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Figure S1. Size histograms of the metallic core of AuNP1 (A) and AuNP2 (B). Inserts: 

TEM images of AuNP1 (A) and AuNP2 (B) with a scale bar of 20 nm.  



S3 
 

 

Figure S2. Absorbance values for different concentrations of AuNP1 (7, 13, 20, 27, 40, 54 

and 67 nM) at 517 nm (black diamonds) and AuNP2 (8, 16, 24, 32, 48, 64, 80 nM) at 523 

nm (green squares). The molar extinction coefficient is 2.78 x 107 L.mol-1.cm-1 for AuNP1 

and 1.57 x 107 L.mol-1.cm-1 for AuNP2. 
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Figure S3. UV-visible spectra of AuNP1 alone (in black) and in the presence of PAS 

coloration reagents: AuNP1 with periodic acid (in blue) and AuNP1 with periodic acid and 

Schiff’s reagent (in red). The reagents spectra were also performed as blank for the 

different conditions of mucoadhesion samples and subtracted from the corresponding 

spectra. 
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Figure S4. UV-visible spectra of mucins at different concentrations (50, 100 and 150 

µg.mL-1) after PAS coloration. The maximal absorbances are observed at 575 nm. 
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Figure S5. Quenching of mucins fluorescence (0.1 mg.mL-1) in the presence of different 

concentrations of AuNP1 (A) and AuNP2 (B) with correction factor 1 (Gauthier’s equation, 

equation (S6)). The concentrations of AuNP are (1) 0.05, (2) 0.1, (3) 0.15, (4) 0.2, (5) 0.3, 

(6) 0.4, (7) 0.5 and (8) 0.6 mg.mL-1. The excitation wavelength is 285 nm. 
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Figure S6. Quenching of mucins fluorescence (0.1 mg.mL-1) in the presence of different 

concentrations of AuNP1 (A) and AuNP2 (B) with correction factor 2 (Lakowicz’s 

equation, equation (S7)). The concentrations of AuNP are (1) 0.05, (2) 0.1, (3) 0.15, (4) 

0.2, (5) 0.3, (6) 0.4, (7) 0.5 and (8) 0.6 mg.mL-1. The excitation wavelength is 285 nm. 
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Figure S7. Quenching of mucins fluorescence (0.1 mg.mL-1) in the presence of different 

concentrations of AuNP1 (A) and AuNP2 (B) with correction factor 3 (Parker’s equation, 

equation (S5)). The concentrations of AuNP are (1) 0.05, (2) 0.1, (3) 0.15, (4) 0.2, (5) 0.3, 

(6) 0.4, (7) 0.5 and (8) 0.6 mg.mL-1. The excitation wavelength is 285 nm. 
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Figure S8. Quenching of mucins fluorescence (0.1 mg.mL-1) in the presence of different 

concentrations of polymeric nanoparticles (A). The concentrations are (1) 0.04, (2) 0.08, 

(3) 0.11, (4) 0.14, (5) 0.22, (6) 0.29, (7) 0.36 and (8) 0.43 mg.mL-1. The excitation 

wavelength is 285 nm. The fluorescence intensity of mucins at 344 nm is represented in 

respect to the concentration of polymeric nanoparticles (B).  
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Appendix 1. Equations for the calculation of AuNP estimated molecular weights 

The molecular weights of the gold nanoparticles were estimated as previously published 

(Boisselier et al, Chem. Comm. 2008, 5788-5790). Assuming monodisperse spherical gold 

nanoparticles, the volume (V) of the metallic core can be estimated according to: 

V =  
ସ஠×൫୰ୟୢ୧୳ୱ ୧୬ Å൯

య

ଷ
                  (S1) 

The number of gold atoms present in the gold core, n (Au), can be estimated according to: 

n (Au) =
୚ ୧୬  Åయ

ଵ଻ Åయ
                  (S2) 

With the molecular weight (MW) of Au and S, the elemental analysis allows the estimation 

of the number of thiol groups, n (S), on the surface according to: 

୬ (୅୳) × ୑୛ (୅୳)

 % ୅୳ ୟ୲୭୫ୱ
=

୬ (ୗ) ×୑୛ (ୗ)

 % ୗ ୟ୲୭୫ୱ
               (S3) 

 

Finally, the molecular weight of AuNP can be estimated according to: 

MW (AuNP) = (n (Au) × MW (Au)) + (n (S)  × MW (thiolated ligand))          (S4) 
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Appendix 2. Equations of the different corrections factors 

Equation parameters were homogenized for more clarity. 

2.1 Parker’s equation – Correction factor 3 

Historically, one of the first correction factor used to correct the inner filter effect was 

derived by Parker et al. in 19571 and published in the book Photoluminescence of solutions 

in 1969:2 

୊ౙ౥౨౨

୊౥ౘ౩
=

ଶ.ଷ଴ଷ୅(୶మି୶భ)

ଵ଴షఽ౮భି ଵ଴షఽ౮మ
              (S5), 

where x1 and x2 are the cuvette dimensions between the cuvette edge, and respectively the 

frontal and the distal extremity of its aperture. The published data deal with the influence 

of benzoin concentration on the formation of the fluorescent borate-benzoin compound. 

This equation is the starting point of all the other correction factors adapting their equation 

according to their specific conditions. Limitations of this equation are its application only 

for solutions with an absorbance lower than 2.0, and the fact that the absorbance at the 

emission wavelength is not considered. 

2.2. Gauthier’s equation – Correction factor 1 

In 1986, Gauthier et al. optimized Parker’s equation with the consideration of the width of 

the cuvette (d), the excitation beam width (s), the distance between the excitation beam and 

the cuvette edge (g) and the absorbance at both the excitation (Aex) and the emission (Aem) 

wavelengths as follows:3 

୊ౙ౥౨౨

୊౥ౘ౩
=  

ଶ,ଷୢ ୅౛౮

ଵିଵ଴షౚఽ౛౮
 ×  10୥୅౛ౣ  ×  

ଶ,ଷୱ ୅౛ౣ

ଵିଵ଴ష౩ఽ౛ౣ
             (S6) 

In 1991, Pulchalski et al. compared equations (S5) and (S6) for a study of quinine sulphate 

and concluded that equation (S6) was more accurate because the absorbance at the emission 

wavelength was taken into account.4 

2.3 Lakowicz’s equation – Correction factor 2 

In 1983, Lakowicz et al. developed a correction factor also considering the absorbance at 

both the excitation (Aem) and the emission (Aem) wavelengths as follows:5 
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୊ౙ౥౨౨

୊౥ౘ౩
= 10[ 

ఽ౛౮శఽ౛ౣ
మ

 ]                        (S7) 

Pulchaski et al. also compared this equation with equations (S5) and (S6) and concluded 

that the results were in accordance with the ones obtained with the other equations, 

although less linear.4 

All these equations are easy to use and do not require any special equipment, unlike the 

one referenced in Lutz et al.6 According to the specific conditions of the studied quenching, 

some of them are more appropriate due to the consideration of absorbance at excitation and 

at emission wavelengths. However, the global correction factor proposed in our manuscript 

(equation (1)), allows a complete correction of inner filter effect and thus an accurate 

quenching study without underestimating the re-adsorption of the light by compounds in 

solution.  
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