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SI1. The conditions that induce phenotypic multiplicity of the cell cycle. Let us describe the rate of 

change in protein concentration during the cell cycle. 

Let us denote a certain protein and its concentration by p. Then the rate of change in the given 

protein concentration due to its synthesis is described by the general form equation 

 p

dp
B

dt
 S .      (S1) 

The rate of change in protein p concentration in Eq. S1 we denote by Sp, indicating in an explicit 

form that it depends on the concentration of proteins of the group B (self-reproducing proteins such as 

ribosomes, RNA polymerase, etc). Let us denote the cell volume by V and the cell volume growth – by 

Y. The totality of proteins whose concentration determines the growth rate of the cell volume we denote 

by H. Then the cell growth rate is described by the general form equation 

 
dV

H V
dt

 Y ,      (S2) 

and the dilution rate of protein p concentration due to cell volume growth is described with equality 

1
( )

dp dV
p H p

dt dt V
   Y .    (S3) 

As a result, the rate of change in protein concentration, taking into account its synthesis (Eq. S1) 

and dilution (Eq. S3), can be written in the form 

  ( )p

dp
B H p

dt
 S Y .     (S4) 

We shall note that protein degradation is not considered in Eq. S4, which is an important element 

involved in the cell cycle regulation of modern cells, considering the external and internal environmental 

factors. But, for simplicity, we excluded protein degradation from consideration, although degradation 

reduces protein concentration and under certain conditions can lead to complex chaotic changes in 

intracellular protein concentration (Likhoshvai et al., 2016). 

We assume that if we can identify the mechanism for the formation of phenotypic multiplicity of 

the cell cycle, which does not include degradation processes, this would mean that protein degradation 

is not the primary phenomenon-forming factor, although it can play a similar role under certain 

conditions. 

From H we choose a protein, which is consumed for the cell growth and denote it by r. Assume 

there is at least one such protein. This assumption is quite realistic. For example, in modern E. coli cells 

it is Lpp membrane protein (Inouye et al., 1972); such proteins exist in S. typhimurium, B. subtilis, 

Mycobacterium tuberculosis, etc. In our opinion, this statement is valid for the majority of cells (if not 

all) and therefore does not limit the generality of reasoning in any way. The consumption rate for such 

protein during cell volume growth is described by the equation 

 r

dr
H

dt
  Y .      (S5) 
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Where, r is the stoichiometric coefficient equal to the number of protein r molecules consumed for the 

cell volume growth during one cycle. Then the general equation describing the rate of change in protein 

r concentration is written in the form 

    ( )r r

dr
B H H r

dt
  S Y Y .    (S6) 

Let us assume that cell growth is sufficiently effective in a sense that newly synthesized protein r 

molecules are rapidly consumed during cell growth, that is, the rate of cell growth is approximately 

equal to the rate of protein r synthesis 

   r rB HS Y .     (S7) 

Equality (S7) allows to exclude the law of cell volume growth from consideration and rewrite Eqs. 

S2 and S4 in the form 

 

 
1

r

r

dV
B V

dt 
 S ,     (S8) 

 
 r

p

r

Bdp
B p

dt 
 

S
S .     (S9) 

Thus, we obtain a system of Eqs. S8,S9, which describes the rate of change in protein concentration 

during the cell cycle. 

Let us consider the cell cycle as a dynamic process. A cell born at the time t0 develops for some time 

T, after which it divides and two daughter cells appear instead of the original (mother) cell at the time 

t1=t0+T. Each daughter cell at the time of division receives all the necessary components for subsequent 

growth. We assume that division occurs in a simplest symmetrical way: daughter cells receive exactly 

half of all molecules at the time of division and the daughter cell volume is exactly half the volume of 

the mother cell just before division. Repeatedly, each cell undergoes growth and subsequent division. 

During the cell cycle, the rate of change in protein concentration varies according to Eqs. S8 and S9. 

Now let us consider a cell cycle, in which daughter cells are identical to the mother cell at the time 

of its birth. That is, cell cycle of the daughter cell repeats the cell cycle of the mother cell. In other words, 

the cell cycle represents a stationary system. It can be expressed in the form of equalities 

( ) ( )
,

( ) ( ), .

dx t T dx t

dt dt

x t T x t x B





   

     (S10) 

Where, t is any time point of the cell cycle that is convenient to calculate according to an internal 

clock, taking the birth moment as 0. 

It follows from Eqs. S10 that curves x(t) are cyclic. Hence, for each x there is 0txT, for which 

( )
0.xdx t

dt
      (S11) 

Let us now consider a protein that does not belong to the group B. Let us denote its concentration 

by m. Then, from Eq. S11, for this protein we obtain the following equality at the point tm 

 
 .r

m

r

B
m B




S
S     (S12) 

It follows from Eq. S12 that if functions Sr and Sm do not depend on m, then m is uniquely expressed 

in terms of concentration of proteins from the group B. That is, if protein m does not belong to the group 

B, its synthesis and dilution can act as factors that engender phenotypic multiplicity of the cell cycle 

only if there are specific feedback regulatory loops in the process of its synthesis (Shearwin, 2009; 
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Klumpp et al., 2009). Otherwise, synthesis and dilution of proteins not belonging to the group B are not 

capable of generating phenotypic multiplicity. 

Let us now consider a protein from the group B. We denote its concentration by c. Then, at the point 

tc we have the equality 

 
 

,
, , \

r

c

r

B c
c B c B B c


 

S
S .     (S13) 

In Eq. S13, B\c denotes a group of proteins B excluding protein c. It can be seen that functions Sr 

and Sс automatically depend on c and the number of solutions to equation S13 depends significantly on 

the form of functions  , , ,x B c x c rS . It follows that synthesis and dilution of proteins from group 

B (RNA polymerases, ribosomal proteins) can potentially act as factors that engender phenotypic 

multiplicity of the cell cycle. 

SI2. Analysis of the behavior of the adaptability functional W in the model (13) (see the main text 

of the article). We assume that evolutionary adaptation is directed towards increasing the specific growth 

rate of the «cell», the metabolism of which is in equilibrium. Therefore, for the model (13), the 

adaptability functional has the following form 

( )
( ) ,r

r

c
c




S
W      (S14) 

where, c is a positive root of Eq. 14, which corresponds to a stable steady-state of Eqs. 13 (see the main 

text of the article). If Eq. 14 has more than one steady-state, then the root value, for which the value of 

W is higher, is taken as c. Let us study the behavior of W (Eq. S14) for the synthesis rate functions 

described by Eq. 20. In this case Eq. S14 is written as 

2

2 2

( )
( ) , , , .r

x x

r x

c c
c k x c r

K c
  



S
W S    (S15) 

We see that W is directly dependent on the values r

r

k


, rK and c. Since c is the solution of Eq. 21 (see 

the main text of the article), then W indirectly depends on ck  and cK . Let us carry out the analysis for 

the fixed value r. Then we have four evolving parameters , , ,c c r rk K k K . 

First, we analyze the behavior of the adaptability functional W (Eq. S15) as a function of the parameter 

values ck  and cK . 

We have 

 

2

2
2 2

1
2 0r r

r

r
r

K
k c

c c K c


  

  

S
W . 

Therefore, if Eq. 14 (see the main text of the article) has more than one positive root, then W takes 

a maximum value at the maximum root. Therefore, we are interested in the sign of the derivative 

, , ,c ck k K
k






W
at the maximum root. 

We have 

1
, .cr r

r r

c

k c k c 

 
  

  

SS S
W W  

A distinctive property of the maximum root is its unconditional existence for any fixed set of 

parameter values and the validity of inequality 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Klumpp%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20064380
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.cr

rc c c

    
   

    

SS
 

Let us note that 
 2 2

0c

c r

c

k c K c

  
  

  

S
. Hence, the maximum root of Eq. 14 (see the main 

text of the article) grows with increasing kc. Equivalently, the maximum root of Eq. S13 increases with 

decreasing Kc. Consequently, we conclude that value of the adaptability functional W increases with 

decreasing cK  and increasing ck  

Let us now demonstrate that if c rK K , then Eq. 14 has exactly one positive root and its value 

decreases with increasing kr and decreasing rK . We rewrite Eq. 14 in the equivalent form 

2 2

2 2
( ), ( ) .c c

r

r r

k K c
F c F c c

k K c



 


 

We have 

 

2 2 2 2

2

2 2 2
2 2

( ) 2 0c r c

r
r

K c K K
F c c

c K c K c

 
  

  
. 

Hence, ( )F c  is an increasing function with respect to c. Since (0) 0, ( )F F    , then equation 

( )c

r

r

k
F c

k
   has exactly one positive root. 

 
    

 

2 2 2 2 2 2 22 2

2 2 2 2

21
1 0.

c r r cr

r r c rc c

c K K K c K cK cd dc dc
sign sign

dc dk k dkc K c c K c

      
        
    
   

 

Correspondingly, we have 

: ( (, , , , ), , ) ( (, , , , ), , ).r c c c r r r r c c r c r cK K c k K k K k K c k K k K k K  W W  

Note that biochemical nature of the parameters ck , cK , rk , rK  implies that they have a minimum 

and maximum boundaries of physiologically acceptable values, within which they can change in the 

course of evolution. Moreover, the identical nature of the synthesis of factors allows us to assume that 

parameter pairs ck , rk  and cK , rK  have the same boundaries: 0 ,min c r maxk k k k      and 

0 ,min c r maxK K K K     . With no loss of generality, we can assume that mink 0 (value of the 

initiation rate constant can be arbitrarily small); maxk < (value of the initiation rate constant can not be 

arbitrarily large due to the physical limitations of the rate of molecular processes); maxK  (interaction 

between the synthesis factor and its target sites can be arbitrarily weak); 0 < minK  (interaction between 

the synthesis factor and its target sites can not be arbitrarily effective due to the physical limitations of 

the rate of molecular processes). 

It is also obvious that there are objective physical limitations to the unlimited growth of the 

parameter c value. The simplest justification of this statement lies in a physical fact that in any finite 

volume there can be a finite (may be large but finite) number of molecules having nonzero volume. In 

fact, for any type of molecule, the real physiological boundary is much smaller, since there are thousands 

of molecules in a cell and all of them must function properly. Excessive density of molecules in a limited 

volume physically limits their mobility and negatively affects the reaction rate. As a result, we can 

assume that in the course of evolution the concentration value of the resource factor can not exceed a 

certain limiting value сcfis. 
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Let us consider the case in which the maximum root of the system Eq. 21 (the main text of article) 

for any fixed values rk  and rK  does not exceed cfis. Since with fixed values rk  and rK  function W(с(

ck , cK , rk , rK ), rk , rK ) increases with increasing ck and decreasing cK , then maximum value of the 

function for fixed rk  and rK  is reached at the boundary of the physiological variability of these 

parameters: c maxk k  and c minK K . But, since с=с( maxk , minK , rk , rK ) decreases and the value of  

W(с, rk , rK ) increases with increasing rk  and decreasing rK , then maximum value of the function is 

W(с( maxk , minK , maxk , minK ), maxk , minK ) and  , , , .max min max min rc k K k K   

Suppose now that the maximum root of the system (S26) for some fixed values ck , rk  and cK , rK  

is greater than cfis: с( ck , cK , rk , rK )>cfis. Then, for fixed values  rk  and rK   the maximum value W(с(

ck , cK , rk , rK ), rk , rK ) is attained at those ck  and cK , for which the maximum root is equal to the 

physiological maximum: c( ck , cK , rk , rK )=cfis. Note that if kс, Kс belong to the physiological area, then 

the pair of values (

2 2

2 2

min

c

c

K c
k

K c




, minK ) also lies in the physiological area. Because 

2 2 2 2

2 2 2 2 2 2

min

c c

c min c

K c c c
k k

K c K c K c

 
  

   
, then c( ck , cK , rk , rK )=c(

2 2

2 2

min

c

c

K c
k

K c




, minK , rk , rK )=cfis 

and W(с( ck , cK , rk , rK ), rk , rK )=W(c(

2 2

2 2

min

c

c

K c
k

K c




, minK , rk , rK ), rk , rK ). Because r minK K , 

then as value rk  increases and value rK  decreases we get a decrease of c(

2 2

2 2

min

c

c

K c
k

K c




, minK , rk , rK ) 

and an increase of W(c(

2 2

2 2

min

c

c

K c
k

K c




, minK , rk , rK ), rk , rK ). Therefore, the maximum of the 

adaptability functional is achieved when W(с( ck , minK , maxk , minK ), maxk , minK ),

2 2

2 2

min
c c

c

K c
k k

K c





, с(

ck , minK , maxk , minK )<cfis.  

Because ck <kmax, then for any ck  ck  maxk  

W(с( ck , minK , maxk , minK ), maxk , minK )>W(с( ck , minK , maxk , minK ), maxk , minK ).  

Therefore, maximum of the adaptability functional W is achieved when c maxk k , с( maxk , minK ,

maxk , minK )=r or с( ck , minK , maxk , minK )=cfis, 
fis

c r

r

c
k k


 . It is obvious that the second possibility can 

be realized only for 1
fis

r

c


 . Therefore, if 1

fis

r

c


 , there is a single point at which W has the maximum 

value: Wmax=W(r, maxk , minK , maxk , minK ). 

If 1
fis

r

c


 , then Wmax=W(сfis, 

fis

max

r

c
k


, minK , maxk , minK ). Let us take 

fis

max c max

r

c
k k k


   and 

assume that  2 2 2r c

c min fis fis min

fis max

k
K K c c K

c k


    . Then Wmax=W(сfis, ck , cK , maxk , minK ). That is, 

values of the parameters ck , cK  can be any in the interval 
fis

max c max

r

c
k k k


  . 
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It follows from the above analysis that the adaptability functional W has a single global maximum. 

Regardless of the value of concentration c, the maximum is realized in the range of parameter values, 

which includes c r minK K K  . Values of the parameters ,c rk k  are determined by the ratio r/cfis and 

physiological boundaries ,c r maxk k k . Under certain conditions, the maximum value of the adaptability 

functional W is realized not at a single point, but in some nontrivial parametric region, which should be 

called the region of neutrality. In the areas of neutrality, the parameter values can be chosen arbitrarily, 

considering the fulfillment of certain relations. 

Let us interpret the obtained results given the paradigm that the evolutionary selection of the most 

adopted cells leads to an increase in the value of the adaptability functional W. Let us consider two 

cases: 

1) If 1r

fisc


 , then evolution leads to an increase/decrease in the values of the parameters /  

until they reach the maximum/minimum values: ,c r maxk k k / ,c r minK K K .  

Additionally, Eq. 22 (the main text of article) has only one positive root at the limit point, which 

means that region of phenotypic multiplicity does not lie in the attractive area from an evolutionary 

point of view. 

2) If 1r

fisc


 , then the parametric region of the maximal adaptability is not a single point, but represents 

some non-trivial parametric manifold. 

Let us consider cells that are in a state of maximal adaptability. These cells continue to grow, divide, 

and accumulate mutations. Most frequent mutations (single or multiple) are mutations that lower the 

adaptability of the cell. Therefore, they are eliminated during selection. But from time to time cells 

bearing compensated mutations would appear. Since 1r

fisc


 , such mutations include the ones that 

change values of parameters ck  and cK  for 
,c mutk  and 

,c mutK  in a consistent way in a sense of fulfilling 

the equality 

,

2 2 2 2

,

c mutc

c c mut

kk

K c K c


 
.    (S16) 

Then all cells with parameters 
,x mutk  and 

,x mutK  possess the same maximal adaptability as the cells 

with parameters xk  and , ,xK x c r . That is, cells carrying such combinations of mutations are not 

subjected to negative selection and all cells carrying these mutations have absolutely identical chances 

to survive or be eliminated from the population. Therefore, such coupled mutations are neutral. 

Accordingly, in a developing cell population, cells with any set of parameter values from the 

physiological range of parameters of the non-changing (maximal) adaptability functional W will appear 

over time.  

Therefore, for 1r

fisc


 , there exists a nondegenerate parametric area within which a coevolutionary 

neutral drift of coupled mutations occurs. 

In this connection, the question arises whether regions of coevolutionary neutral drift of coupled 

mutations can contain subregions in which multiple phenotypes of a single cell cycle can be realized. 

Let us study the properties of the parametric region of the coordinated neutral drift for 

1r

fisc


 .      (S17) 

Then, the maximum value of W is reached at cfis and ,r max r mink k K K  :  

,c rk k ,c rK K
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2

2 2

fis max

max

r min fis

c k

K c



W .     (S18) 

A parametric region of the coordinated neutral drift represents an interval [kc,mаx, kmax], 

kc,mаx=cfiskmax/r., Value of the parameter kc can be chosen arbitrarily from this interval. Assume that 

 2 2 2

,

c

c min fis fis

c max

k
K K c c

k
    and lies in the interval [Kmin, Kc,max], 

 2 2 2

,

r

c max min fis fis

fis

K K c c
c


   .  

Let us investigate the conditions of existence of three roots for the following equation 

   2 2 2 2

,

3 2 2 2

2 1 0 0 1 , 2

0,

0, , , .

c max r min

r min c max r

c K c K c

c a c a c a a K a K a



 

   

      
  (S19) 

We take into account that cfis is the root of Eq. 21 from the main text. We have 

 

 

3 2 2

2 1 0 1 0

2
2 2

1 0 1,2

2 2

2
2

1,

( )( ),

, , ,

1
0 2 1 1 0 ,

2

fis

r r

r fis min r fis r fis min

fis fis

minr r r

r fis min

fis fis fis fis

r

fis

c a c a c a c b c b c c

b c b K c c c K
c c

K
c K

c c c c

c

 
  

  




      

       

      
                          

 
  
 

2 2

2

1 1
1 1 1.

2 2

min min

fis fis

K K

c c

      
                      

 

Hence, the necessary condition of existence of three roots is the fulfillment of inequality 

2
2

1
1

2 4

min minr

fis fis fis

K K

c c c


 

                   
      
 

    (S20) 

Thus, a non-trivial intersection between the neutrality line and the region of existence of three 

positive roots exists only if conditions S17 and S20 are satisfied.  

A reasonable question arises whether these conditions are physiologically realistic. In our 

calculations we used experimental data obtained for the actively growing E. coli cell (Schaechter et al., 

1962; Inouye and Shaw, 1972; Bremer and Dennis, 1996; Cowles et al., 2011; Dai et al., 2016). Value 

of the parameter r was estimated from the relative amount of Lpp that is consumed in the process of 

the E. coli cell wall construction during one cell cycle. Based on the data from (Inouye and Shaw, 1972), 

it was determined to be r~5105. The parameter cfis was estimated from the number of free ribosomes 

competent of initiating translation and was determined to be cfis~2104-1.5105 unit/cell. We assumed 

that total number of ribosomes in the actively growing cell (cell cycle duration 20 min) is 6104 

pieces/μm3, cell volume is 4-8 μm3, and the number of ribosomes participating in the translation 

elongation comprises 70-90% of the total number of ribosomes. Hence, r>cfis. 

The condition for the inequality S34 depends on the value of the parameter Kmin, which determines 

the effectiveness of the interaction between ribosomes and SD sites, and strongly depends on the 

structure of SD sites and surrounding regions. It can vary within very wide limits. It would not be a 

mistake to assume that for the most effectively translated mRNA molecules the dissociation constant K 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Inouye%20M%5BAuthor%5D&cauthor=true&cauthor_uid=4565677
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shaw%20J%5BAuthor%5D&cauthor=true&cauthor_uid=4565677
http://www.ncbi.nlm.nih.gov/pubmed/?term=Inouye%20M%5BAuthor%5D&cauthor=true&cauthor_uid=4565677
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shaw%20J%5BAuthor%5D&cauthor=true&cauthor_uid=4565677


8 

 

is below the point at which 50% of the translation initiation is achieved. Therefore, we assume that 

Kmin=10000 unit/cell. Whence, r5105, cfis2104-15104, Kmin=104 and we have 

r 500000 32807.8 160339

2
2

1
1

2 4

min min

fis

fis fis

K K
c

c c

 
            
    
 

, 

that is, the inequality S20 is fulfilled. 

Thus, parameters of the modern E.coli cell completely satisfy the conditions for the realization of 

phenotypic multiplicity. 

SI3. The role of nutritional resource in the cell cycle phenotypic multiplicity formation. In this 

section we demonstrate that nutritional resource, being a source of cellular self-reproduction, is a natural 

factor that is capable of forming the conditions necessary for the realization of the phenotypic 

multiplicity of the cell cycle. To show this, let us include the nutritional resource into the model (Eqs 

13) (the main text of the article) in a simplest linear form. Namely, we assume that the nutritional 

resource enters the cell and is consumed during the synthesis of factors. As a result, we get the following 

model 

  

,

,

.

r

r

c r

r

zin

zout z c r

d
V z V

dt

d
c z c

dt c

k
z

k











      


  

S

S S

S S

    (S21) 

Where, z – current concentration of the resource, kzin – rate constant for the resource flow into the 

area of consumption, kzout – rate constant for the resource outflow from the area of consumption, z – 

unit cost of the factor synthesis process. For simplicity, we assume that processes of inflow and 

outflow/consumption of the resource are balanced. 

In this case, the adaptability functional takes the form 

r

r

z



S

W ,      (S22) 

and its value should be calculated for the positive stable root of equation 

1 1
.r c

r c
S S       (S23) 

A distinctive behaviour of the adaptability functional r

r

z



S

W  for the monotonically increasing 

and bounded from above function rS  and limited nutritional resource is the appearance of a global 

maximum for a finite c value, which follows directly from the representation 

1

zin r

r

zout z r

r

k

c
k






  

     
  

S
W

S

.    (S24) 

If we additionally assume that ,r cS S  are smooth functions of the positive argument c and 
1

r

d

dc

 
 
 S

 

monotonically increases from - to zero with c increasing from 0 to +, then it follows from equality 
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 
2

1

0
1

z

r zout rzin

zout r
z

r

r zout r

d

dc kkd

dc k
c

k








  
 

   
 

  
 

S
W

S

, 

 

that functional W (Eq. S24) has a single maximum and there is a decrease in cfis value with increasing 

z, in which the given maximum is reached. 

It is possible to calculate the position of cfis maximum in an explicit form for a particular type of Sr 

(Eq. 20 from the main text). We have 
22 22

3

2 2 2 3

221 1 1
, .r zout rr r

r r

r r r r r r z r

K kK Kc d
k c

K c k k c dc k c k

 
         

  
S

S S
 

or 

3 2
fis zout r

min max min z

c k

K k K





     (S25) 

Let us now study the number of positive solutions for Eq. 21 from the main text depending on the 

z

zoutk


 value. We shall carry out a study for a specific form of the functional W (Eq.S15). In this case, 

Eq. S25 represents a one-to-one correlation between cfis and z

zoutk


. We rewrite Eq. S20 in a more 

convenient form 
2

2

1 1
1

2 4

min min minr

min fis fis fis

K K K

K c c c


 

                       
       
 

 

2

4

1 1

2 4

1 1 1
( ) , , .

2 4

fisminr

min fis min

fisr

min min

cK

K c K

c
F

K K




    



                        

    
          

    

 

Let us find the minimum of the function ( )F  . We have  

4 4 4

3
4

2

4 2 4

4 4 4 4 4

2 4
4

1 1 1
2

2 4 41 1 1 1 2
( )

2 4 1 1

4 4

1 1 1 1 1 1
2 0

2 4 4 4 2 4

1 1 1 1 3 3
, .

2 16 4 16 4 4

d
F

d

x x x x x

  


 
 

  

    

 

 
         

        
   

 
            
 

        
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Whence, 4 4
min

3 3 4
( )

4 2 3
F F  .  

Therefore, if 
3

3
2

r

minK


 , then for any resource availability, there is only one root (Fig.S1, line 2 

does not intersect the graph of the function F). If 
3

3
2

r

minK


 , then the number of positive solutions 

depends on the availability of the resource (Fig.S1, line 1 intersects the graph of the function F). 

 

Figure S1. Graph of the function F(). Line 1 – =4.47214 (plurality of steady-states is present in the 

interval 

6

-7

2

0.22 < 4.36 1.18 10 6.3

zout r

max min z z

zout

k

k K

k







 

     ); line 2 – =0.894427 (a 

single steady-state); line 3 touches the minimum 4
min

3 4

2 3
F  . Abscissa –  value, ordinate – values of 

the function F and  in relative units. The shaded part of the graph corresponds to the bistability region. 

 

In connection with the obtained result, we shall note that the question of the physiological 

expediency of the relation 
r

minK


 has been discussed above. Let us recall that r has the meaning of the 

number of growth factor molecules consumed in the process of cell growth during single cell cycle, and 

Kmin has the meaning of the concentration of the synthesis factor, at which ½ the maximum synthesis 

rate is reached. Above we have indicated that analogs of these parameters in the modern cell, most 

likely, have the following values: r  5105 , minK <105, т.е., r >
3

3
2

minK . That is, conditions for 

realization of bistability are quite realistic from a biological point of view. Therefore, we further assume 

that 
3

3
2

r minK  . In this case, in a certain range of resource availability, a plurality of phenotypes is 

observed. Let us find the boundaries of this range. We have 
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, 6

2 r

z min

min max maxK k x


   and , 6

2 r

z max

min max minK k x


  . 

 

It corresponds to the location of the blue horizontal line (Fig. S1.) =4.47 relative to the graph of 

the function F(x), that is, the multiplicity is present in the interval 
-71.17 10 6.3z    . A single 

solution is observed with a high degree of availability (area of excess: 
-71.17 10z

zoutk


  ) and with a 

high degree of insufficiency of the resource (area of high deficit: 6.3 z

zoutk


 ). 

Thus, we have clearly shown that a relative insufficiency of the nutritional resource is a condition 

for the realization of bistability, namely the phenotypic multiplicity of the cell cycle. 
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