponding marker.



Supplementary Figure 16: Differentially abundant subpopulations in the Nanog-Neo time course, detected
at a spatial FDR of 5%. Each point is a hypersphere and is coloured according to its log-fold change in
abundance over time. Grey points are hyperspheres with significant but non-linear changes in abundance.



Supplementary Figure 17: Marker intensities of differentially abundant subpopulations in the Nanog-Neo
time course, detected at a spatial FDR of 5%. Each plot corresponds to a marker while each point represents
a hypersphere, coloured according to its median intensity for the corresponding marker.
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Supplementary Figure 18: Changes in cell abundance after transgene induction with doxycycline (left)
or after doxycyline withdrawal (right) in the Oct4 -GFP time course. Each point in the t-SNE plot represents
a differential hypersphere, coloured based on the log-fold change during induction (day 0 to 1) or withdrawal
(day 16 to 17). A prior of 3 was added to each count to stabilize the log-fold changes.
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Supplementary Figure 19: Cell abundance for the novel SC4-like subpopulation with active STAT3,
AMPK and PLK1 signalling, as a function of time in the Oct4 -GFP reprogramming time course. Abundances
are shown as a percentage of the total number of cells in each sample. Each line represents the abundance for
each hypersphere representing the subpopulation, while the black line is the average across all hyperspheres.
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Supplementary Figure 20: Differentially abundant subpopulations in the BMMC data set upon treatment
with IL-10, detected at a spatial FDR of 5% and visualized with a t-SNE plot. Each point represents a hyper-
sphere and is coloured according to its average log-fold change in abundance upon treatment. Hyperspheres
were annotated into subpopulations based on expression of lineage-specific markers and signalling molecules.



Supplementary Figure 21: Marker intensities of differentially abundant subpopulations upon IL-10 stim-
ulation in the BMMC data set, detected at a spatial FDR of 5%. Each plot corresponds to a marker while
each point represents a hypersphere, coloured according to its median intensity for the corresponding marker.
The colour range for each marker was bounded at the 1st and 99th percentiles of intensities across all cells.



All, 40−fold 10%, 40−fold All, 2−fold 10%, 2−fold

D
et

ec
tio

n 
fr

eq
ue

nc
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DA
Direct

Supplementary Figure 22: Relative performance of direct detection and DA analyses on simulated data
containing intensity shifts. Detection frequencies were defined as the number of simulation iterations (out
of 50) in which the shifting was successfully detected, and error bars correspond to standard errors from a
binomial distribution. Simulation scenarios were tested where all or 10% of cells shifted in intensity between
conditions, with shifts ranging from 2- to 40-fold in size (in terms of the raw expression values).
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Supplementary Figure 23: Relative performance of cluster-based DA analyses in simulated data. Left:
a PCA plot to illustrate the simulation design, which contains a non-DA bulk of cells (grey) along with two
small, adjacent DA subpopulations exclusive to the first (blue) or second conditions (red). Right: detection
frequencies for each of the two DA subpopulations across 50 simulation iterations. Frequencies were defined
as the proportion of iterations in which each subpopulation was detected, and error bars represent standard
errors from a binomial distribution. DA analyses were performed using CITRUS, a custom approach based
on hierarchical clustering with varying numbers of clusters k or the hypersphere-based approach.



Supplementary Figure 24: Detected clusters from a differential abundance analysis of the Oct4 -GFP
time course with CITRUS, mapped onto the t-SNE plot of DA hyperspheres. Each point represents the
centre of a DA cluster that was detected at a FDR of 5%. DA hyperspheres are shown as a grey outline for
comparison.


